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Abstract. Scene graph generation models understand the scene
through object and predicate recognition, but are prone to mistakes due
to the challenges of perception in the wild. Perception errors often lead to
nonsensical compositions in the output scene graph, which do not follow
real-world rules and patterns, and can be corrected using commonsense
knowledge. We propose the first method to acquire visual commonsense
such as affordance and intuitive physics automatically from data, and use
that to improve the robustness of scene understanding. To this end, we
extend Transformer models to incorporate the structure of scene graphs,
and train our Global-Local Attention Transformer on a scene graph cor-
pus. Once trained, our model can be applied on any scene graph gener-
ation model and correct its obvious mistakes, resulting in more seman-
tically plausible scene graphs. Through extensive experiments, we show
our model learns commonsense better than any alternative, and improves
the accuracy of state-of-the-art scene graph generation methods.

1 Introduction

In recent computer vision literature, there is a growing interest in incorporating
commonsense reasoning and background knowledge into the process of visual
recognition and scene understanding [8,9,13,31,33]. In Scene Graph Generation
(SGG), for instance, external knowledge bases [7] and dataset statistics [2,34]
have been utilized to improve the accuracy of entity (object) and predicate (rela-
tion) recognition. The effect of these techniques is usually to correct obvious per-
ception errors, and replace with more plausible alternatives. For instance, Fig. 1
(top) shows an SGG model mistakenly classifies a bird as a bear, possibly due
to the dim lighting and small object size. However, a commonsense model can
correctly predict bird, because bear on branch is a less common situation, less
aligned with intuitive physics, or contrary to animal behavior.

Nevertheless, existing methods to incorporate commonsense into the pro-
cess of visual recognition have two major limitations. Firstly, they rely on an
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Fig. 1. Overview of the proposed method: We propose a commonsense model that
takes a scene graph generated by a perception model and refines that to make it more
plausible. Then a fusion module compares the perception and commonsense outputs
and generates a final graph, incorporating both signals.

external source of commonsense, such as crowd-sourced or automatically mined
commonsense rules, which tend to be incomplete and inaccurate [7], or statistics
directly gathered from training data, which are limited to simple heuristics such
as co-occurrence frequency [2]. In this paper, we propose the first method to
learn graphical commonsense automatically from a scene graph corpus, which
does not require external knowledge, and acquires commonsense by learning
complex, structured patterns beyond simple heuristics.

Secondly, most existing methods are strongly vulnerable to data bias as they
integrate data-driven commonsense knowledge into data-driven neural networks.
For instance, the commonsense model in Fig. 1 mistakes the elephant for a
person, in order to avoid the bizarre triplet elephant drawing picture, while
the elephant is quite clear visually, and the perception model already recognizes
it correctly. None of the existing efforts to equip scene understanding with com-
monsense have studied the fundamental question of whether to trust perception
or commonsense, i.e., what you see versus what you expect. In this paper, we
propose a way to disentangle perception and commonsense into two separately
trained models, and introduce a method to exploit the disagreement between
those two models to achieve the best of both worlds.

To this end, we first propose a mathematical formalization of visual common-
sense, as a problem of auto-encoding perturbed scene graphs. Based on the new
formalism, we propose a novel method to learn visual commonsense from anno-
tated scene graphs. We extend recently successful transformers [23] by adding
local attention heads to enable them to encode the structure of a scene graph,
and we train them on a corpus of annotated scene graphs to predict missing
elements of a scene via a masking framework similar to BERT [5]. As illustrated
in Fig. 2, our commonsense model learns to use its experience to imagine which
entity or predicate could replace the mask, considering the structure and context
of a given scene graph. Once trained, it can be stacked on top of any perception
(i.e., SGG) model to correct nonsensical mistakes in the generated scene graphs.

