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Abstract. Scene graphs are powerful representations that parse images
into their abstract semantic elements, i.e., objects and their interactions,
which facilitates visual comprehension and explainable reasoning. On the
other hand, commonsense knowledge graphs are rich repositories that
encode how the world is structured, and how general concepts interact.
In this paper, we present a unified formulation of these two constructs,
where a scene graph is seen as an image-conditioned instantiation of a
commonsense knowledge graph. Based on this new perspective, we re-
formulate scene graph generation as the inference of a bridge between the
scene and commonsense graphs, where each entity or predicate instance
in the scene graph has to be linked to its corresponding entity or predicate
class in the commonsense graph. To this end, we propose a novel graph-
based neural network that iteratively propagates information between
the two graphs, as well as within each of them, while gradually refining
their bridge in each iteration. Our Graph Bridging Network, GB-Net,
successively infers edges and nodes, allowing to simultaneously exploit
and refine the rich, heterogeneous structure of the interconnected scene
and commonsense graphs. Through extensive experimentation, we show-
case the superior accuracy of GB-Net compared to the most recent
methods, resulting in a new state of the art. We publicly release the
source code of our method (https://github.com/alirezazareian/gbnet).

1 Introduction

Extracting structured, symbolic, semantic representations from data has a long
history in Natural Language Processing (NLP), under the umbrella terms seman-
tic parsing at the sentence level [8,9] and information extraction at the docu-
ment level [22,41]. The resulting semantic graphs or knowledge graphs have many
applications such as question answering [7,17] and information retrieval [6,50].
In computer vision, Xu et al. have recently called attention to the task of Scene
Graph Generation (SGG) [44], which aims at extracting a symbolic, graph-
ical representation from a given image, where every node corresponds to a
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Fig. 1. Left: An example of a Visual Genome image and its ground truth scene graph.
Right: A relevant portion of the commonsense graph. In this paper we formulate the
task of Scene Graph Generation as the problem of creating a bridge between these
two graphs. Such bridge not only classifies each scene entity and predicate, but also
creates an inter-connected heterogeneous graph whose rich structure is exploited by
our method (GB-Net).

localized and categorized object (entity), and every edge encodes a pairwise inter-
action (predicate). This has inspired two lines of follow-up work, some improv-
ing the performance on SGG [2,10,11,23,24,31,43,47,52], and others exploiting
such rich structures for down-stream tasks such as Visual Question Answer-
ing (VQA) [12,38,39,54], image captioning [48,49], image retrieval [15,37], and
image synthesis [14]. In VQA for instance, SGG not only improves performance,
but also promotes interpretability and enables explainable reasoning [38].

Although several methods have been proposed, the state-of-the-art perfor-
mance for SGG is still far from acceptable. Most recently, [2] achieves only
16% mean recall, for matching the top 100 predicted subject-predicate-object
triples against ground truth triples. This suggests the current SGG methods are
insufficient to address the complexity of this task. Recently, a few papers have
attempted to use external commonsense knowledge to advance SGG [2,10,52], as
well as other domains [3,16]. This commonsense can range from curated knowl-
edge bases such as ConceptNet [27], ontologies such as WordNet [30], or auto-
matically extracted facts such as co-occurrence frequencies [52]. The key message
of those works is that a prior knowledge about the world can be very helpful
when perceiving a complex scene. If we know the relationship of a Person and
a Bike is most likely riding, we can more easily disambiguate between riding,
on, and attachedTo, and classify their relationship more accurately. Similarly,
if we know a Man and a Woman are both sub-types of Person, even if we only
see Man-riding-Bike in training data, we can generalize and recognize a Woman-
riding-Bike triplet at test time. Although this idea is intuitively promising,
existing methods that implement it have major limitations, as detailed in Sect. 2,
and we address those in the proposed method.
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More specifically, recent methods either use ad-hoc heuristics to integrate
limited types of commonsense into the scene graph generation process [2,52], or
fail to exploit the rich, graphical structure of commonsense knowledge [10]. To
devise a general framework for incorporating any type of graphical knowledge
into the process of scene understanding, we take inspiration from early works
on knowledge representation and applying structured grammars to computer
vision problems [32,40,55], and redefine those concepts in the light of the recent
advances in graph-based deep learning. Simply put, we formulate both scene
and commonsense graphs as knowledge graphs with entity and predicate nodes,
and various types of edges. A scene graph node represents an entity or predicate
instance in a specific image, while a commonsense graph node represents an
entity or predicate class, which is a general concept independent of the image.
Similarly, a scene graph edge indicates the participation of an entity instance
(e.g. as a subject or object) in a predicate instance in a scene, while a com-
monsense edge states a general fact about the interaction of two concepts in the
world. Figure 1 shows an example scene graph and commonsense graph side by
side.

