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Abstract. The existing methods for video object detection mainly
depend on two-stage image object detectors. The fact that two-stage
detectors are generally slow makes it difficult to apply in real-time scenar-
ios. Moreover, adapting directly existing methods to a one-stage detector
is inefficient or infeasible. In this work, we introduce a method based
on a one-stage detector called CenterNet. We propagate the previous
reliable long-term detection in the form of heatmap to boost results of
upcoming image. Our method achieves the online real-time performance
on ImageNet VID dataset with 76.7% mAP at 37 FPS and the offline
performance 78.4% mAP at 34 FPS.

Keywords: Video object detection · Real-time · Heatmap
propagation · One-stage detector

1 Introduction

Image object detection benefits a lot from the development of Convolutional
Neural Networks (CNNs) over the last years. As a fundamental element of many
vision tasks, such as visual surveillance, autonomous driving, etc., many CNN
based structures [5,8,9,13,17,19] have been proposed, which achieve excellent
performance in still images. However, many real world applications require video
object detection. When directly applying these still image detectors to a video
stream, the accuracy suffers from sampled image quality problem caused by
motion blur or incomplete object appearance.

Previous works [3,7,18,20] have been conducted to compensate the loss by
using temporal information naturally provided by videos. Most of them are devel-
oped on the base of two-stage detectors like Region-based CNN (R-CNN). On
one hand, it’s well known that most two-stage detectors are too slow to achieve
real-time performance. On the other hand, adapting existing temporal informa-
tion merging methods to one-stage detectors is challenging or even infeasible.
Indeed, the representation of object bounding boxes differs a lot between these
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two categories of detectors and, moreover, some methods manipulate on Region
of Interests (RoIs) pooled features which do not exist in one-stage structures.

In this paper, we propose a heatmap propagation method as an effective
solution for video object detection. We implement our method on a one-stage
detector called CenterNet [19] which outputs a heatmap to detect the center
of all objects in an image of different classes. For one frame of a video clip, we
transform the stable detected objects to a propagation heatmap. In the obtained
heatmap, we highlight potential positions of each object’s center with its con-
fidence score of corresponding class. For the next frame, a balanced heatmap
is generated considering both the propagation heatmap and the network out-
put heatmap. This is similar to generate an online tracklet of each object and
we update the confidence score by each frame detection result. The rest of this
paper is structured as follows. Section 2 presents the object detection state of the
art. Section 3 details our contribution and Sect. 4 presents the implementation
details. Finally, Sect. 5 presents the results of our approach.

2 Related Work

2.1 Image Object Detection

One-Stage and Two-Stage Detectors. Generally speaking, there are two
types of state-of-the-art image object detectors, the two-stage detectors and
the one-stage detectors. Two-stage detectors first use a Region Proposal Net-
work (RPN) to detect RoIs which potentially contain an object. Then, based on
pooled features inside RoIs, separated detection heads of network identify the
class of object and regress the bounding box. In contrast, one stage detectors
directly achieve the classification and regression on the entire feature map. Usu-
ally, sophisticated two-stage detectors are more accurate, but slower compared
to one-stage detectors. However, several works [13,14,19] have proven that the
accuracy of one-stage detectors can be competitive with even real-time speed.

Anchor Based and Heatmap Based Detectors. From the perspectives
of object bounding box representation, the detectors can be divided into two
groups: anchor based and heatmap based. Anchor based detectors like R-CNN
[8,9,15], R-FCN [5] have prefixed bounding boxes at every output spatial posi-
tion which are called anchor boxes. The regression values estimated by the net-
work are the differences between anchor boxes and object real bounding boxes,
typically a scale-invariant translation of the centers and a log-space translation
of the width and height. [9] Heatmap based detectors like CornerNet [13], Cen-
terNet [19], detect keypoints of object bounding box, like the vertices or the
center. The network outputs heatmaps of keypoints and several regression val-
ues for offset or raw bounding box size depending on different structures. To
cover as much object shapes as possible, anchor based methods will prefix dif-
ferent size and height/width ratio for anchor boxes. This will obviously increase
output dimension which turns out to be a computational burden. Thus the
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compromise between robustness and speed remains hard to solve. However, the
heatmap based detectors avoid such dilemma, as all regression values are raw
pixel coordinate values without the need of any preset.