The output of the perception and commonsense models can be seen as two
generated scene graphs with potential disagreements. We devise a fusion module
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that takes those two graphs, along with their classification confidence values,
and predicts a final scene graph that reflects both perception and commonsense
knowledge. The degree to which our fusion module trusts each input varies for
each image, and is determined based on the estimated confidence of each model.
This way, if the perception model is uncertain about the bird due to darkness,
the fusion module relies on the commonsense more, and if perception is confident
about the elephant due to its clarity, the fusion module trusts its eyes.

We conduct extensive experiments on the Visual Genome datasets [12], show-
ing (1) The proposed GLAT model outperforms existing transformers and graph-
based models in the task of commonsense acquisition; (2) Our model learns
various types of commonsense that are absent in SGG models, such as object
affordance and intuitive physics; (3) The proposed model is robust to dataset
bias, and shows commonsensical behavior even in rare and zero-shot scenarios;
(4) The proposed GLAT and Fusion mechanism can be applied on any SGG
method to correct their mistakes and improve their accuracy. The main contri-
butions of this paper are the following:

– We propose the first method for learning structured visual commonsense,
Global-Local Attention Transformer (GLAT), which does not require any
external knowledge, and outperforms conventional transformers and graph-
based networks.

– We propose a cascaded fusion architecture for Scene Graph Generation, which
disentangles commonsense reasoning from visual perception, and integrates
them in a way that is robust to the failure of each component.

– We report experiments that showcase our model’s unique ability of learning
commonsense without picking up dataset bias, and its utility in downstream
scene understanding.

2 Related Work

2.1 Commonsense in Computer Vision

Incorporating commonsense knowledge has been explored in various computer
vision tasks such as object recognition [3,14,28], object detection [13], semantic
segmentation [19], action recognition [9], visual relation detection [31], scene
graph generation [2,7,34], and visual question answering [18,22]. There are two
aspects to study about these methods: where their commonsense comes from,
and how they use it.

Most methods either adopt an external curated knowledge base such as Con-
ceptNet [7,14,18,19,21,28], or acquire commonsense automatically by collecting
statistics over an often annotated corpus [2,3,13,22,31,34]. Nevertheless, the for-
mer group are limited to incomplete external knowledge, and the latter are based
on ad-hoc, hard-coded heuristics such as the co-occurrence frequency of cate-
gories. Our method is the first to formulate visual commonsense as a machine
learning task, and train a graph-based neural network to solve it. There are a third
group of works that focus on a particular type of commonsense by designing a
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specialized model, such as intuitive physics [6], or object affordance [4]. We put
forth a more general framework that includes but is not limited to physics and
affordance, by exploiting scene graphs as a versatile semantic representation. The
most similar to our work is [26], which only models object co-occurrence patterns,
while we also incorporate object relationships and scene graph structure.

When it comes to utilizing commonsense, existing methods integrate it within
the inference pipeline, either by retrieving a set of relevant facts from a knowledge
base and feeding as additional features to the model [7,18,22], or by employing a
graph-based message propagation process to embed the structure of the knowl-
edge graph within the intermediate representations of the model [2,3,9,14,28].
Some other methods distill the knowledge during training through auxiliary
objectives, making the inference simple and free of external knowledge [19,31].
Nevertheless, in all those approaches, commonsense is seamlessly infused into the
model and cannot be disentangled. This makes it hard to study and evaluate
commonsense and perception separately, or control their influence. Few meth-
ods have modeled commonsense as a standalone module which is late-fused into
the prediction of the perception model [13,34]. Yet, we are the first to devise
separate perception and commonsense models, and adaptively weigh their impor-
tance based on their confidence, before fusing their predictions.

2.2 Commonsense in Scene Graph Generation

Zellers et al. [34] were the first to explicitly incorporate commonsense into the
process of scene graph generation. They biased predicate classification logits
using a pre-computed frequency prior that is a static distribution, given each
entity class pair. Although this significantly improved their overall accuracy, the
improvement is mainly due to the fact that they favor frequent triplets over
others, which is statistically rewarding. Even if their model classifies the relation
between a person and a hat as holding, their frequency bias would most likely
change that to wearing, which is more frequent.

