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Abstract. The main purpose of RGB-D salient object detection (SOD)
is how to better integrate and utilize cross-modal fusion information. In
this paper, we explore these issues from a new perspective. We integrate
the features of different modalities through densely connected structures
and use their mixed features to generate dynamic filters with receptive
fields of different sizes. In the end, we implement a kind of more flexi-
ble and efficient multi-scale cross-modal feature processing, i.e. dynamic
dilated pyramid module. In order to make the predictions have sharper
edges and consistent saliency regions, we design a hybrid enhanced loss
function to further optimize the results. This loss function is also vali-
dated to be effective in the single-modal RGB SOD task. In terms of six
metrics, the proposed method outperforms the existing twelve methods
on eight challenging benchmark datasets. A large number of experiments
verify the effectiveness of the proposed module and loss function. Our
code, model and results are available at https://github.com/lartpang/
HDFNet.

Keywords: RGB-D Salient Object Detection · Cross-modal fusion ·
Dynamic dilated pyramid module · Hybrid enhanced loss

1 Introduction

Salient object detection (SOD) aims to model the mechanism of human visual
attention and mine the most salient objects or regions in data such as images
or videos. SOD has been widely applied in many computer vision tasks,
such as scene classification [38], video segmentation [13], semantic segmenta-
tion [44], foreground map evaluation [10,11] visual tracking [30], person re-
identification [39], light field image segmentation [43] and so on.

With the advent of the fully convolutional network [29], deep learning-based
SOD models [17,27] have made great progress. Some methods [22,33,50,51]
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Fig. 1. Comparisons in model size and accuracy.

have achieved very good performance on the existing benchmark datasets.
However, these works are mainly based on RGB data. They still face severe
challenges when handling the cluttered or low-contrast scenes. Recently, some
works [2,4,6,8,14,37,53] introduce the depth data as an aid to further improve
the detection performance. The depth information can more intuitively express
spatial structures of the objects in a scene and provide a powerful supplement
for the detection and recognition of salient objects. Using complementary modal
cues, the scene can be further deeply and intelligently understood. However, lim-
ited by the way of using the depth information, RGB-D salient object detection
is still great challenging.

It is well known that RGB images contain rich appearance and detail infor-
mation while depth images contain more spatial structure information. They
complement each other for many vision tasks. RGB-D SOD approaches aim
to formulate cross-modal fusion in different manners. Most of them integrate
depth and RGB features by element-wise addition [4,36], concatenation [3,12]
and convolution operations [2,42]. Some methods compute attention map [49] or
saliency map [42] via a shallow or deep CNN network from pure depth images.
Because of using the fixed parameters for different samples during the testing
phase, the generalization capability of these models is weakened. Moreover, for
dense prediction task, the loss in each spatial position is usually different. Thus,
the actual optimization direction of gradients in different positions may be vary-
ing. The weight-sharing convolution operation across different positions, which is
used in the existing methods, causes that the training process of each parameter
relies on the global gradient. This forces the network to learn trade-off and sub-
optimal parameters. To address these problems, we propose a dynamic dilated
pyramid module (DDPM), which uses RGB-depth mixed features to adaptively
adjust convolution kernels for different input samples and processing locations.
These kernels can capture rich semantic cues at multiple scales with the help
of the pyramid structure and the dilated convolution. This design is capable
of making more efficient convolution operations for current RGB features and
promotes the network to obtain more flexible and targeted features for saliency
prediction.

Early deep learning-based SOD models [14], which use fully connected layers,
destroy the spatial structure of the data. This issue is alleviated to some extent
by using the fully convolutional network. But the intrinsic gridding operation and
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the repeated down-sampling lead to the loss of numerous details in the predicted
results. Although many methods frequently combine shallower features to restore
feature resolution, the improvement is still limited. While some approaches [9,
17] leverage CRF post-processing to refine subtle structures, which has a large
computational cost. In this work, we design a new hybrid enhanced loss function
(HEL). The HEL encourages the consistency between the area around edges and
the interior of objects, thereby achieving sharper boundaries and a solid saliency
area.

Our main contributions are summarized as follows:

– We propose a simple yet effective hierarchical dynamic filtering network
(HDFNet) for RGB-D SOD. Especially, we provide a new perspective to uti-
lize depth information. The depth and RGB features are combined to generate
region-aware dynamic filters to guide the decoding in RGB stream.

– We propose a hybrid enhanced loss and verify its effectiveness in both RGB
and RGB-D SOD tasks. It can effectively optimize the details of predictions
and enhance the consistency of salient regions without additional parameters.

– We compare the proposed method with twelve state-of-the-art methods on
eight datasets. It achieves the best performance under six evaluation metrics.
Meanwhile, we implement a forward reasoning speed of 52 FPS on an NVIDIA
GTX 1080 Ti GPU. The size of our VGG16-based model is about 170 MB
(Fig. 1).