2.2 Video Object Detection

Considering video object detection, a trivial solution is to apply directly an
image object detector on the video. However, videos usually contain moving
objects or represent a motion as the camera is moving. This results in low image
quality, which has undesirable influence on the detection performance. Neverthe-
less, videos contain temporal information, such as the consistency of the same
object in consecutive frames. Using such information to compensate image qual-
ity defect is worth considering. D&T method [7] uses feature map correlation to
regress bounding boxes variances of the same object across consecutive frames.
A viterbi algorithm is applied to do box level association. FGFA [20] uses opti-
cal flow information predicted by a pretrained flow network [6,12] to align and
aggregate relevant features from consecutive frames. However, the pretrained
optical flow network does not always generalize to new datasets. Spatiotemporal
Sampling Networks (STSN) [1] uses deformable convolutions to aggregate rel-
evant features which is more generalized. AdaScale [3] reshapes the image size
to an adaptive resolution which produces better accuracy and speed. The fact
that most of these works use a two-stage anchor based detector makes it hard to
achieve real-time detection. Scale-Time Lattice method [2] proposes a framework
of temporal propagation and spatial refinement to extend the detection results
on sparse key frames to dense video frames. Our method can also be integrated
into this framework. Our approach is inspired by [18], where the author pro-
posed a method of re-scoring tracklet to improve single frame detection. Still it
is implemented with R-CNN detectors.

3 Proposed Method

3.1 Background: CenterNet

CenterNet [19] is a one-stage heatmap based object detector. The principle of
this method is to predict the position of the center and the size of objects in
images. Given an input RGB image of width w and height h, I ∈ Rw×h×3, the
network outputs a downsampled heatmap Ŷ ∈ [0, 1]

w
R × h

R ×C , where R is output
stride and C is the number of classes. We note W = w

R ,H = h
R as the output

spatial size. A prediction Ŷx,y,c = 1 corresponds to the center of an object of class
c at position (x, y), while Ŷx,y,c = 0 corresponds to background. In addition, the
network predicts a local offset Ô ∈ RW×H×2 to recover the discretization error
by the output stride and a regression Ŝ ∈ RW×H×2 for object size.

As shown in Fig. 1, the entire network contains 3 components. A general
convolutional network, Nfeat, like ResNet [11] extracts feature maps from input
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Fig. 1. CenterNet with ResNet-101 backbones. Orange arrows represent Nfeat. Green
arrows represent Ndecv. Black line arrows represent 3 separate heads Nhead.

image. A deconvolutional network, Ndecv, is built of 3 × 3 deformable convolu-
tional layers (DCLs) [4] and up-convolutional layers. It refines the feature maps
into output spatial scale. Finally, 3 separate heads, Nhead, share the same back-
bone feature maps and output Ŷ , Ô and Ŝ. Due to computational cost, all classes
share the same prediction of offset and object size. So, the final output size of
network is W × H × (C + 4).

At inference time, by applying a 3 × 3 max pooling operation, all peaks
whose value is greater or equal to its 8 neighbors in the heatmap of each class
will be extracted from Ŷ . Only the top 100 peaks will be kept. For a peak at
position (x̂i, ŷi), we use offset prediction Ôxi,yi

= (δx̂i, δŷi) and size prediction
Ŝxi,yi

= (ŵi, ĥi) to produce the bounding box of object as:

(x̂i + δx̂i − ŵi/2, ŷi + δŷi − ĥi/2,

x̂i + δx̂i + ŵi/2, ŷi + δŷi + ĥi/2).
(1)

We refer the reader to the original work of CenterNet [19] for further detail.

