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Abstract. A complete 3D face reconstruction requires to explicitly
model the eyeglasses on the face, which is less investigated in the lit-
erature. In this paper, we present an automatic system that recovers the
3D shape of eyeglasses from a single face image with an arbitrary head
pose. To achieve this goal, we first trains a neural network to jointly
perform glasses landmark detection and segmentation, which carry the
sparse and dense glasses shape information respectively for 3D glasses
pose estimation and shape recovery. To solve the ambiguity in 2D to 3D
reconstruction, our system fully explores the prior knowledge including
the relative motion constraint between face and glasses and the planar
and symmetric shape prior feature of glasses. From the qualitative and
quantitative experiments, we see that our system reconstructs promising
3D shapes of eyeglasses for various poses.

1 Introduction

Eyeglasses exist in many facial images. They can somehow be considered as
extending components for human face, which influence face appearance dramat-
ically. Reconstructing glasses explicitly is beneficial for many applications. For
example, reconstructing 3D face as well as glasses on the face obviously achieves
a more complete face modeling. With known glasses shape and pose, the inter-
ference caused by glasses occlusion can be eliminated in many face-related tasks
such as face shape/appearance reconstruction and face authentication. More-
over, applications related to glasses can also be realized based on the glasses
reconstruction, like glasses design, removal, and virtual try-on.

Reconstructing 3D glasses from a single face image is challenging, which
suffers the following difficulties. First, features for reconstructing glasses are less
investigated in the literature, neither the handcraft features nor the learning-
based features. Second, glasses in images may vary a lot due to the large head
pose changes, which increases the ambiguity in reconstructing 3D glasses from
a single 2D image.
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Fig. 1. Our system reconstructs eyeglasses from single input face image with an arbi-
trary head pose. More results can be found in the result section and supplementary
materials.

Some previous techniques have worked on this topic and tried to over-
come some of the aforementioned difficulties. [13] distinguishes the face and
glasses depth estimated from multi-view RGB images and reconstructs coarse 3D
glasses. They propose a generic model representing the outer contour of glasses
based on the glasses geometry commonality, and they optimize the contour by the
symmetry shape prior feature of glasses. [28] realizes glasses segmentation from
frontal face image also by the symmetry constraints, and reconstructs glasses
frame by deforming the prior shape. However, these eyeglasses reconstruction
techniques require either multi-view images or frontal face images. To the best
of our knowledge, no previous work could reconstruct 3D glasses from a single
face image with various head poses.

This paper proposes the first fully automatic system to recover glasses 3D
shape from a single face image with an arbitrary head pose. Figure 1 shows some
results of our system. To guide the reconstruction of glasses, we extract two
kinds of glasses features from images, i.e. the glasses landmarks and segmentation
mask. We define glasses landmarks which represent the overall sparse shape of
glasses as well as its pose in 3D space, which are never defined before. While
the segmentation mask gives dense information describing the shape details of
glasses, we observe that these two kinds of features are highly correlated and
thus we propose a joint learning framework which trains one single network to
perform the two tasks together.

To solve the large ambiguity in 2D to 3D estimation of glasses reconstruction,
we involve various prior knowledge in our method. We leverage the well-studied
face reconstruction techniques to construct motion direction constraints and
contact constraints to solve the ambiguity in glasses pose estimation. Observing
the planar shape of glasses (arms excluded), we frontalize the glasses so that
the task of 3D shape retrieval and 3D shape deformation could be performed by
2D cues. The left-right symmetrical prior is also involved to further constrain
the reconstructed 3D shape. With a technique fully exploring these priors, we
successfully achieve 3D glasses reconstruction from a single face image.

2 Related Works

2.1 3D Face Reconstruction

Faces occupy a central place in conveying human identity, expression and emo-
tion. As a consequence, face 3D reconstruction is required in a wide range of
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applications. Multi-view registration [1] and shape from shading [8,9,18,19] are
the most common ways to achieve face reconstruction. Recently, deep learning
is also applied in this task and achieves promising results [5–7,16,22,24,29].
As glasses influence human face appearance significantly, simultaneously recon-
structing face and glasses will achieve better completeness, which is not fully
investigated yet. Besides, glasses cause the most common occlusions on the face,
distracting face reconstruction frequently. Some methods are proposed to solve
the occlusion of glasses [13] or other objects [3,4,23] in face reconstruction. In
this paper, we explicitly reconstruct detailed glasses shape as well as the face
shape, which will improve the realism and quality of face reconstruction.