More recently, Chen et al. [2] employed a less explicit way to incorporate
the frequency prior within the process of entity and predicate classification.
They embed the frequencies into the edge weights of their inference graph, and
utilize those weights within their message propagation process. This improves
the results especially on less frequent predicates, since it less strictly enforces
the statistics on the final decision. However, this way commonsense is integrated
implicitly into the SGG model and cannot be probed or studied in isolation.
We remove the adverse effect of statistical bias while keeping the commonsense
model disentangled from perception.

Gu et al. [7] exploits ConceptNet [21] rather than dataset statistics, which is a
large-scale knowledge graph comprising relational facts about concepts, e.g. dog
is-a animal or fork is-used-for eating. Given each detected object, they
retrieve ConceptNet facts involving that object class, and employ a recurrent
neural net and an attention mechanism to encode those facts into the object
features, before classifying objects and predicates. Nevertheless, ConceptNet is
not exhaustive, since it is extremely hard to compile all commonsense facts. Our
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method does not depend on a limited source of external knowledge, and acquires
commonsense automatically, via a generalizable neural network.

2.3 Transformers and Graph-Based Neural Networks

Transformers were originally proposed to replace recurrent neural networks for
machine translation, by stacking several layers of multi-head attention [23].
Ever since, transformers have been successful in various vision and language
tasks [5,16,27]. Particularly, BERT [5] randomly replaces some words from a
given sentence with a special MASK token and tries to reconstruct those words.
Through this self-supervised game, BERT acquires natural language, and can
transfer its language knowledge to perform well in other NLP tasks. We use a
similar self-supervised strategy to learn to complete missing pieces of a scene
graph. Rather than language, our model acquires the ability to imagine a scene
in a structured, semantic way, which is a hallmark of human commonsense.

Transformers treat their input as a set of tokens, and discard any form of
structure among them. To preserve the order of tokens in a sentence, BERT
augments the initial embedding of each token with a position embedding before
feeding into transformers. Scene graphs, on the other hand, have a more com-
plex structure that cannot be embedded in such a trivial way. Recently, Graph-
based Neural Networks (GNN) have been successful to encode graph structures
into node representations, by applying several layers of neighborhood aggrega-
tion. More specifically, each layer of a GNN represents each node by a trainable
function that takes the node as well as its neighbors as input. Graph convo-
lutional nets [11], gated graph neural nets [15], and graph attention nets [24]
all implement this idea with different computational models for neighborhood
aggregation. GNNs have been widely utilized for scene graph generation by incor-
porating context [29,30,32], but we are the first to exploit GNNs to learn visual
commonsense.

We adopt graph attention nets due to their similarity to transformers in
using attention. The main difference of graph attention nets to transformers
is that instead of representing each node by an attention over all other nodes,
they only compute an attention over immediate neighbors. Inspired by that, we
use a BERT-like transformer network, but replace half of its attention heads by
local attention, simply by enforcing the attention between non-neighbor nodes
to zero. Through ablation experiments in Sect. 4, we show the proposed Global-
Local Attention Transformers (GLAT) outperforms conventional transformers,
as well as widely used graph-based models such as graph convolution nets and
graph attention nets.

3 Method

In this section, we first formalize the task, and propose a novel formulation of
visual commonsense in connection with visual perception. We then provide an
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overview of the proposed architecture (Fig. 1), followed by an in-depth descrip-
tion of each proposed module.