3.2 Heatmap Propagation

Still-image object detectors like CenterNet are very effective to process static
images. However, due to quality problems of sampled images like blurring or
object occlusion, such detectors may produce unstable results when directly
applied to consecutive images of video clips. We propose an online real-time
method heatmap propagation (HP) for video object detection by propagating
previous long-term stable detection results to upcoming image.

Let Dt = {dti}mi=1 be the set of m predicted objects in frame t of a video. For
each object dti detected at time t, we count the number of consecutive frames
up to frame t where the object appears and define the number as tracklet length
lti . For a new object detected in frame t, lti = 1. We also have the predicted
bounding box size sti = (wt

i , h
t
i) for each object.
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As presented in Sect. 3.1, each predicted object is generated by one peak
(x̂i, ŷi) of class ci in output heatmap. To propagate result of frame t to frame t+1,
each peak value Ŷ t

x̂iŷici
is dilated with a square kernel of size 2P + 1 resulting in

(2P +1)2−1 positions. As shown in Fig. 2(a) and (b), this produces an extended
heatmap Ht

i = {ht
i,xyc} ∈ [0, 1]W×H×C where:

ht
i,xyc =

{
Ŷx̂iŷici if c = ci, |x − x̂i| ≤ P, |y − ŷi| ≤ P,

0 otherwise.
(2)

We overlap all m extended heatmaps into one propagation heatmap by keeping
the maximum value in each position and class: H = {hxyc} ∈ [0, 1]W×H×C where
hxyc = max

i∈[1,m]
(ht

i,xyc) (See Fig. 2(b) and (c)). Although occlusion of objects may

exist, the centers of objects are rarely located at the same point. Thus keeping
the maximum value remains an effective way to collect all detection results. The
propagation heatmap will inherit tracklet length from frame t, L = {lxyc} where:

lxyc =

⎧⎨
⎩

lti where i = arg max
i∈[1,m]

(ht
i,xyc) if hxyc > 0

0 if hxyc = 0
(3)

Similarly, the bounding box size information will also be inherited, S = {sxyc} ∈
RW×H×C×2 where:

sxyc =

⎧⎨
⎩

sti where i = arg max
i∈[1,m]

(ht
i,xyc) if hxyc > 0

0 if hxyc = 0
(4)

We combine the network output heatmap of frame t+1 : Ŷ t+1 = {Ŷ t+1
xyc } ∈

[0, 1]W×H×C and propagation heatmap from frame t : H = {hxyc} to a long-
term heatmap in the following way:

Y
t+1

xyc =
Ŷ t+1
xyc + βhxyclxyc

1 + βlxyc
, (5)

where β is a confidence parameter for long-term detection (β = 2 by default).
Equation 5 serves as a temporal average with update prediction Ŷ t+1

xyc . To be
robust to large variance in image, we set the final heatmap as a balance between
the long-term heatmap and instant detection heatmap of network:

Ỹ t+1
xyc = (1 − α)Ŷ t+1

xyc + αY
t+1

xyc (6)

where α is a balance parameter (α = 0.98 by default). The necessity of this bal-
ance equation will be analysed in Sect. 5.3. These 2 steps are shown in Fig. 2(c),
(d) and (e).



CenterNet Heatmap Propagation 225

For bounding box prediction, we calculate a weighted size by combining prop-
agated size information S and network output size Ŝ = {Ŝxy} ∈ RW×H×2 based
on H and Ĥt+1:

S̃t+1
xyc =

Ŷ t+1
xyc Ŝt+1

xy + hxycsxyc

Ŷ t+1
xyc + hxyc

. (7)

To be clear, we use class-agnostic box size prediction in network. To propagate
the size information with class-specific heatmap, we broadcast the same size
prediction in all class channel for Eq. 7. Unlike Eq. 5, we don’t involve tracklet
length here, because the size of object projection in image may change during
time due to the relative movement between camera and object. Thus we only
use the previous and the current estimation.