2.2 Glasses Reconstruction

Few works focus on glasses 3D reconstruction. [28] presents a method to recon-
struct 3D glasses shape from a single frontal face image by extracting glasses
frame contour and deforming existing glasses 3D template. Then the authors use
the reconstructed glasses 3D model to achieve virtual glasses try-on. In [13], an
approach operating on multi-view RGB images was proposed to automatically
reconstruct face by ignoring the segmented depth of glasses and then use the
segmented glasses depth to reconstruct glasses. But to the best of our knowl-
edge, no previous works focus on recovering 3D glasses from a single face image
of an arbitrary head pose.

2.3 Glasses Manipulation

Most works related to eyeglasses focus on glasses detection, removal and virtual
try-on. As glasses cover large portions of the face, many human face applications
are visibly affected by glasses. Consequently, glasses removal is of much concern
in the literature. In [25], a method was proposed to automatically locate eye-
glasses and fill the glasses region to synthesize a face image without glasses. [15]
proposes an algorithm for glasses removal by recursive error compensation using
PCA reconstruction. Notice that both these two methods operate on frontal face
images. Besides, some works exploit glasses virtual try-on, by which users choose
desired glasses from images or glasses database, and the chosen glasses will be
blended onto the users’ photos [12,14,21,27,28]. We believe that by reconstruct-
ing glasses from limited inputs, applications related to glasses could perform
better. So it is interesting and also our possible future work to investigate how
to utilize the 3D glasses reconstruction techniques to perform the tasks discussed
in this subsection.

3 Overview

The whole pipeline is shown in Fig. 2. Our system takes a face image with glasses
as input. Firstly, to guide the reconstruction, we extract image features including
detecting the face and glasses landmarks and segmenting out pixels representing
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Fig. 2. Pipeline of the proposed system.

glasses. Then we recover the 3D face and estimate the head pose using the face
landmarks. To reconstruct the 3D shape of glasses, we iterate the following three
steps until convergence.

1. Using the glasses landmarks and the current 3D glasses (initialized by a
default template), we estimate the glasses pose and frontalize the glasses
features (i.e. the glasses landmarks and glasses mask).

2. We select the best glasses template from a small dataset by the frontalized
glasses mask.

3. After building the correspondences between the frontalized mask contour and
the contour vertices of the chosen template, we deform the template to fit the
shape of the input glasses.

The rest of this paper is organized as follows. Sect. 4 reviews our feature
extraction including landmark detection and glasses segmentation. Sect. 5 intro-
duces glasses pose estimation and glasses feature frontalization. Then Sect. 6
illustrates our glasses retrieval method and Sect. 7 introduces correspondences
searching and glasses deformation method. Finally, Sect. 8 demonstrates the
experiments to evaluate our technique.

4 Feature Extraction

For the following face and glasses reconstruction steps, we extract three types of
features which are face landmarks, glasses landmarks, and glasses segmentation
mask. For face landmark detection, as this is a well-investigated task, we directly
use the method proposed by [26] which detects 98 face landmarks for each face
in images. As there are no previous works which define and detect landmarks
for glasses, we propose our technique to handle this based on our goal of glasses
reconstruction. The definitions of the 21 glasses landmarks are shown in the left
of Fig. 3. The glasses frame can be expressed by one outer closed curve and two
inner closed curves. To reduce the semantic ambiguity of landmarks, we define
the landmarks on these curves. Meanwhile, glasses segmentation in our paper is
defined to segment the glasses frame (except the two arms) from images.
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Fig. 3. The definition of glasses landmarks (left) and the face coordinate system (right).