We define a scene graph as G = (Ne,Np, Es, Eo), where Ne is a set of entity
nodes, Np is a set of predicate nodes, Es is a set of edges from each predicate to
its subject (which is an entity node), and Eo is a set of edges from each predicate
to its object (that also is an entity node). Each entity node is represented with an
entity class ce ∈ Ce and a bounding box b ∈ [0, 1]4, while each predicate node is
represented with a predicate class cp ∈ Cp and is connected to exactly one subject
and one object. Note that this formulation of scene graph is slightly different
from the conventional one [29], as we formulate predicates as nodes rather than
edges. This tweak does not cause any limitation since every scene graph can be
converted from the conventional representation to our representation. However,
this formulation allows multiple predicates between the same pair of entities, and
it also enables us to define a unified attention over all nodes no matter entity or
predicate.

Given a training dataset with many images I ∈ [0, 1]h×w×c paired with
ground truth scene graphs GT , our goal is to train a model that takes a new
image and predicts a scene graph that maximizes p(G|I). This is equivalent of
maximizing p(I|G)p(G), which breaks the problem into what we call perception
and commonsense. In our proposed intuition, commonsense is the mankind’s
ability to predict which situations are possible and which are not, or in other
words, what makes sense and what does not. This can be seen as a prior distri-
bution p(G) over all possible situations in the world, represented as scene graphs.
Perception, on the other hand, is the ability to form symbolic belief from raw
sensory data, which are respectively G and I in our case. Although the goal of
computer vision is to solve the Maximum a Posteriori (MAP) problem (maxi-
mizing p(G|I)), neural nets often fail to estimate the posterior, unless the prior is
explicitly enforced in the model definition [17]. This is while in computer vision,
the prior is often overlooked, or inaccurately considered to be a uniform distri-
bution, making MAP equivalent to Maximum Likelihood (ML), i.e., finding G
that maximizes p(I|G) [20].

We propose the first method to explicitly approximate the MAP inference
by devising an explicit prior model (commonsense). Since posterior inference is
intractable, we propose a two-stage framework as an approximation: We first
adopt any off-the-shelve SGG model as the perception model, which takes an
input image and produces a perception-driven scene graph, GP , that approxi-
mately maximizes the likelihood. Then we propose a commonsense model, which
takes GP as input, and produces a commonsense-driven scene graph, GC , to
approximately maximize the posterior, i.e.,

GP = fP (I) ≈ argmax
G

p(I|G), (1)

GC = fC(GP ) ≈ argmax
G

p(I|G)p(G), (2)

where fP and fC are the perception and commonsense models. The commonsense
model can be seen as a graph-based extension of denoising autoencoders [25],
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Fig. 2. The proposed Global-Local Attention Transformer (GLAT), and its training
framework: We augment transformers with local attention heads to help them encode
the structure of scene graphs within node embeddings. The decoder takes the embed-
dings of a perturbed scene graph and reconstructs the correct scene graph without
having access to the image. Note this figure only shows the commonsense block of our
overall pipeline shown in Fig. 1.

which evidently can learn the generative distribution of data [1,10], that is p(G)
in our case. Accordingly, fC can take any scene graph as input and produce a
more plausible graph by only slightly changing the input. A key design choice
here is the fact that fC does not take the image as input. Otherwise, it would
be hard to ensure it is purely learning commonsense and not perception.

Ideally, GC is the best decision to make, since it maximizes the posterior
distribution. However, in practice autoencoders tend to under-represent long-
tailed distributions and only capture the modes. This means the commonsense
model may fail to predict less common structures, in favor of more statistically
rewarding alternatives. To alleviate this problem, we propose a fusion module
that takes GP and GC as input, and outputs a fused scene graph, GF , which is
the final output of our system. This can be seen as a decision-making agent that
has to decide how much to trust each model, based on how confident they are.

Figure 1 illustrates an overview of the proposed architecture. In the rest of
this section, we elaborate each module in detail.