2 Related Word

RGB-D Salient Object Detection. The early methods are mainly based on
hand-crafted features, such as contrast [6] and shape [7]. Limited by the repre-
sentation ability of the features, they can not cope with complex scenes. Please
refer to [12] for more details about traditional methods. In recent years, FCN-
based methods have shown great potential and some of them achieve very good
performance in the RGB-D SOD task [12,36,49]. Chen and Li [2] progressively
combine the current depth/RGB features and the preceding fused feature by
a series of convolution and element-wise addition operations to build the cross
fusion modules. Recently, they concatenate depth and RGB features and feed
them into an additional CNN stream to achieve multi-level cross-modal fusion [3].
Wang and Gong [42] respectively build a saliency prediction stream for RGB
and depth inputs and then fuse their predictions and their preceding features
to obtain final prediction via several convolutional layers. Zhao et al [49] insert
a lightweight net between adjacent encoding blocks to compute a contrast map
from the depth input and use it to enhance the features from the RGB stream.
Piao et al [36] combine multi-level paired complementary features from RGB and
depth streams by convolution and nonlinear operations. Fan et al [12] design a
depth depurator to remove the low-quality depth input, and for high-quality one
they feed the concatenated 4-channel input into a convolutional neural network
to achieve cross-modal fusion. Different from these methods, we use the RGB-
depth mixed features to generate “adaptive” multi-scale convolution kernels to
filter and enhance the decoding features from the RGB stream.



238 Y. Pang et al.

HDFNet

DDPM

Convolution

Addition

D

D

D

D

Depth

RGB

Fig. 2. The overall architecture of HDFNet. The network is based on two-stream struc-
ture. The two encoders use the same network (such as VGG-16 [40], VGG-19 [40],
or ResNet-50 [16]), and are fed RGB and depth images, respectively. The details of
HDFNet are introduced in Sect. 3.

Dynamic Filters. The works closely related to ours are [20] and [15]. The con-
ception of the dynamic filter is firstly proposed in video and stereo prediction
task [20]. The filter is utilized to enhance the representation of its correspond-
ing input in a self-learning manner. While we use multi-modal information to
generate multi-scale filters to dynamically strengthen the cross-modal comple-
mentarity and suppress the inter-modality incompatibility. Besides, the kernel
computation in [20] introduces a large number of parameters and is difficultly
extended at multiple scales, which significantly increases parameters and causes
optimization difficulties. To efficiently achieve hierarchical dynamic filters, we
introduce the idea of depth-wise separable convolution [18] and dilated convo-
lution [48]. In [15], the filters are computed by pooling the input feature. They
share kernel parameters across different positions, which is only an image-specific
filter generator. In contrast, we design position-specific and image-specific fil-
ters to provide cross-modal contextual guidance for the decoder. The parameter
update of dynamic filters is determined by the gradients of local neighborhoods
to achieve more targeted adjustments and guarantee the overall performance of
optimization.

3 Proposed Method

In this section, we first introduce the overall structure of the proposed method
and then detail two main components, including the dynamic dilated pyramid
module (DDPM) and the hybrid enhanced loss (HEL).
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Fig. 3. The structure of the dynamic dilated pyramid module. The DDPM contains two
submodules: kernel generation units (KGUs) and kernel transformation units (KTUs).
KGUs generate adaptive kernel tensors and KTUs transform these tensors to the reg-
ular form of convolution kernels with different dilation rates.

3.1 Two Stream Structure

We build a two-stream network, which structure is shown in Fig. 2. It has two
inputs: one is an RGB image and the other is a depth image, which corresponds to
the RGB and depth streams, respectively. Through convolution blocks {Ei

rgb}5i=1

and {Ei
d}5i=1 in two encoding networks, we can obtain the intermediate features

with different resolutions, which are recorded as f1, f2, f3, f4, f5 from large
to small. The third-level features still retain enough valid information. Besides,
the shallower features contain more noise and also cause higher computational
cost due to the larger resolution. To balance efficiency and effectiveness, we
only utilize the features f3

d , f4
d , f5

d from the deepest three blocks in the depth
stream. These features are respectively combined with the features f3

rgb, f4
rgb, f5

rgb

from the RGB stream. Then, we use a dense block [19] to build the transport
layer, which combines rich and various receptive fields and generates powerful
mixed features fTm

with both spatial structures and appearance details. These
features are fed into the DDPM to produce multi-scale convolution kernels that
are used to filter the features fDrgb

from the decoder. The resulted features fM

are merged in the top-down pathway by element-wise addition. After recovering
the resolution layer by layer, we obtain the final prediction P , which is supervised
by the ground truth G.

3.2 Dynamic Dilated Pyramid Module

In order to make more reasonable and effective use of the mixed features fTm

from the dense transport layer, we employ DDPMs to generate the adaptive
kernel for decoding RGB features. The DDPMs contain two inputs: the mixed
feature fTm

and the feature fDrgb
from the decoder. On one hand, for specific
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Algorithm 1: The operation process of adaptive convolution ⊗ related to
KTUj in DDPMi.