We use U-Net proposed in [17] to simultaneously predict the glasses land-
marks and the segmentation mask. The face area, cropped by face landmarks and
resized to 256*256 resolution, serves as the input of the network. The network
outputs 21+1 256*256 maps. The first 21 are the heatmaps for the 21 landmarks
and the last one is the segmentation feature map. As there is no available dataset
for glasses segmentation or landmark prediction, we first collect 5300 face images
half from the Internet and half recorded by ourselves. The internet images cover
various glasses styles while our recorded data contains large pose differences.
After excluding the images with rimless or half rim or incomplete glasses which
are unable to be labeled, we get 3300 images to construct our dataset. Finally, we
manually label landmarks and segmentation masks for images in the dataset. We
would like to release our dataset for future research. Notice that the ground truth
heatmaps used to supervise landmark prediction are established by applying 2D
Gaussian filtering at the labeled landmarks. And the ground truth probability
maps are just the labeled binary segmentation masks.

To train the network, we use the weighted sum of the standard MSE loss
for landmark heatmaps and the cross-entropy loss for the glasses segmentation
probability map:

loss = λbalance ∗ losslandmark + losssegment (1)

losslandmark =
n=21∑

i=1

(xi − yi)2 (2)

losssegment = −[y ∗ logσ(x) + (1 − y) ∗ log(1 − σ(x))] (3)

where xi and yi refer to the output and the ground truth heatmaps of landmark
i, x and y refers to the output segmentation feature map and the ground truth
segmentation mask respectively, and σ(x) refers to the output segmentation
probability map where σ(.) refers to the sigmoid function.

In the testing, we extract pixels of the highest value in the landmark
heatmaps as landmarks and pixels whose probabilities are larger than 0.5 in
the segmentation probability map as the glasses segmentation mask.



Eyeglasses 3D Reconstruction 377

5 Glasses Pose Estimation and Frontalization

This part introduces how to estimate the glasses pose and frontalize all the
aforementioned glasses features for the following glasses shape reconstruction.
Besides the features, this step also requires a 3D mesh model of the glasses. The
mesh model is initialized by a template and is updated according to the image
information in an iterative manner as described in Sect. 3.

Our key idea here is to combine the face pose estimation with the glasses pose
estimation. There are two major reasons for this. First, combining faces with
glasses can give a more complete reconstruction of face region, which is usually
not considered by previous face reconstruction techniques. Second, as the face
and glasses have a strong relationship in position and rotation, the well-studied
face reconstruction techniques can be used to benefit glasses reconstruction,
especially in determining the glasses poses.

5.1 Face Reconstruction

In practice, we first solve the image-based face reconstruction problem following
the method in [2]. This method takes a parametric face model, predefined 3D
landmarks on the model and the 2D facial landmarks in the image space as
the input. To be more specific, we assume a zero-skew perspective camera with
square pixels and the principal point at the image center. Then the 3D-to-2D
projection can be formulated as:

⎡

⎣
u
v
1

⎤

⎦ =

⎡

⎣
f 0 u0

0 f v0
0 0 1

⎤

⎦ ∗ [R|t] ∗

⎡

⎢⎢⎣

x
y
z
1

⎤

⎥⎥⎦ (4)

where (x, y, z) refers to a 3D vertex in the face coordinate system as shown
in the right of Fig. 3, (u, v) refers to its 2D projection, and (u0, v0) refers to
the image coordinate of the image center. R ∈ R

3×3 and t ∈ R
3 define the

coordinate transformation of a point from the face coordinate system to the
camera coordinate system. f refers to the focal length. Notice that here = means
equal for two homogeneous coordinates which may have a scale difference. Then
we apply the 3D-to-2D projection to the face landmarks and thus estimate the
parameters θface, which includes camera parameter f , the head pose and the
shape and expression parameters of the parametric face model, by minimizing
the L2 distance between the projected 3D face landmarks and the detected 2D
landmarks:

arg min
θface

m−1∑

i=0

∥∥pp
i − pl

i

∥∥2

2
(5)

Here m indicates the number of the face landmarks. pp
i and pl

i indicate the
projected and the detected 2D position of the landmark i. In our experiments,
we guess some values for focal length f , based on which we use ePnP algorithm
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[11] to calculate the closed-form solution of the head pose, and then we choose
the best one (with minimum error) to be the initial value. Then we iteratively
estimate all parameters in θface. Notice that as the used face model is trained
with real human face data and thus already gets the scale information, we do
not need to consider the face scale in the optimization. More details including
some other regularization terms can be found in [2].