3.1 Global-Local Attention Transformers

We propose the first graph-based visual commonsense model, which learns a
generative distribution over the semantic structure of real-world scenes, through
a denoising autoencoder framework. Inspired by BERT [5], which reconstructs
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masked tokens in a sentence through stacked layers of multi-head attention, we
propose Global-Local Attention Transformers (GLAT) that take a graph with
masked nodes as input, and reconstructs the missing nodes. Figure 2 illustrates
how GLAT works. Given an input scene graph GP , we represent node i as a
one-hot vector x

(0)
i , that includes entity and predicate categories, as well as a

special MASK class. We stack node representations as rows of a matrix X(0) for
notation purposes.

GLAT takes X(0) as input and represents each node by encoding the structure
and context. To this end, it applies L layers of multi-head attention on the
input nodes. Each layer l creates new node representations X(l), by applying
a linear layer on the concatenated output of that layer’s attention heads. More
specifically,

X(l) = concatenate
h∈Hl

[
h(X(l−1))

]
× Wl + bl, (3)

where Hl is the set of attention heads for layer l, Wl and bl are trainable fusion
weights and bias for that layer, and the concatenation operates along columns.
We use two types of attention head, namely global and local. Each node can
attend to all other nodes through global attention, while only its neighbors
through local attention. We further divide local heads based on the type of edge
they use, in order to differentiate the way subjects and objects interact with
predicates, and vice versa. Therefore, we can write:

Hl = HG
l ∪ HLS

l ∪ HLO
l . (4)

All heads within each subset are identical, except they have distinct parameters
that are initialized and trained independently. Each global head hG operates as
a typical self-attention would:

hG(X) =
[
q(X)T k(X)

]
v(X), (5)

where q, k, v are query, key, and value heads, each a fully connected network,
typically (but not necessarily) with a single linear layer. A local attention is the
same, except queries can only interact with keys of their immediate neighbor
nodes. For instance in subject heads,

hLS(X) =
[
q(X)T k(X) � As

]
v(X), (6)

where As is the adjacency matrix of subject edges, which is 1 between from each
predicate to its subject and vice versa, and 0 elsewhere. We similarly define Ao

and hLO for object edges.
Once we get contextualized, structure-aware representations x

(L)
i for each

node i, we devise a simple decoder to generate the output scene graph GC ,
using a fully connected network that classifies each node to an entity or predicate
class, and another fully connected network that classifies each pair of nodes into
an edge type (subject, object or no edge). We train the encoder and decoder
end-to-end, by randomly adding noise to annotated scene graphs from Visual
Genome, feeding the noisy graph to GLAT, reconstructing nodes and edges, and
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comparing each with the original scene graph before perturbation. We train the
network using two cross-entropy loss terms on the node and edge classifiers. The
details of training including the perturbation process are explained in Sect. 4.1.

3.2 Fusing Perception and Commonsense

The perception and commonsense models each predict the output node cate-
gories using a classifier that computes a probability distribution over all classes
by applying a softmax on its logits. The class with highest probability is chosen
and assigned a confidence score equal to its softmax probability. More specif-
ically, node i from GP has a logit vector LP

i that has |Ce| or |Cp| dimensions
depending of whether it is an entity node or predicate node. Similarly node i
from GC has a logit vector LC

i . Note that these two nodes correspond to the
same entity or predicate in the image, since GLAT does not change the order of
nodes. Then the confidence of each node can be written as

qPi = max
j

exp(LP
i [j])∑

k exp(LP
i [k])

, (7)

and similarly qCi is defined given LC
i .

The fusion module takes each node of GP and the corresponding node of
GC , and computes a new logit vector for that node, as a weighted average of
LP
i and LC

i . The weights determine the contribution of each model in the final
prediction, and thus have to be proportional to the confidence of each model.
Therefore, we compute the fused logits as:

LF
i =

qPi L
P
i + qCi L

C
i

qPi + qCi
. (8)

Finally, a softmax is applied on LF
i to compute the final classification distribution

for node i.