Input: f i
r = R(f i

Drgb
) ∈ R

N×C′×H′×W ′
, f i

gj ∈ R
N×(9×C′)×H′×W ′

Output: f i
Bj ∈ R

N×C′×H′×W ′
.

1 d ← j × 2 − 1;

2 pad f i
r with 0 from (H ′, W ′) to (H ′ + 2 × d, W ′ + 2 × d);

3 for n ← 0 to N − 1 do
4 for c ← 0 to C′ − 1 do
5 for h ← d to H ′ + d − 1 do
6 for w ← d to W ′ + d − 1 do

7 (f i
Bj )[n,c,h,w] ← ∑1

l=−1

∑1
m=−1{(f i

gj )[n,(l+1)×3+(m+1),h,w]

×(f i
r)[n,c,h+l×d,w+m×d]};

position in feature maps fDrgb
, we use kernel generation units (KGUs) to yield

independent weight tensors, i.e. fg, that can cover a 3 × 3, 7 × 7 or 11 × 11
square neighborhood. KGUs are also a kind of dense structure [19]. The module
contains 4 densely connected layers and each layer is connected to all the others
in a feed-forward fashion, which can further strengthen feature propagation and
expression capabilities, encourage feature reuse and greatly improve parameter
efficiency. Then, by recombining kernel tensors and inserting different numbers of
zeros, kernel transformation units (KTUs) construct regular convolution kernels
with different dilation rates. Please see “KTU” shown in Fig. 3 and introduced in
Algorithm 1 for a more intuitive presentation. On the other hand, after prelim-
inary dimension reduction, the other input fDrgb

is re-weighted and integrated
into three parallel branches to obtain the enhanced features {fBj}3j=1. Note that
this is actually a channel-wise adjustment and the operation of each channel is
independent. Finally, after concating and merging {fBj}3j=1 and the reduced
fDrgb

, the resulted features {f i
M}5i=3 become more discriminative.

The entire process can be formulated as follows:

f i
M = DDPMi(f i

Drgb
, f i

Tm
)

= F(C(R(f i
Drgb

), f i
B1 , f i

B2 , f i
B3)

= F(C(R(f i
Drgb

),KT U i
1(KGU i

1(f
i
Tm

)) ⊗ R(f i
Drgb

),

KT U i
2(KGU i

2(f
i
Tm

)) ⊗ R(f i
Drgb

),

KT U i
3(KGU i

3(f
i
Tm

)) ⊗ R(f i
Drgb

))),

(1)

where f i
M represents the feature from the DDPMi related to the f i

Drgb
.

DDPM(·), KGU(·) and KT U(·) denote the operation of the corresponding mod-
ule. R(·) is a 1 × 1 convolution operation, which is used to reduce the number
of channels from 64 to 16. ⊗ is an adaptive convolution operation as shown in
Algorithm 1. C(·) is a concatenation operation and F(·) is a 3×3 convolution to



Hierarchical Dynamic Filtering Network 241

fuse the concatenated features from different branches. More details is as shown
in Fig. 3.

3.3 Hybrid Enhanced Loss

No matter for RGB or RGB-D based SOD tasks, good prediction requires the
salient area to be clearly and completely highlighted. This contains two aspects:
one is the sharpness of boundaries and the other is the consistency of intra-class.
We start with the loss function and design a new loss to constrain the edges and
the fore-/background regions to separately achieve high-contrast predictions.

The common loss function in the SOD task is binary cross entropy (BCE). It
is a pixel-level loss, which independently performs error calculation and super-
vision at different positions. The main form is as follows:

Lbce =
1

N × H × W

N∑

n

H∑

h

W∑

w

[g log p + (1 − g) log(1 − p)] , (2)

where P = {p|0 < p < 1} ∈ R
N×1×H×W and G = {g|0 < g < 1} ∈ R

N×1×H×W

respectively represent the prediction and the corresponding ground truch. N , H
and W are the batchsize, height and width of the input data, respectively. It
calculates the error between the ground truth g and the prediction p at each
position, and the loss Lbce accumulates and averages the errors of all positions.

In order to further enhance the strength of supervision at higher levels such
as edges and regions, we specially constrain and optimize the regions near the
edges. In particular, the loss is formulated as follows:

Le =
∑H

h

∑W
w (e ∗ |p − g|)

∑H
h

∑W
w e

,

e =
{

0 if (G − P(G))[h,w] = 0,
1 if (G − P(G))[h,w] �= 0,

(3)

where Le represents the edge enhanced loss (EEL), and P(·) denotes the average
pooling operation with a 5 × 5 slide window. In Eq. 3, we can obtain the local
region near the contour of the ground truth by calculating e. In this region, the
difference Le between the prediction p and the ground truth g can be calculated.
Through this loss, the optimization process can target the contours of salient
objects.