5.2 Glasses Pose Estimation

Then we solve for pose of the glasses. As we have also predefined the glasses
landmarks on the glasses mesh model and detected the 2D glasses landmarks in
the image, we could solve the glasses pose using similar optimization as Eq. 5.
However, as glasses of similar shapes may vary in size, the scale of glasses needs
to be solved, which is impossible for pure glasses reconstruction as the 3D-
to-2D projection has an inherent scale ambiguity. Furthermore, the planarity of
glasses (the arms are excluded) also aggravates the instability of pose estimation.
As a consequence, we use the solved head pose to constrain the glasses pose
estimation.

We first manually pose the template glasses on the template face. Then we
could represent the glasses in the face coordinate system and the global motion
of the glasses could be expressed as:

[R|t] =
[
Rf |tf

]
∗ [Rg|tg] ∗ sg (6)

where [Rg|tg] is the relative motion between the glasses and the face and sg is
the scale factor of the glasses. In most cases, the initial pose of the glasses on
the face is almost correct and thus Rg should be close to I and tg should be 0.
Thus given the new projection formulation of the points on the glasses, we have
the new energy to be minimized:

arg min
Rg,tg,sg

n−1∑

j=0

∥∥pp
j − pl

j

∥∥2

2
+ λ ‖Rg − I‖22 + λ ‖tg − 0‖22 (7)

where n is the number of glasses landmarks, λ controls the weights of different
terms. The parameters like f , Rf , and tf have already been estimated in the
face reconstruction step.

However, glasses may not always be in the pose as shown in the right of
Fig. 3. Sometimes, glasses could be on the forehead or on the nose tip as shown
in Fig. 1. To handle these cases, we does not directly constrain Rg and tg, but
transfer them into 7 motion parameters θglasses = {rg

x, rg
y , rg

z , tgx, tgy, tgz, s
g} after

adding sg and constrain θsub
glasses = {rg

y , rg
z , tgx} to be 0. This constraint is based

on the observation that even for the uncommon cases in Fig. 1, the glasses will
still not have the rotation around the y and z-axis or the translation on the
x-axis.

However, even with the constraint on θsub
glasses, the scale ambiguity in the

3D-to-2D projection still exists. To further solve this ambiguity, we propose a
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physical constraint that the two nose pads should be constrained on the face. So
the final optimization for glasses pose estimation is:

arg min
θglasses

n−1∑

j=0

∥∥pp
j − pl

j

∥∥2

2
+ λ

∥∥θsub
glasses − 0

∥∥2

2
+ γ

1∑

k=0

∥∥∥Pg
k − Pf

k

∥∥∥
2

2
(8)

where Pg
k denotes a manually defined 3D point representing one nose pad and Pf

k

is its contacting point on the face. In practice, Eq. 8 is optimized in an iterative
manner and for each iteration, Pf

k is the closest point of Pg
k on the face. λ and γ

are chosen to be very large to make the constraints firmly satisfied. Notice that
as our template glasses models may not have nose pads, we manually label two
virtual points as the contact points on nose pads, which have fixed orientations
to the geometry center of the glasses.

5.3 Frontalization

After obtaining θface, θglasses and the face and glasses mesh models, we get
the 3D reconstruction of the face and glasses, which will be the final outputs
when they are obtained by the last iteration. For the earlier iterations, we need
to frontalize the glasses features (only the segmentation mask) by the following
steps. For a pixel (u, v) on the glasses, we calculate its corresponding (x, y, z)
in the camera coordinate system by θface and θglasses. Notice that in the early
iterations, the shape of the reconstructed glasses is not accurate that a pixel
may not be able to back-projected onto the 3D glasses model. Since the glasses
frame is almost on a plane, we fit a plane to get the 3D positions of the glasses
pixels. The projected 3D points form our proxy glasses Mpry. Then by setting a
proper θfrt

face and θfrt
glasses, we can make the proxy glasses face the camera center

along the camera’s z-axis (denoted as Mfrt
pry) and get the frontalized 2D glasses

mfrt
pry by image projection.