4 Experiments

In this section, we describe our experiments on the Visual Genome (VG) dataset
in detail. We first evaluate how well our GLAT model learns visual commonsense,
by comparing it to other models on the task of masked scene graph reconstruc-
tion. Then we provide a statistical analysis of our model prediction to show
the kinds of commonsense knowledge it acquires, and distinguish it from bias.
Next, we evaluate how effective GLAT and our fusion mechanism are for the
downstream task of SGG, when applied on various perception models. We also
provide several examples of how the commonsense model corrects the perceived
output, and how the fusion model combines the two.



Learning Visual Commonsense for Robust Scene Graph Generation 651

4.1 Implementation Details

We train the perception and commonsense models separately using the ground
truth scene graphs GT from VG [12], particularly the version most widely used
for SGG [29], which has 150 entity and 50 predicate classes. We then stack
commonsense on top of perception and fine-tune it on VG, this time with actual
scene graphs generated by perception, to adapt to the downstream task. The
fusion module does not have trainable parameters and is thus only used during
inference. We use the 75k VG scene graphs for training all models, and use
the other 25k for test. We hold a small portion of the train set for validation.
Our GLAT model (and other baselines when applicable) have 6 layers, each
with 8 attention heads, and has a 300-dimensional representation for each node.
While training GLAT, we randomly mask 30% of the nodes, which is the average
number of nodes mistaken by a typical SGG model. We average the classification
loss over all nodes and edges classified by the decoder, no matter masked or not.
For fine-tuning and inference, we prune the output of the perception model
before feeding to GLAT, by keeping the top 100 most confident predicates and
all entities connected to those.

4.2 Evaluating Commonsense

Once GLAT is trained, we evaluate it on the same task of reconstructing ground
truth VG graphs that are perturbed by randomly masking 30% of their nodes.
We evaluate the accuracy of our model in classifying the masked nodes, and
report the accuracy (Table 1) separately for entity nodes and predicate nodes,
as well as overall. This is a good measure of how well the model has learned
commonsense, because it mimics mankind’s ability to imagine what would a
real-world scene look like, given some context. In Fig. 2, for instance, given the
fact that there is a person riding something that is masked, we can immediately
tell it is probably a bike, a motorcycle, or a horse. If we also know there is
a mountain behind the masked object, and the masked object has a face and
legs (not shown in the figure for brevity), then we can more certainly imagine
it is a horse. By incorporating the global context of the scene, as well as the
local structure of the graph, GLAT is able to effectively imagine the scene and
predict the class of the entity or predicate that was masked, at a significantly
higher accuracy compared to all baselines.

More specifically, we compare GLAT to: (1) A transformer [5] that is the
same as our model, except it only has global heads; (2) A Graph Attention
Net [24] which is also the same as our model, but only with local heads; and
(3) A Graph Convolutional Network [11], which has only one local head at each
layer, and the attention is fixed to be equal for all neighbors of each node. We also
compare our method with the frequency prior used by Zellers et al. [34], which
can only be applied for masked predicates, and simply predicts the most frequent
predicate given its subject and object. As Table 1 shows, our method significantly
outperforms all aforementioned baselines, which are a good representative of any
existing method to learn semantic graph reconstruction.
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Table 1. Ablation study on Visual Genome. All numbers are in percentage, and graph
constraint is enforced