Finally, we apply the same procedure as CenterNet on the balanced heatmap
to produce detection in frame t+1, Dt+1 = {dt+1

j }nj=1. We update the tracklet
length in the following way: lt+1

j = lx̂j ŷjcj + 1, where (x̂j , ŷj) is the center
position of dt+1

j and cj is its class.

Fig. 2. Illustration of HP (Heatmap Propagation). In a), two cars are detected with
high scores at frame t. In d), the detection scores become lower due to image quality
at frame t + 1. In e), after the HP operation, response at relative positions of heatmap
has been enhanced. Detection with higher scores can be extracted.

4 Implementation Details

4.1 Architecture

CenterNet. In this work, we use ResNet-101 as feature extraction network,
Nfeat, for the purpose of fair comparison with other methods. Following the
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same structure as original paper, the Ndecv is built by 3 upsampling layers with
256, 128, 64 channel, respectively. One 3 × 3 deformable convolutional layer is
added before each up-convolution with channel 256, 128, 64, respectively. Each
output head is built by a 3 × 3 convolutional layer with 64 channel followed by
a 1 × 1 convolution with corresponding channel (C for Ŷ or 2 for Ô and Ŷ ) to
generate desired output.

Heatmap Propagation. A peak point extraction is proposed in [19] to take
the place of Non-Maximum Suppression (NMS). However, we still observe a
slight performance improvement when applying NMS after the extraction. The
dilatation of heatmap is efficiently implemented by a (2P + 1) × (2P + 1) max
pooling layer. The peak extraction operation in CenterNet is implemented by
a 3 × 3 max pooling layer. We notice that this may produce false detection at
the edge of dilated square as the extraction is too local. A bigger kernel of size
(2P + 1) × (2P + 1) is used in our case and provides better performances than
the original one.

Seq-NMS. Seq-NMS [10] is an effective off-line post-processing to boost scores
of the weak detection in video. In original work, this method is applied on all
proposals. In our case, the CenterNet only keeps the top 100 peaks and we
ignore all bounding boxes with a score under 0.05. For each frame, we apply a
very limited number of bounding boxes on Seq-NMS, which makes it faster.

4.2 Dataset

We use ImageNet [16] object detection from video (VID) dataset to evaluate our
method. The dataset has 3862 training and 550 validation video with framerate
at 25–30 fps. There are 30 classes of moving objects, which are a subset of 200
classes in ImageNet object detection (DET) dataset. Following the protocol in
[7,18,20], we train the network on an intersection of ImageNet DET and VID
dataset by sampling at most 2K images per class (only using 30 VID classes of
moving objects) from DET set and 10 frames of each video from VID set. As
the test annotation is not publicly available, we measure the performance of our
method by calculating the mean average precision (mAP) on the validation set.

4.3 Training and Inference

For both training and inference, we resize all input image to 512 × 512 with
zero padding for non-square shape images. With the output stride R = 4, the
output resolution is 128 × 128. Most two-stage detectors resize input image to
a shorter side of 600 pixels. We don’t use this configuration in our work for two
reasons. Firstly, the output heatmap size of our CenterNet is proportional to
input resolution. A larger input resolution will increase the runtime throughout
the entire network. This is different from two-stage detectors, where the increase
of resolution only brings extra burden to the part before the Region Proposal
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Network. The runtime after RoIPooling is only affected by the number of RoIs.
Actually, if we use the larger input size, our method’s runtime will be about
27 FPS, which is slightly below 30 FPS real-time criteria. Secondly, when using
larger resolution, we noticed a slight decrease in AP50 with dataset ImageNet
VID. This is also analyzed in original CenterNet paper, where they marked
0.3 decrease in AP50 with dataset MS coco. Even though they marked a 0.9
increase in AP75, and a 0.1 increase in comprehensive AP , the official evaluation
of ImageNet VID is AP50.