6 Glasses Template Retrieval

In this section, we will use the frontalized glasses mask mfrt
pry (Fig. 4(a)) to find

the best glasses mesh model in our glasses dataset. Actually, our dataset only
contains 9 glasses mesh models with large shape differences. We do not require
too many glasses models because we also have a shape deformation step that
can deform a glasses mesh to the specific glasses shape in the input image. In
practice, we find that these 9 models are almost enough to handle most daily
glasses. If there is a new pair of glasses with a very unique shape, we just need to
ask an artist to make one model with a similar shape and add it to our dataset.

The reason that we frontalize the glasses features is that most glasses models
are plane-like. Notice that we do not consider glasses arms in this work. In this
situation, the frontalized 2D shape contains the major information of the glasses
and some 3D tasks could be simplified to 2D. Here, the 3D shape retrieval is
performed in the 2D space.
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Fig. 4. An illustration for shape retrieval. From left to right: masks of all glasses in
the dataset; a frontalized input glasses mask before and after the normalization; IOU
calculation. In IOU calculation, we show the highest and lowest IOU between the
input and the templates (3) and (4) in the dataset, respectively. We got the highest
IOU between the input and (3), so (3) is the “best” template for the input. It is clear
that (3) is much closer to the input than (4) and is much easier to be deformed to the
shape of the input.

To be specific, the frontalized glasses mask mfrt
pry is first normalized to be an

N*N square image (Fig. 4(b)). At the same time, the 9 glasses in the dataset
are also transformed and projected to be frontalized (Fig. 4:Left) and then nor-
malized similarly. After extracting the segmentation masks of the 9 glasses in
the normalized images, we calculate IOU between the query mask and each of
the 9 masks in dataset to represent the similarity. Notice that different parts of
the glasses have different difficulties to deform to another shape. Based on this
observation, different parts should have different weights in calculating similar-
ity. So before IOU calculation, we manually assign higher weights on parts that
are hard to deform for every candidate model, like glasses bridge or hinges. In
this manner, these regions will contribute more to the similarity. Notice that the
weight map for each template will be normalized to make sure the retrieval is
fair for all the templates. Finally, the glasses with the highest IOU are chosen
from the dataset for the next step which will deform this glasses to fit the input
image.

The retrieval is performed in all the iterations of the glasses reconstruction
method as shown on the right side of Fig. 2. Except for the early iterations, we
add the current deformed glasses model as the 10th model for retrieval. Not
surprisingly, in most cases, the 10th model will be chosen as the retrieval result
as it becomes more and more similar to the real shape of the input. However, for
some input, if the glasses shape is too different from the initial template, the pose
estimation may be wrong in the beginning, leading to a wrong retrieval result
in the first iteration. In the following iterations, as the pose becomes better, the
wrong retrieval could be corrected in this retrieval step and the system could
recover from the errors. This is the reason we perform retrieval in every iteration.
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7 Glasses Reconstruction

In this section, we will deform the retrieved glasses mesh model to fit the glasses
in the input image. Remember that the glasses features and the glasses mesh
have both been frontalized by the method in Sect. 5. We again use the frontal-
ized 2D information to guide the deformation. We first extract contours from
the segmentation mask mfrt

pry using OpenCV. And then build dense correspon-
dences between the contour vertices on the model and pixels of the contours.
Next, a Laplacian-based deformation is performed on the model guided by the
correspondences. With the last two steps iterating, a better and better glasses
shape is obtained.

7.1 Correspondence Search

In the previous section, we use the normalized images to calculate similarity.
Here, we again use the normalized images to find correspondences between the
predefined contour vertexes on the retrieved mesh model and the contours of
mfrt

pry. In the normalized images, we find that the closet points are good approxi-
mation of the correspondences as the large scale shape differences between glasses
are dramatically compensated in the normalized images. With the iterations in
the glasses deformation, the glasses shape becomes better and better, and thus
the closest points also become better and better in finding the real correspon-
dences. So we use this ICP method on the normalized images to find correspon-
dences. Notice that the errors caused by inner and outer contour mismatching
are very likely to happen. To eliminate this, for each point, we calculate the direc-
tion from this point to the average position of its 2D neighbors in a small circle,
and then use a threshold to filter out the candidates whose direction is quite
different, as the inner and outer contour points have very different directions.