In addition, we also design a region enhanced loss (REL) to constrain the
prediction of intra-class. By respectively calculating the prediction errors within
the foreground class and the background class, fore-/background predictions can
be independently optimized. Specifically, the REL Lr is written as:
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Lr =
∑N

n (Lf + Lb)
N

,

Lf =
∑H

h

∑W
w (g − g ∗ p)

∑H
h

∑W
w g

,

Lb =
∑H

h

∑W
w (1 − g) ∗ p

∑H
h

∑W
w (1 − g)

,

(4)

where Lf and Lb denote the fore-/background losses, respectively. The losses
compute the normalized prediction errors in the intra-class regions. They depict
the region-level supervision. Finally, we integrate these three losses (Lbce, Le and
Lr) to obtain the hybrid enhanced loss (HEL), which can optimize the prediction
at two different levels. The total loss is expressed as follows:

L = Lbce + Le + Lr. (5)

4 Experiments

4.1 Datasets

To fully verify the effectiveness of the proposed method, we evaluated the results
on eight benchmark datasets. LFSD [24] is a small dataset that contains 100
images with depth information and human-labeled ground truths and is built
for saliency detection on the light filed. NJUD [21] contains 1,985 groups of
RGB, depth, and label images, which are collected from the Internet, 3D movies,
and photographs taken by a Fuji W3 stereo camera. NLPR [34] is also called
RGBD1000, which contains 1,000 natural RGBD images captured by Microsoft
Kinect together with the human-marked ground truth. RGBD135 [6] is also
named DES, which consists of 135 images about indoor scenes collected by
Microsoft Kinect. SIP [12] includes 1,000 images with many challenging situa-
tions from various outdoor scenarios and these images emphasize salient persons
in real-world scenes. SSD [52] contains 80 images picked up from three stereo
movies. STEREO [32] is also called SSB, which contains 1,000 stereoscopic
images downloaded from the Internet. DUTRGBD [36] is a new and large
dataset and contains 800 indoor and 400 outdoor scenes paired with the depth
maps and ground truths.

For comprehensively and fairly evaluating different methods, we follow the
setting of [36]. On the DUTRGBD, we use 800 images for training and 400
images for testing. For the other seven datasets, we follow the data partition
of [2,4,14,36] to use 1,485 samples from the NJUD and 700 samples from the
NLPR as the training set and the remaining samples in these datasets are used
for testing.

4.2 Evaluation Metrics

There are six widely used metrics for evaluating RGB and RGB-D SOD models:
Precision-Recall (PR) curve, F-measure [1], weighted F-measure [31], MAE [35],
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Table 1. Results (↑: Fmax, Fada [1], F ω
β [31], Sm [10] and Em [11]; ↓: MAE [35]) of

different RGB-D SOD methods across eight datasets. The best results are highlight in
red. �: Traditional methods. †: VGG-16 [40] as backbone. ‡: VGG-19 [40] as backbone.
�: ResNet-50 [16] as backbone. -: No data available.

Metric DES�
14 [6] DCMC�

16 [8] CDCP�
17 [53] DF†

17 [37] CTMF†
18 [14] PCANet†

18 [2] MMCI†
19 [4] TANet†

19 [3] AFNet†
19 [42] CPFP†

19 [49] OURS† DMRA‡
19 [36] OURS‡ D3Net�

19 [12] OURS�

LFSD [24] Fmax 0.377 0.850 0.680 0.854 0.815 0.829 0.813 0.827 0.780 0.850 0.860 0.872 0.858 0.849 0.883

Fada 0.227 0.815 0.634 0.810 0.781 0.793 0.779 0.794 0.742 0.813 0.831 0.849 0.833 0.801 0.843

F ω
β 0.274 0.601 0.518 0.642 0.696 0.716 0.663 0.719 0.671 0.775 0.792 0.811 0.793 0.756 0.806

MAE 0.416 0.155 0.199 0.142 0.120 0.112 0.132 0.111 0.133 0.088 0.085 0.076 0.083 0.099 0.076

Sm 0.440 0.754 0.658 0.786 0.796 0.800 0.787 0.801 0.738 0.828 0.847 0.847 0.844 0.832 0.854

Em 0.492 0.842 0.737 0.841 0.851 0.856 0.840 0.851 0.810 0.867 0.883 0.899 0.886 0.860 0.891

NJUD [21] Fmax 0.328 0.769 0.661 0.789 0.857 0.887 0.868 0.888 0.804 0.890 0.924 0.896 0.922 0.903 0.922

Fada 0.165 0.715 0.618 0.744 0.788 0.844 0.813 0.844 0.768 0.837 0.894 0.872 0.887 0.840 0.889

F ω
β 0.234 0.497 0.510 0.545 0.720 0.803 0.739 0.805 0.696 0.828 0.881 0.847 0.877 0.833 0.877