During training for CenterNet, random flip, random scaling from 0.6 to 1.4
are used as data augmentation and SGD is used as optimizer. We train the whole
network with a batch-size of 32 (on 2 GPUs) and a learning rate of 10−4 for 50
epochs followed by a learning rate of 10−5 for 30 epochs.

For inference, no augmentation is applied. We use the full validation set for
experiments. We apply NMS with IoU threshold of 0.3.

5 Experiments

5.1 Quantitative Result

We show the results for our methods and state-of-the-art in Table 1. All results
are conducted with ResNet-101 as backbones. First, we compare our method
with the baseline CenterNet. Our method improves 3.1% mAP with an extra
6ms runtime. We also compare results after Seq-NMS to prove the effectiveness
of our method and a 2.5% mAP improvement is observed. In both two case, our
method maintains a real-time performance. Even combined with Seq-NMS, our
method works at 34 FPS. Next, we compare with the state-of-the-art and our
method achieves competitive accuracy. However, most of the two-stage based
detectors can not achieve the 25–30 FPS standard of ImageNet VID dataset.
The AdaScale works at 21 FPS. Our method achieves better accuracy with 1.7
times faster runtime. The Scale-Time Lattice framework reaches the real-time
performance by doing sparse key frame detection. Their base detector is still
a Faster R-CNN. Our method can be integrated into this frame for a better
tradeoff.

We also conduct experiments with DLA-34 as backbones. Unlike original
work of CenterNet, the DLA-34 baseline only achieves a mAP of 69.1% in our
test. Nevertheless, our method raises the mAP to 71.3%. We believe this is
relative to the dataset, as MS coco has more classes and images are clearer.

In purpose of fair comparison, we conduct a simple interpolation between
CenterNet’s detection outputs of consecutive frames. However, we don’t see a
remarkable improvement in performance. Actually, this is also a special case of
our method. We set P = 0. This makes the extended heatmap for one object
become one point. So the overlap of all extended heatmaps becomes a simple
superposition. If there is a detected object at position (x,y,c) in frame t, we have:

hxyc = max
i∈[1,m]

(ht
i,xyc) = Ŷ t

xyc (8)
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Set β → ∞, Eq. 5 becomes:
Y

t+1

xyc = hxyc (9)

Set α = 0.5, Eq. 6 becomes:

Ỹ t+1
xyc = 0.5(Ŷ t+1

xyc + Y
t+1

xyc ) (10)

Finally, we have:
Ỹ t+1
xyc = 0.5(Ŷ t+1

xyc + Ŷ t
xyc) (11)

Table 1. Performance comparison on the ImageNet VID validation set. For methods
marked with -, the runtime is not provided in the original papers. With the fact that
these methods add computational components on two-stage detectors baseline, the
runtime shall be longer than that of R-FCN.