7.2 Glasses Deformation

This part elaborates on how to deform the retrieved glasses mesh driven by
the correspondences. We follow the Laplacian deformation approach presented
in [20], using the correspondences searched in the previous step as constraints
and enforcing the deformed model to keep horizontally symmetrical. In Sect. 5,
the glasses mesh is placed to be symmetrical about plane x = 0. We define V
and V

′
denoting the sets of vertices of the original and deformed 3D mesh, and

v = (x, y, z) and v
′
= (x

′
, y

′
, z

′
) denoting a particular vertex, respectively. We

denote the set of correspondences by C, and vj in C has a corresponding 3D
point pj = (uj , vj , wj) in Mfrt

pry . Notice that we have fitted a plane to the glasses
model to perform the frontalization, which may bring some errors in the value
of wj . So we keep z-coordinates of vj unchanged through the deformation, and
pj in C is replaced by cj = (uj , vj , zj).

Then the deformation can be formulated as the optimization of the following
object function:

E(V
′
) = λCEC(V

′
) + λLEL(V, V

′
) + λSES(V

′
) (9)
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where EC calculates the euclidean distance between the corresponding points
pair:

EC =
∑

j∈C

∥∥∥v
′
j − cj

∥∥∥
2

2
. (10)

EL strives to preserve the Laplacian coordinates, resulting in detail-preserving
and smooth deformation:

EL =
∥∥∥L(V ) − L(V

′
)
∥∥∥
2

2
, (11)

where L(.) is the transformation from Cartesian coordinates to Laplacian coor-
dinates. ES enforces that the deformed model to be horizontally symmetrical:

ES =
N∑

i=1

|x′
i + x

′
k(i)|2 + |y′

i − y
′
k(i)|2 + |z′

i − z
′
k(i)|2. (12)

Here, before the deformation, for each vertex vi of each glasses model in dataset,
we find a vertex vk(i) that is the nearest vertex to the point (−xi, yi, zi) as the
symmetric vertex of vi. Notice that this step only needs to be performed once.
Finally, x

′
,y

′
,z

′
can be solved though linear optimization.

8 Experimental Results

In this section, we first introduce implementation details of our method. Then
we evaluate two key components, the joint trained feature extraction network
and the glasses pose estimation aided by head pose. Next, we evaluate whole
system by analyzing the final results. Finally, we discuss limitations of our work.

8.1 Implementation Details

The network for joint landmark detection and segmentation is implemented in
PyTorch. We set the sigma of Gaussian filtering used in heatmaps generation to
be 5. The network is trained for 25 epochs on a GTX2080 using Adam [10] as the
optimizer. In our experiments, the landmark prediction task reaches convergence
faster than segmentation. Firstly, we set λbalance to be 200 and the learning rate
to be 0.001. When the landmark loss no longer declines (12 epochs), we set
λbalance to be 50 and the learning rate to be 0.0005 to achieve better segmen-
tation. We randomly split our dataset to 3000 images for training and 300 for
testing. For the rest of our technique, we set λ = 400, γ = 1500, λC = 25,
λL = 1, and λS = 100, which are tuned for the best performance.

8.2 Feature Extraction Network

Firstly, we demonstrate effectiveness of the joint training network. We compare it
with training the two tasks separately with the same network structure. We train
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Fig. 5. Feature extraction of our joint training network. Top: landmark prediction.
Bottom: segmentation.

a U-Net to predict landmark heatmaps using Adam with learning rate = 0.001,
which converges in 16 epochs. Meanwhile, we train another U-Net to predict
segmentation, which converges in 20 epochs. In Table. 1, we show the quantitative
results of the three networks on 300 testing images of 256*256 resolution. We
use dice coefficient 2 × (|X ⋂

Y |)/(|X| + |Y |) to measure the performance of
the segmentation and the average L2 distance to measure landmark prediction.
Here X and Y denote the output and the ground truth masks. It can be seen
our joint training method achieves better feature extraction results. Another
benefit is that only one network is needed for the two tasks. Figure 5 shows
some qualitative results. We can see that our method handles various head and
glasses poses, glasses styles, illuminations, and occlusions. Notice that the dice
coefficient is not high in our task. This is because the frame of glasses is very
thin, thus a litter mismatch may cause a very low dice coefficient. But in this
situation, the final result may not look bad, which is the common case in our
experiments.