Method Entity Predicate Both

Triplet frequency [34] – 44.4 –

Graph convolutional nets [11] (local-only, fixed attention) 8.7 43.4 19.7

Graph attention nets [24] (local-only) 12.0 45.0 22.3

Transformers [5] (global-only) 14.0 42.3 22.9

Global-local attention transformers (ours) 22.3 60.7 34.4

To provide a better sense of the commonsense knowledge our model learns,
we apply GLAT on the entire VG test set, using the procedure detailed below
(Sect. 4.3), and collect its prediction statistics in a diverse set of situations. We
elaborate using an example, shown in the top left cell of Table 2. Out of all
triplets from all scene graphs produced by our model, we collect those triplets
that match the certain template of person [X] horse, and show our sorted top
5 predictions in terms of frequency. The 5 predicates most often predicted by
our method between a person and a horse are on, riding, near, watching, and
behind. These are all possible interactions between a person and a horse, and all
follow the affordance properties of both person and horse. Nevertheless, when
we get the same statistics from the output of a state-of-the-art scene graph gener-
ation model (IMP [29]), we observe that it frequently predicts person wearing
horse, which does not follow the affordance of horse. This can be attributed to
the high frequency of wearing in VG annotation, which biases the IMP model,
while our commonsense model is prone to such bias, and has learned affordances
through the self-supervised training framework.

Table 2 provides several more scenarios like this, demonstrating our profi-
ciency in three types of commonsense: object affordance, intuitive physics, and
object composition. As an example of physics, we choose the triplet template
[X] under bed, and show that our model predicts plausible objects such as pot,
shoe, drawer, book, and sneaker. This is while IMP predicts bed under bed,
counter under bed, and sink under bed, which are all physically counter-
intuitive. More interestingly, one of our frequent predictions, book under bed,
is a composition that does not exist in training data, suggesting the knowledge
acquired by GLAT is not merely a biased memory of frequent compositions in
training data.

The last type of commonsense in our illustration is object composition, i.e.,
the fact that certain objects are physical parts of other objects. For [X] has
ear, we predict head, cat, elephant, zebra, and person, out of which head
has ear and person has ear are not within the 10 most frequent triplets in
training data that match the template. Yet our model frequently predicts them,
demonstrating its unbiased knowledge. Not to mention, 4 out of 5 top predictions
made by IMP are nonsensical.
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Table 2. Prediction statistics of our method compared to IMP [29] in various situa-
tions, showcasing our model’s commonsense knowledge, and its robustness to dataset
bias. Each row is designated for a certain type of commonsense, and has three examples
in three pairs of columns. Each pair of columns show the top 5 most frequent triplets
matching a certain template from our model’s prediction, compared to IMP. Black
triplets are commonsensically correct, red triplets are wrong, blue are commonsensi-
cally correct but statistically rare in training data, and green are correct but never
seen in training data.

4.3 Evaluating Scene Graph Generation

Now that we showed the efficacy of GLAT in learning visual commonsense and
correcting perturbed scene graphs, we apply and evaluate it on the downstream
task of scene graph generation. We adopt existing SGG models as our perception
model, and compare their output GP , to the ones corrected by our commonsense
model GC , as well as the final output of our system after fusion GF . We com-
pare those 3 outputs for 3 different choices of perception model, all of which
have competitive state-of-the-art performance. More specifically, we use Itera-
tive Message Passing (IMP [29]) as a strong baseline that is not augmented by
commonsense. We also use Stacked Neural Motifs (SNM [34]) that late-fuse a
frequency prior with their output, and Knowledge-Embedded Routing Networks
(KERN [2]) that encode frequency prior within their internal message passing.

To evaluate, we conventionally compute the mean recall of the top 50
(mR@50) and top 100 (mR@100) triplets predicted by each model. Each triplet
is considered correct if the subject, predicate, and object are all classified cor-
rectly, and the bounding box of the subject and object have more than 50%
overlap (intersection over union) with the ground truth. We compute the recall
for the triplets of each predicate class separately, and average over classes. The
aforementioned metrics are measured in 2 sub-tasks: (1) SGCls is the main sce-
nario where we classify entities and predicates given annotated bounding boxes.
This way the performance is not limited by proposal quality. (2) PredCls pro-
vides the model with ground truth object labels, which helps evaluation focus on
predicate recognition accuracy. Table 3 shows the full comparison of all methods
on all metrics. We observe that GLAT improves the performance of IMP which
does not have commonsense, but does not significantly change the performance of