Methods mAP50(%) Runtime (ms) FPS

R-FCN [3] 74.2 75 13

AdaScale [3] 75.6 47 21

FGFA/+Seq-NMS [20] 76.3/78.4 733/873 1.2/1.1

D& T/+Viterbi [7] 75.8/79.8 141/187 6.8/5.5

STSN/+Seq-NMS [1] 78.9/80.4 – –

Tracklet-Conditioned/+FGFA [18] 79.4/83.5 – –

Scale-Time Lattice [2] 79/79.8 16.1/200 62/5

CenterNet/+Seq-NMS 73.6/75.9 21/23 47/43

CenterNet+interpolation/+Seq-NMS 73.6/75.9 22/24 45/42

CenterNet+HP/+Seq-NMS 76.7/78.4 27/29 37/34

5.2 Qualitative Result

We also conduct qualitative experiments to better explain the mechanism of our
method. Figure 3 shows some typical examples where our HP method improves
detection result compared to baseline CenterNet. One typical case is that the
still image detector can miss some detection in certain sample images of a video
clip. This usually happens to non consecutive images. The HP can easily boost
the score at missing position if the previous image includes a long-term stable
detection. This largely solves the problem of transient object lost in long video.
Another typical case is that the still image detector can generate inferior bound-
ing boxes when the object blends into background. This happens frequently
with motion blur which makes it difficult to distinguish between the textures of
the object and the background. Our method assumes small displacement of the
object’s center and maintain a smooth variation of bounding box size along the
time as we calculate the weighted size with the previous bounding box of the
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Fig. 3. Examples of qualitative result. For each of the 6 images, the upper part is
CenterNet result, the lower part is result after HP method. Images (a), (b), (c) is a
scenario where the target object is transiently lost. In frame t+1, the network output
score is below the detection threshold 0.05. In frame t+2, the object is detect again.
With HP, we can keep detecting the object with better confidence. Images (d), (e),
(f) is a scenario where the object blends into background. In frame t+1, the detected
center is totally biased. After HP, we maintain the correct center with detection in
frame t. Although the score drops from 0.609 to 0.518, it rises back to 0.664 as frame
t+2 has a clear detection. Different from a tremendous score variance (0.341 - 0.051 -
0.794), we keep a stable detection with better bounding boxes.

same object. This helps to correct the mentioned problem and maintain stable
detection in the aspect of bounding box size.

In Fig. 4, we compare the evolution of detection scores by baseline and our
method. In both video clips, our method recovers cliff drops in several frames
(e.g. frame 60, 80–100, 120–140 in video 1. frame 110–160, 240–300 in video
2) and the result is much smoother. This means our method gives less false
positives than vanilla baseline. Thus when we apply off-line process like Seq-
NMS, the average of detection scores turns out to be more reliable. More stable
detection is also preferred in many further vision applications like visual object
tracking.
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Fig. 4. Evolution of detection scores of 2 video clips. Green lines are CenterNet results.
Red lines are results with HP. In both video, our method produces the smoother line,
which means the more stable detection.

5.3 Ablation Study

Extended Heatmap Size P. In our method, each detected object in output
heatmap will be extended into a square with side length 2P+1. As we increase
P, one tracklet will boost a boarder space in final heatmap, which turns out to
be more robust to fast movement. However, this may create some false positives
(FP). A typical example: due to image quality, the baseline detector makes a
correct detection with a high score and a parasitic detection (biased center) with
low score for the same object. Usually, this weak FP will disappear rapidly. If P
is too large, the precise detection in previous frame will boost both the correct
detection and the parasitic detection in the current frame. So that the FP will
last for longer. We calculate the maximum displacement of the center in output
resolution Δi = max(|xt+1

i − xt
i|, |yt+1

i − yt
i |) for each object pair in ImageNet

VID validation set. One object pair means that the same object appears in two
consecutive frames. There are 272038 ground-truth (GT) pairs in the whole set.
1220 pairs among them have a Δi greater than 5, which represent 0.45% cases.
Thus we test P from 0 to 5, and results are shown in Table 2.

For more detail of our method’s performance concerning this parameter, we
break down the results into 3 motion speeds, based on whether the ground-truth
object pair’s motion is slow (Δi < 2), median (2 ≤ Δi < 4), or fast (Δi ≥ 4).
Some classes usually have fast motion, while others have the opposite, so we
use the class-agnostic precision ( TP

TP+FP ) vs recall ( TP
TP+FN ) to better display

the results. As shown in Fig. 5, small value of P has better performance in slow
motion and vice versa. This is consistent with our previous explanation. The
default value of P in this paper is adapted to general scenes. For applications
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Table 2. Ablation study of extended heatmap size P. Uncovered GT pairs stands for
the proportion of GT pairs with Δi > P .