Based on this unified perspective, we reformulate the problem of scene graph
generation from entity and predicate classification into the novel problem of
bridging those two graphs. More specifically, we propose a method that given
an image, initializes potential entity and predicate nodes, and then classifies
each node by connecting it to its corresponding class node in the commonsense
graph, through an edge we call a bridge. This establishes a connectivity between
instance-level, visual knowledge and generic, commonsense knowledge. To incor-
porate the rich combination of visual and commonsense information in the SGG
process, we propose a novel graphical neural network, that iteratively propagates
messages between the scene and commonsense graphs, as well as within each of
them, while gradually refining the bridge in each iteration. Our Graph Bridging
Network, GB-Net, successively infers edges and nodes, allowing to simultane-
ously exploit and refine the rich, heterogeneous structure of the interconnected
scene and commonsense graphs.

To evaluate the effectiveness of our method, we conduct extensive experi-
ments on the Visual Genome [20] dataset. The proposed GB-Net outperforms
the state of the art consistently in various performance metrics. Through abla-
tive studies, we show how each of the proposed ideas contribute to the results.
We also publicly release a comprehensive software package based on [52] and [2],
to reproduce all the numbers reported in this paper. We provide further quan-
titative, qualitative, and speed analysis in our Supplementary Material, as well
as additional implementation details.

2 Related Work

2.1 Scene Graph Generation

Most SGG methods are based on an object detection backbone that extracts
region proposals from the input image. They utilize some kind of information
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propagation module to incorporate context, and then classify each region to
an object class, as well as each pair of regions to a relation class [2,44,47,52].
Our method has two key differences with this conventional process: firstly, our
information propagation network operates on a larger graph which consists of
not only object nodes, but also predicate nodes and commonsense graph nodes,
and has a more complex structure. Secondly, we do not classify each object
and relation using classifiers, but instead use a pairwise matching mechanism to
connect them to corresponding class nodes in the commonsense graph.

More recently, a few methods [2,10,52] have used external knowledge to
enhance scene graph generation. This external knowledge is sometimes referred
to as “commonsense”, because it encodes ontological knowledge about classes,
rather than specific instances. Despite encouraging results, these methods have
major limitations. Specifically, [52] used triplet frequency to bias the logits of
their predicate classifier, and [2] used such frequencies to initialize edge weights
on their graphs. Such external priors have been also shown beneficial for recog-
nizing objects [45,46] and relationships [26,53], that are building blocks for SGG.
Nevertheless, neither of those methods can incorporate other types or knowledge,
such as the semantic hierarchy concepts, or object affordances. Gu et al. [10] pro-
pose a more general way to incorporate knowledge in SGG, by retrieving a set of
relevant facts for each object from a pool of commonsense facts. However, their
method does not utilize the structure of the commonsense graph, and treats
knowledge as a set of triplets. Our method considers commonsense as a general
graph with several types of edges, explicitly integrates that graph with the scene
graph by connecting corresponding nodes, and incorporates the rich structure of
commonsense by graphical message passing.

2.2 Graph-Based Neural Networks

By Graph-based Neural Networks (GNN), we refer to the family of models that
take a graph as input, and iteratively update the representation of each node by
applying a learnable function (a.k.a., message) on the node’s neighbors. Graph
Convolutional Networks (GCN) [19], Gated Graph Neural Networks (GGNN)
[25], and others are all specific implementations of this general model. Most
SGG methods use some variant of GNNs to propagate information between
region proposals [2,24,44,47]. Our message passing method, detailed in Sect. 4,
resembles GGNN but instead of propagating messages through a static graph, we
update (some) edges as well. Few methods exist that dynamically update edges
during message passing [35,51], but we are the first to refine edges between a
scene graph and an external knowledge graph.