MAE 0.448 0.167 0.182 0.151 0.085 0.059 0.079 0.061 0.100 0.053 0.037 0.051 0.038 0.051 0.038

Sm 0.413 0.703 0.672 0.735 0.849 0.877 0.859 0.878 0.772 0.878 0.911 0.885 0.911 0.895 0.908

Em 0.491 0.796 0.751 0.818 0.866 0.909 0.882 0.909 0.847 0.900 0.934 0.920 0.932 0.901 0.932

NLPR [34] Fmax 0.695 0.413 0.687 0.752 0.841 0.864 0.841 0.876 0.816 0.883 0.917 0.888 0.919 0.904 0.927

Fada 0.583 0.328 0.591 0.683 0.724 0.795 0.730 0.796 0.747 0.818 0.878 0.855 0.883 0.834 0.889

F ω
β 0.254 0.259 0.501 0.516 0.679 0.762 0.676 0.780 0.693 0.807 0.869 0.839 0.871 0.826 0.882

MAE 0.300 0.196 0.114 0.100 0.056 0.044 0.059 0.041 0.058 0.038 0.027 0.031 0.027 0.034 0.023

Sm 0.582 0.550 0.724 0.769 0.860 0.873 0.856 0.886 0.799 0.884 0.916 0.898 0.915 0.906 0.923

Em 0.760 0.685 0.786 0.840 0.869 0.916 0.872 0.916 0.884 0.920 0.948 0.942 0.951 0.934 0.957

RGBD135 [6] Fmax 0.800 0.311 0.651 0.625 0.865 0.842 0.839 0.853 0.775 0.882 0.934 0.906 0.941 0.917 0.932

Fada 0.695 0.234 0.594 0.573 0.778 0.774 0.762 0.795 0.730 0.829 0.919 0.867 0.918 0.876 0.912

F ω
β 0.301 0.169 0.478 0.392 0.686 0.711 0.650 0.740 0.641 0.787 0.902 0.843 0.913 0.831 0.895

MAE 0.288 0.196 0.120 0.131 0.055 0.050 0.065 0.046 0.068 0.038 0.020 0.030 0.017 0.030 0.021

Sm 0.632 0.469 0.709 0.685 0.863 0.843 0.848 0.858 0.770 0.872 0.932 0.899 0.937 0.904 0.926

Em 0.817 0.676 0.810 0.806 0.911 0.912 0.904 0.919 0.874 0.927 0.973 0.944 0.976 0.956 0.971

SIP [12] Fmax 0.720 0.680 0.544 0.704 0.720 0.860 0.840 0.851 0.756 0.870 0.904 0.847 0.907 0.882 0.910

Fada 0.644 0.645 0.495 0.673 0.684 0.825 0.795 0.809 0.705 0.819 0.863 0.815 0.870 0.831 0.875

F ω
β 0.342 0.413 0.397 0.406 0.535 0.768 0.711 0.748 0.617 0.788 0.835 0.734 0.844 0.793 0.848

MAE 0.298 0.186 0.224 0.185 0.139 0.071 0.086 0.075 0.118 0.064 0.050 0.088 0.047 0.063 0.047

Sm 0.616 0.683 0.595 0.653 0.716 0.842 0.833 0.835 0.720 0.850 0.878 0.800 0.885 0.864 0.886

Em 0.751 0.786 0.722 0.794 0.824 0.900 0.886 0.894 0.815 0.899 0.920 0.858 0.924 0.903 0.924

SSD [52] Fmax 0.260 0.750 0.576 0.763 0.755 0.844 0.823 0.834 0.735 0.801 0.872 0.858 0.883 0.872 0.885

Fada 0.073 0.684 0.524 0.709 0.709 0.786 0.748 0.766 0.694 0.726 0.844 0.821 0.847 0.793 0.842

F ω
β 0.172 0.480 0.429 0.536 0.622 0.733 0.662 0.727 0.589 0.708 0.808 0.787 0.819 0.780 0.821

MAE 0.500 0.168 0.219 0.151 0.100 0.063 0.082 0.063 0.118 0.082 0.048 0.058 0.046 0.058 0.045

Sm 0.341 0.706 0.603 0.741 0.776 0.842 0.813 0.839 0.714 0.807 0.866 0.856 0.875 0.866 0.879

Em 0.475 0.790 0.714 0.801 0.838 0.890 0.860 0.886 0.803 0.832 0.913 0.898 0.911 0.892 0.911

STEREO [32] Fmax 0.738 0.789 0.704 0.789 0.848 0.875 0.877 0.878 0.848 0.889 0.918 0.802 0.916 0.897 0.910

Fada 0.594 0.742 0.666 0.742 0.771 0.826 0.829 0.835 0.807 0.830 0.879 0.762 0.875 0.833 0.867

F ω
β 0.375 0.520 0.558 0.549 0.698 0.778 0.760 0.787 0.752 0.817 0.863 0.647 0.859 0.815 0.853