P (default marked by *) 0 1 2* 3 4 5

Uncovered GT pairs (%) 60.4 11.3 3.7 1.6 0.79 0.45

mAP50(%) 75 76.5 76.7 76.4 75.8 75.5

with high-speed scenes, a greater value of P is favorable. Besides, our method
surpasses the baseline (and the simple interpolation version) in all 3 subsets.
Table 3 presents a direct number comparison between baseline and our method.

Parameter α and β. We also investigate the influence of the parameter α and
β in Eq. 6 and Eq. 5, respectively. The results are shown in Table 4 and Table 5.

If we only use Eq. 5 in our design (α = 1), we observe a remarkable decrease
of accuracy. This is the case where we are completely confident with long-term
heatmap. This can produce catastrophic results when an object with long length
tracklet has one large spatial variance. The HP may create a false detection near
previous center and it will last for a long time. Another typical example is when
a long tracked object quits the camera’s field of view. In that case, the HP will
keep boosting the last position for a long time. For the above reasons, the balance
operation with parameter α is necessary.

Fig. 5. Precision vs recall of different object pair motions. We add a zoom-in version
below each figure which provides a better view of content in the black square. Each
legend is followed by the corresponding average precision. Base stands for CenterNet
and Base* stands for the simple interpolation version.
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Table 3. Numerical comparison of 75% recall and 65% recall. Compared values are
shown in the form of “baseline/our method in default setting”. Our method outper-
forms the baseline with both recall configurations in all 3 subsets and the whole valid
set.

GT FN FP Precision (%)

75% Recall Slow 254190 63548 114741/67930 62.4/73.7

Median 14820 3705 14499/5219 43.4/68.0

Fast 3028 757 5473/3734 29.3/37.8

Overall 272038 68010 131973/75648 60.7/73.0

65% Recall Slow 254190 88967 22199/17797 88.2/90.3

Median 14820 5187 1891/1504 83.6/86.5

Fast 3028 1060 1264/911 60.9/68.4

Overall 272038 95214 24560/19814 87.8/89.9

Different from α which has a linear effect on the heatmap, β imports a non-
linear effect with the tracklet length. With greater value of β, we put more
confidence on the long-term part in update score. If we only use Eq. 6 in our
design (β → ∞), we face a contradiction in the choice of α. If α is not large
enough, we can hardly recover the cliff fall of score, which is a typical case due
to image quality problem. For example, α = 0.5, we track an object with score
of 0.9 for 20 frames, and the baseline output score drops to 0.1 at 21st and
22nd frame. Equation 6 alone can only boost the score to 0.5 and 0.3 at 21st
and 22nd frame. However, by weighing the average by the tracklet length, Eq. 5
(with β = 2) gives 0.88 and 0.86, respectively. To achieve a similar effect with
Eq. 6 alone, we need to set α ≥ 0.97. In that case, a temporary false positive
(FP) detection will last too long. E.g. we have a FP with score of 0.8 for 1 frame,
the score is below 0.1 for the following frames. Our method will attenuate the
score to 0.4 in 3 frames, but Eq. 6 (α = 0.97) alone needs 27 frames.

Table 4. Ablation study of parameters α

α (default marked by *) 0.5 0.6 0.7 0.8 0.9 0.95 0.98* 1

mAP50(%) 74.6 74.9 75.1 75.3 76.1 76.3 76.7 75.3

Table 5. Ablation study of parameters β

β (default marked by *) 0.5 1 2* 5 10 100 1000

mAP50(%) 75.7 76.4 76.7 76.4 76 75.1 75
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6 Conclusion

In this paper, we introduce a real-time video object detection method Heatmap
Propagation based on CenterNet. Compared with state-of-the-art methods which
are mainly based on two-stage detectors and far from real-time performance, our
method achieves competitive results with real-time speed. Compared with our
baseline CenterNet, our method achieves better accuracy with only 6ms extra
runtime per frame and produces smoother and more stable results for further
applications. Our future work will include experiments of Heatmap Propagation
on other object detection approaches or semantic segmentation for video.
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