Table 1. Quantitative evaluation of joint training for glasses landmark detection and
segmentation.

– Landmark L2 error Segmentation dice coeff

Joint training 0.8378 0.8183

Landmark only 0.8701 –

Segmentation only – 0.7801

8.3 Glasses Pose Estimation

Here, we evaluate our glasses pose estimation method. In Fig. 6, we show the
glasses pose estimation results of different solutions: our proposed method, ours
without physical constraint and ours without physical and θsub

glasses constraints.
We render template glasses and face from two perspectives for better visualiza-
tion. As Fig. 6 shows, without physical constraint, the solved glasses may float on
face (d, top) or interact with face (d, bottom). Without both two kinds of con-
straints, the glasses may have wrong z-direction rotations (e, top) or x-direction
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translations(e, bottom). The wrong estimation is due to the inherent ambiguity
in 2D to 3D estimation and will lead to the failure of the whole system.

Fig. 6. Comparison of glasses pose estimation among different constraining methods.
(a): face/glasses landmarks and glasses segmentation. (b): face reconstruction. (c):
glasses pose of our proposed method. (d): glasses pose without physical constraints.
(e): glasses pose without physical and θsub

glasses constraints. (c–e) are rendered under
two perspectives while reserving the relative motion between the glasses and the face.

8.4 Final Results

Figure 7 and Fig. 1 show our 3D reconstruction results for different glasses styles
with different glasses poses. With the correctly extracted glasses features and
reconstructed faces, our method achieves promising results in both glasses shape
and pose estimation. More results can be found in our supplementary material.

As we do not have the ground truth 3D glasses models, quantitative eval-
uation is performed by using the standard dice coefficient metric between the
ground truth segmentation masks and the projected masks of the reconstructed
glasses. Here we first compare our method with the only single image based
glasses reconstruction method [28]. The comparison is performed on their test
images as they have published their results. From Table 2, we can see our method
and [28] are comparable and we believe the difference is majorly due to the used
templates. Please notice that this comparison is performed on frontal face images
as [28] does not handle other head poses by design.

The focus of our method is to handle extreme head poses so we also report the
quantitative results on our 300 test images in Table 2, where extreme head poses
and various glasses styles are included. Though the dice coefficient is worse as
the test set is much more challenging, visual reconstruction results are still very
promising, which are shown in Fig. 7, Fig. 1 and the supplementary material.
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Table 2. Dice coefficient between the ground truth segmentation mask and the pro-
jection of the reconstructed glasses.

[28] on [28]’s test set ours on [28]’s test set Ours on our test set

Dice coeff 0.7306 0.6885 0.5552

Fig. 7. Results of our method. From left to right, we show glasses/face landmarks and
glasses segmentation, face reconstruction, glasses reconstruction, full reconstruction
under different perspectives.

8.5 Limitations

Our method relies on glasses features extraction, so it cannot handle cases where
the two tasks fail, like rimless or half rim glasses, and will fail if glasses is heavily
occluded or outside the image. Besides, our results do not contain glasses arms
as our glasses models do not contain them. More complete reconstruction will
be achieved if glasses arms are considered.

9 Conclusions

We propose a system that reconstructs eyeglasses 3D shape from a single portrait
image. The system is capable to handle extreme head and glasses poses. The
trained neural network jointly predicts glasses landmark and segmentation from
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images. The iterative reconstruction method leverages face reconstruction and
utilizes shape commonality of glasses to achieve glasses reconstruction of extreme
poses. Our method promotes the technique of full face reconstruction with glasses
3D shape and pose estimation.
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