MAE 0.295 0.148 0.149 0.141 0.086 0.064 0.068 0.060 0.075 0.051 0.039 0.087 0.040 0.054 0.041

Sm 0.642 0.731 0.713 0.757 0.848 0.875 0.873 0.871 0.825 0.879 0.906 0.752 0.903 0.891 0.900

Em 0.696 0.831 0.796 0.838 0.870 0.907 0.905 0.916 0.887 0.907 0.937 0.816 0.934 0.911 0.931

DUTRGBD [36] Fmax 0.770 0.444 0.658 0.774 0.842 0.809 0.804 0.823 - 0.787 0.926 0.908 0.934 - 0.930

Fada 0.667 0.405 0.633 0.747 0.792 0.760 0.753 0.778 - 0.735 0.892 0.883 0.894 - 0.885

F ω
β 0.380 0.284 0.521 0.536 0.682 0.688 0.628 0.705 - 0.638 0.865 0.852 0.871 - 0.864

MAE 0.280 0.243 0.159 0.145 0.097 0.100 0.112 0.093 - 0.100 0.040 0.048 0.039 - 0.041

Sm 0.659 0.499 0.687 0.729 0.831 0.801 0.791 0.808 - 0.749 0.905 0.887 0.911 - 0.907

Em 0.751 0.712 0.794 0.842 0.882 0.863 0.856 0.871 - 0.815 0.938 0.930 0.941 - 0.938

AveMetric Fmax 0.654 0.666 0.642 0.756 0.811 0.861 0.850 0.862 0.801 0.868 0.914 0.855 0.915 0.893 0.915

Fada 0.534 0.618 0.595 0.714 0.747 0.814 0.794 0.815 0.755 0.813 0.878 0.822 0.878 0.834 0.877

F ω
β 0.325 0.425 0.491 0.502 0.652 0.761 0.712 0.764 0.684 0.784 0.857 0.756 0.859 0.810 0.858

MAE 0.325 0.179 0.174 0.151 0.099 0.068 0.081 0.067 0.093 0.061 0.041 0.069 0.041 0.055 0.041

Sm 0.585 0.661 0.669 0.721 0.809 0.853 0.844 0.853 0.773 0.853 0.898 0.824 0.900 0.883 0.899

Em 0.686 0.781 0.765 0.822 0.859 0.899 0.885 0.901 0.853 0.892 0.933 0.876 0.933 0.909 0.932

S-measure [10] and E-measure [11]. PR Curve. We use a series of fixed thresh-
olds from 0 to 255 to binarize the gray prediction map, and then calculate several
groups of precision (Pre) and recall (Rec) with ground truth by Pre = TP

TP+FP

and Rec = TP
TP+FN . Based on them, we can plot a precision-recall curve to

describe the performance of the model. F-measure [1]. It is a region-based sim-
ilarity metric and is formulated as the weighted harmonic mean (the weight is
set to 0.3) of Pre and Rec. In this paper, we employ the threshold changing
from 0 to 255 to get Fmax, and use twice the mean value of the prediction P
as the threshold to obtain Fada. In addition, since F-measure reflects the per-
formance of the binary predictions under different thresholds, we evaluate the
consistency and uniformity at the regional level according to F-measure threshold
curves. weighted F-measure (Fω

β ) [31]. It is proposed to improve the existing
metric F-measure. It defines a weighted precision, which is a measure of exact-
ness, and a weighted recall, which is a measure of completeness and follows the
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Fig. 4. Precision (vertical axis) recall (horizontal axis) curves on eight RGB-D salient
object detection datasets.

form of F-measure. MAE [35]. This metric estimates the approximation degree
between the saliency map and ground-truth map, and it is normalized to [0, 1].
It focuses on pixel-level performance. S-measure (Sm) [10]. It calculates the
object-/region-aware structure similarities So/Sr between prediction and ground
truth by the equation: Sm = α ·So +(1−α) ·Sr, α = 0.5. E-measure (Em) [11].
This measure utilizes the mean-removed predictions and ground truths to com-
pute the similarity, which characterizes both image-level statistics and local pixel
matching.

4.3 Implementation Details

Parameter Setting. Two encoders of the proposed model are based on the
same model, such as VGG-16 [40], VGG-19 [40], and ResNet-50 [16]. In both
encoders, only the convolutional layers in corresponding classification networks
are retained, and the last pooling layer of VGG-16 and VGG-19 is removed at
the same time. During the training phase, we use the weight parameters pre-
trained on the ImageNet to initialize the encoders. Also, since the depth image is
a single channel data, we change the channel number of its corresponding input
layer from 3 to 1, and its parameters are initialized randomly by PyTorch. The
parameters of the remaining structures are all initialized randomly.