654 A. Zareian et al.

Table 3. The mean recall of our method compared to the state of the art on the
task of scene graph generation, evaluated on the Visual Genome dataset [29], following
the experiment settings of [34]. All baseline numbers were borrowed from [2], and all
numbers are in percentage

Method PredCls SGCls

mR@50 mR@100 mR@50 mR@100

IMP [29] 9.8 10.5 5.8 6.0

IMP + GLAT 11.1 11.9 6.2 6.5

IMP + GLAT + Fusion 12.1 12.9 6.6 7.0

SNM [34] 13.3 14.4 7.1 7.5

SNM + GLAT 13.6 14.6 7.3 7.8

SNM + GLAT + Fusion 14.1 15.3 7.5 7.9

KERN [2] 17.7 19.2 9.4 10.0

KERN + GLAT 17.6 19.1 9.3 10.0

KERN + GLAT + Fusion 17.8 19.3 9.9 10.4

SNM and KERN which already use dataset statistics. However, our full model
which uses both the output of the perception model as well as commonsense
model consistently improves SGG performance. In the supplementary material,
we provide a more detailed analysis by breaking the results down into subgroups
based on triplet frequency, and showing our performance boost is consistent in
frequent and rare situations.

Finally, we provide several examples in Fig. 3 to illustrate how our com-
monsense model fixes perception errors in difficult scenarios, and improves the
robustness of our model. To save space, we merge the three scene graphs pre-
dicted by the perception, commonsense, and fusion models into a single graph,
and emphasize any node or edge where these three models disagree. In example
(a), the chair is not fully visible, and the visible part does not visually show
the action of sitting, thus the perception model incorrectly predicts wearing,
which is likely to be also affected by the bias due to the prevalence of wearing
annotations in Visual Genome. However, it is trivial for the commonsense model
that the affordance of chair is sitting. The fusion module correctly prefers
the output of the commonsense model, due to its higher confidence. In (b), the
perception model mistakes the head of the bird for a hat, due to the complex-
ity of the lighting and the similarity of foreground and background colors. This
might be also affected by the bias of head instances in VG, which are usually
human heads, and the fact that hat instances typically co-occur with a head.
Nevertheless, our commonsense model has the knowledge of object composition
and knows brids typically have heads but not hats. Example (c) is an unusual
case of holding, in terms of visual attributes such as arm pose. Hence, the per-
ception model fails to predict holding correctly, while our commonsense model
corrects that mistake by incorporating the affordance of bottle. Finally, in (d),
the person is perceived under the tower due to the camera angle, but for the
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Fig. 3. Example scene graphs generated by the perception, commonsense, and fusion
modules, merged into one graph. Entities are shown as rectangular nodes and predicates
are shown as directed edges from subject to object. For entities and predicates that are
identically classified by the perception and commonsense model, we simply show the
predicted label. But in cases where the perception and commonsense models disagree,
we show both of their predictions as well as the final output chosen by the fusion
module. We show mistakes in red, with the ground truth in parentheses. (Color figure
online)

commonsense model that is unlikely due to intuitive physics. Hence, it corrects
the mistake and the fusion module accepts that fix. More examples are provided
in the supplementary material.

5 Conclusion

We presented the first method to learn visual commonsense automatically from
a scene graph corpus. Our method learns structured commonsense patterns,
rather than simple co-occurrence statistics, through a novel self-supervised train-
ing strategy. Our unique way of augmenting transformers with local attention
heads significantly outperforms transformers, as well as widely used graph-based
models such as graph convolutional nets. Furthermore, we proposed a novel
architecture for scene graph generation, which consists of two individual models,
perception and commonsense, which are trained differently, and can complement
each other under uncertainty, improving the overall robustness. To this end, we
proposed a fusion mechanism to combine the output of those two models based
on their confidences, and showed our model correctly determines when to trust
its perception and when to fall back on its commonsense. Experiments show the
effectiveness of our method for scene graph generation, and encourage future
work to apply the same methodology on other computer vision tasks.
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