Apart from SGG, GNNs have been used in several other computer vision
tasks, often in order to propagate context information across different objects in
a scene. For instance, [28] injects a GNN into a Faster R-CNN [36] framework
to contextualize the features of region proposals before classifying them. This
improves the results since the presence of a table can affect the detection of
a chair. On the other hand, some methods utilize GNNs on graphs that rep-
resent the ontology of concepts, rather than objects in a scene [16,21,29,42].
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This often enables generalization to unseen or infrequent concepts by incorpo-
rating their relationship with frequently seen concepts. More similarly to our
work, Chen et al. [3] were the first to bring those two ideas together, and form
a graph by objects in an image as well as object classes in the ontology. Never-
theless, the class nodes in that work were merely an auxiliary means to improve
object features before classification. In contrast, we classify the nodes by explic-
itly inferring their connection to their corresponding class nodes. Moreover, we
iteratively refine the bridge between scene and commonsense graphs to enhance
our prediction. Furthermore, their task only involves objects and object classes,
while we explore a more complex structure where predicates play an important
role as well.

3 Problem Formulation

In this section, we first formalize the concepts of knowledge graph in general, and
commonsense graph and scene graph in particular. Leveraging their similarities,
we then reformulate the problem of scene graph generation as bridging these two
graphs.

3.1 Knowledge Graphs

We define a knowledge graph as a set of entity and predicate nodes (NE,NP),
each with a semantic label, and a set of directed, weighted edges E from a
predefined set of types. Denoting by Δ a node type (here, either entity E or
predicate P), the set of edges encoding the relation r between nodes of type Δ
and Δ′ is defined as

EΔ→Δ′
r ⊆ NΔ × NΔ′ → R. (1)

A commonsense graph is a type of knowledge graph in which each node
represents the general concept of its semantic label, and hence each seman-
tic label (entity or predicate class) appears in exactly one node. In such a
graph, each edge encodes a relational fact involving a pair of concepts, such
as Hand-partOf-Person and Cup-usedFor-Drinking. Formally, we define the
set of commonsense entity (CE) nodes NCE and commonsense predicate (CP)
nodes NCP as all entity and predicate classes in our task. Commonsense edges
EC consist of 4 distinct subsets, depending on the source and destination node
type:

EC ={ECE→CP
r } ∪ {ECP→CE

r }∪
{ECE→CE

r } ∪ {ECP→CP
r }.

(2)

A scene graph is a different type of knowledge graph where: (a) each scene entity
(SE) node is associated with a bounding box, referring to an image region, (b)
each scene predicate (SP) node is associated with an ordered pair of SE nodes,
namely a subject and an object, and (c) there are two types of undirected edges
which connect each SP to its corresponding subject and object respectively.
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Here because we define knowledge edges to be directed, we model each undirected
subject or object edge as two directed edges in the opposite directions, each with
a distinct type. More specifically,

NSE ⊆[0, 1]4 × NCE,

NSP ⊆NSE × NSE × NCP,

ES ={ESE→SP
subjectOf, ESE→SP

objectOf,

ESP→SE
hasSubject, ESP→SE

hasObject},

(3)

where [0, 1]4 is the set of possible bounding boxes, and NSE × NSE × NCP is
the set of all possible triples that consist of two scene entity nodes and a scene
predicate node. Figure 1 shows an example of scene graph and commonsense
graph side by side, to make their similarities clearer. Here we assume every scene
graph node has a label that exists in the commonsense graph, since in reality
some objects and predicates might belong to background classes, we consider
a special commonsense node as background entity and another for background
predicate.