Training Setting. During the training stage, we apply random horizontal
flipping, random rotating as data augmentation for RGB images and depth
images. In addition, we employ random color jittering and normalization for
RGB images. We use the momentum SGD optimizer with a weight decay of
5e−4, an initial learning rate of 5e−3, and a momentum of 0.9. Besides, we
apply a “poly” strategy [28] with a factor of 0.9. The input images are resized
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Fig. 5. F-measure (vertical axis) threshold (horizontal axis) curves on eight RGB-D
salient object detection datasets.

to 320 × 320. We train the model for 30 epochs on an NVIDIA GTX 1080 Ti
GPU with a batch size of 4 to obtain the final model.

Testing Details. During the testing stage, we resize RGB and depth images to
320 × 320 and normalize RGB images. Besides, the final prediction is rescaled
to the original size for evaluation.

4.4 Comparisons

In order to fully demonstrate the effectiveness of the proposed method, we com-
pared it with the existing twelve RGB-D based SOD models, including DES [6],
DCMC [8], CDCP [53], DF [37], CTMF [14], PCANet [2], MMCI [4], TANet [3],
AFNet [42], CPFP [49], DMRA [36] and D3Net [12]. For fair comparisons, all
saliency maps of these methods are directly provided by authors or computed by
their released codes. Besides, the codes and results of AFNet [42] and D3Net [12]
on the DUTRGBD [36] dataset are not publicly available. Therefore, their results
on this dataset are not listed.

Quantitative Evaluation. In Table 1, we list the results of all competitors on
eight datasets and six metrics. It can be seen that the proposed method performs
best on most datasets and achieve significant performance improvement. On the
DUTRGBD [36], our models based on VGG-16, VGG-19 and ResNet-50 have
surpassed the second-best model DMRA [36] by 2.02%, 2.85% and 2.45% on
Fmax, and 16.09%, 17.88% and 13.56% on MAE. At the same time, on the
recent dataset SIP [12], they have increased by 3.83%, 4.65% and 5.23% on
Fada, 5.22%, 6.37% and 6.84% on Fω

β , and 20.94%, 24.65% and 24.91% on MAE,
over the D3Net [12]. Because the existing RGB-D SOD datasets are relatively
small, we propose a new calculation method to measure the performance of
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Fig. 6. The visualization results of some recent methods and ours.

models. According to the proportion of each testing set in all testing datasets, the
results on all datasets are weighted and summed to obtain an overall performance
evaluation, which is listed in the row “AveMetric” in Table 1. It can be seen
that our structure achieves similar and excellent results on different backbones,
which shows that our structure has less dependence on the performance of the
backbone. In addition, we show a scatter plot based on the average performance
of each model on all datasets and the model size in Fig. 1. Our model has the
smallest size while achieving the best result. We demonstrate the PR curves and
the F-measure curves in Fig. 4 and Fig. 5. Our approach (red solid line) achieves
very good results on these datasets. As shown in Fig. 5, our results are much
flatter at most thresholds, which reflects that our prediction results are more
uniform and consistent.

Qualitative Evaluation. In Fig. 6, we list some representative results. These
examples include scenarios with varying complexity, as well as different types of
objects, including cluttered background (Column 1 and 2), simple scene (Col-
umn 3 and 4), small objects (Column 5), complex objects (Column 6 and 7),
large objects (Column 8), multiple objects (Column 9 and 10) and low contrast
between foreground and background (Column 11 and 12). It can be seen that the
proposed method can consistently produce more accurate and complete saliency
maps with higher contrast.
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Image Depth GT B B+D B+R B+R+D B+D+M B+R+M B+R+D+M B+R+D+M+L

Fig. 7. Visual comparisons for showing the benefits of the proposed components. GT:
Ground truth; B: Baseline; D: Dense transport layer for depth features; R: Dense
transport layer for RGB features; M: DDPM; L: HEL.

4.5 Ablation Study

In this section, we perform ablation analysis over the main components of the
HDFNet and further investigate their importance and contributions. Our base-
line model, i.e. Model 1, uses the commonly used encoder-decoder structure,
and all ablation experiments are based on the VGG-16 backbone. In the base-
line model, the output features of the last three stages in the depth stream are
added to the decoder after compressing the channel to 64 through an indepen-
dent 1 × 1 convolution. In order to evaluate the benefits of cross-modal fusion
at the dense transport layer (i.e. Model 6), we feed single-modal features into
this layer to build Model 2 (i.e. “+Td”) and Model 4 (i.e. “+Trgb”). Thus, the
followed dynamic filters in the DDPM will be determined only by depth features
or RGB features, respectively.

Dynamic Dilated Pyramid Module. Based on Model 2, Model 4, and Model
6, we add the dynamic dilated pyramid module to obtain Model 3, Model 5,
and Model 7, respectively. In Table 2, we show the performance improvement
contributed by different structures in terms of the weighted average metrics
“AveMetric”. It can be seen that the DDPM significantly improves performance.
Specifically, by comparing Model 3, 5 and 7 with Model 2, 4 and 6, we achieve
a relative improvement of 1.47%, 3.11% and 2.11% in terms of Fω

β and 5.01%,
10.29% and 6.77% in terms of MAE, respectively. We can see that even without
the HEL, the average performance of Model 7 already exceeds these existing
models. More comparisons can be found in the supplementary material.

In addition, we compare the design of the dynamic filter in DCM [15] with
ours. It can be seen that the proposed DDPM (Model 7) has obvious advantages
over the DCM (Model 8), and it respectively increases by 3.91%, 5.60%, and
18.07% in terms of Fada, Fω

β and MAE. In Fig. 7, we can see that the noise in
depth images interferes with the final predictions. By the cross-modal guidance
from the DDPMs, the interference is effectively suppressed.
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Table 2. Ablation experiments. +Td: Using a dense transport layer for depth features.
+Trgb: Using a dense transport layer for RGB features. +DDPM: Using a DDPM
after the transport layer. +DCM: Using the DCM [15] after the transport layer. +Le:
Using the edge loss as the auxiliary loss. +Lf : Using the foreground loss as the auxiliary
loss. +Lb: Using the background loss as the auxiliary loss.

Model No. Baseline +Td +Trgb +DDPM +DCM +Le +Lf +Lb Fmax Fada F ω
β MAE Sm Em

Ours† 1 ✔ 0.875 0.819 0.768 0.067 0.865 0.898

2 ✔ ✔ 0.879 0.820 0.768 0.066 0.868 0.899

3 ✔ ✔ ✔ 0.882 0.820 0.780 0.063 0.873 0.900

4 ✔ ✔ 0.884 0.839 0.787 0.060 0.874 0.909

5 ✔ ✔ ✔ 0.896 0.852 0.811 0.054 0.886 0.916

6 ✔ ✔ ✔ 0.898 0.846 0.803 0.056 0.884 0.913

7 ✔ ✔ ✔ ✔ 0.904 0.856 0.820 0.052 0.893 0.918

8 ✔ ✔ ✔ ✔ 0.878 0.823 0.777 0.064 0.871 0.903

9 ✔ ✔ ✔ ✔ ✔ 0.909 0.878 0.849 0.044 0.898 0.929

10 ✔ ✔ ✔ ✔ ✔ 0.909 0.845 0.827 0.050 0.887 0.916

11 ✔ ✔ ✔ ✔ ✔ 0.907 0.874 0.836 0.048 0.895 0.926

12 ✔ ✔ ✔ ✔ ✔ ✔ ✔ 0.914 0.878 0.857 0.041 0.898 0.933

R3Net18 [9] 13 0.828 0.714 0.716 0.072 0.831 0.830

14 ✔ ✔ ✔ 0.832 0.731 0.740 0.069 0.835 0.844

CPD19 [45] 15 0.848 0.790 0.769 0.052 0.856 0.889

16 ✔ ✔ ✔ 0.849 0.804 0.792 0.049 0.857 0.898

PoolNet19 [26] 15 0.832 0.755 0.728 0.060 0.841 0.865

16 ✔ ✔ ✔ 0.861 0.811 0.799 0.046 0.862 0.902

GCPANet20 [5] 17 0.847 0.766 0.744 0.061 0.854 0.869

18 ✔ ✔ ✔ 0.854 0.779 0.773 0.055 0.856 0.880

Hybrid Enhanced Loss. As shown in Table 2, the proposed hybrid enhanced
loss brings huge performance improvements by comparing Model 7 with Model
12. We evaluate each component in the HEL (Model 9, 10, and 11) and all of
them contribute to the final performance. In addition, the benefits of this loss are
also clearly reflected in Fig. 5 where the curves of the proposed model are more
straight, and Fig. 7 where the predictions of the model “B+R+D+M+L” have
higher contrast than ones of the model “B+D+R+M”. Since the design goal
of the HEL is to solve the general requirements of SOD tasks, we evaluate its
effectiveness on several recent RGB SOD models [5,9,26,45]. For a fair compar-
ison, we retrain these models using the released code. Most of hyper-parameters
are the same as the default values given by their corresponding code. The aver-
age performance “AveMetric” on five main RGB SOD datasets (DUTS [41],
ECSSD [46], HKU-IS [23], PASCAL-S [25] and DUT-OMRON [47]) is shown in
Table 2. More experimental details and results can be found in supplementary
materials.

5 Conclusions

In this paper, we revisit the role that depth information should play in the
RGB-D based SOD task. We consider the characteristics of spatial structures
contained in depth information and combine it with RGB information with
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rich appearance details. After that, the model generates adaptive filters with
different receptive field sizes through the dynamic dilated pyramid module. It
can make full use of semantic cues from multi-modal mixed features to achieve
multi-scale cross-modal guidance, thereby enhancing the representation capabil-
ities of the decoder. At the same time, we can obtain clearer predictions with
the aid of additional region-level supervision to the regions around the edges
and fore-/background regions. Expensive experiments on eight datasets and six
metrics demonstrate the effectiveness of the designed components. The proposed
approach achieves state-of-the-art performance with small model size and high
running speed.
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