3.2 Bridging Knowledge Graphs

Considering the similarity between the commonsense and scene graph formula-
tions, we make a subtle refinement in the formulation to bridge these two graphs.
Specifically, we remove the class from SE and SP nodes and instead encode it into
a set of bridge edges EB that connect each SE or SP node to its corresponding
class, i.e., a CE or CP node respectively:

N ?
SE ⊆ [0, 1]4,

N ?
SP ⊆ NSE × NSE,

EB = {ESE→CE
classifiedTo, ESP→CP

classifiedTo,

ECE→SE
hasInstance, ECP→SP

hasInstance},

(4)

where .? means the nodes are implicit, i.e., their classes are unknown. Each edge
of type classifiedTo, connects an entity or predicate to its corresponding label
in the commonsense graph, and has a reverse edge of type hasInstance which
connects the commonsense node back to the instance. Based on this reformu-
lation, we can define the problem of SGG as the extraction of implicit entity
and predicate nodes from the image (hereafter called scene graph proposal), and
then classifying them by connecting each entity or predicate to the correspond-
ing node in the commonsense graph. Accordingly, Given an input image I and
a provided and fixed commonsense graph, the goal of SGG with commonsense
knowledge is to maximize

p(NSE,NSP, ES|I,NCE,NCP, EC)

= p(N ?
SE,N ?

SP, ES|I)×
p(EB|I,NCE,NCP, EC,N ?

SE,N ?
SP, ES).

(5)
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Fig. 2. An illustrative example of the GB-Net process. First, we initialize the scene
graph and entity bridges using a Faster R-CNN. Then we propagate messages to update
node representations, and use them to update the entity and predicate bridges. This
is repeated T times and the final bridge determines the output label of each node.

In this paper, the first term is implemented as a region proposal network that
infers N ?

SE given the image, followed by a simple predicate proposal algorithm
that considers all possible entity pairs as N ?

SP. The second term is fulfilled by the
proposed GB-Net which infers bridge edges by incorporating the rich structure
of the scene and commonsense graphs. Note that unlike most existing methods
[2,52], we do not factorize this into predicting entity classes given the image, and
then predicate classes given entities. Therefore, our formulation is more general
and allows the proposed method to classify entities and predicates jointly.

4 Method

The proposed method is illustrated in Fig. 2. Given an image, our model first
applies a Faster R-CNN [36] to detect objects, and represents them as scene
entity (SE) nodes. It also creates a scene predicate (SP) node for each pair of
entities, which forms a scene graph proposal, yet to be classified. Given this graph
and a background commonsense graph, each with fixed internal connectivity, our
goal is to create bridge edges between the two graphs that connect each instance
(SE and SP node) to its corresponding class (CE and CP node). To this end, our
model initializes entity bridges by connecting each SE to the CE that matches
the label predicted by Faster R-CNN, and propagates messages among all nodes,
through every edge type with dedicated message passing parameters. Given the
updated node representations, it computes a pairwise similarity between every
SP node and every CP node, and finds maximal similarity pairs to connect scene
predicates to their corresponding classes, via predicate bridges. It also does the
same for entity nodes to potentially refine their bridges too. Given the new
bridges, it propagates messages again, and repeats this process for a predefined
number of steps. The final state of the bridge determines which class each node
belongs to, resulting in the output scene graph.
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4.1 Graph Initialization

The object detector outputs a set of n detected objects, each with a bounding
box bj , a label distribution pj and an RoI-aligned [36] feature vector vj . Then
we allocate a scene entity node (SE) for each object, and a scene predicate node
(SP) for each pair of objects, representing the potential predicate with the two
entities as its subject and object. Each entity is initialized using its RoI features
vj , and each predicate is initialized using the RoI features uj of a bounding box
enclosing the union of its subject and object. Formally, we can write, i.e.,

xSE
j = φSE

init(vj) , and xSP
j = φSP

init(uj), (6)

where φSE
init and φSP

init are two fully connected networks that are branched from
the backbone after ROI-align. To form a scene graph proposal, we connect each
predicate node to its subject and object via labeled edges. Specifically, we define
the following 4 edge types: for a triplet s − p − o, we connect p to s using a
hasSubject edge, p to o using a hasObject edge, s to p using a subjectOf
edge, and o to p using an objectOf edge. The reason we have two directions as
separate types is that in the message passing phase, the way we use predicate
information to update entities should be different from the way we use entities
to update predicates.

On the other hand, we initialize the commonsense graph with commonsense
entity nodes (CE) and commonsense predicate nodes (CP) using a linear projec-
tion of their word embeddings:

xCE
i = φCE

init(e
n
i ) , and xCP

i = φCP
init(e

p
i ). (7)

The commonsense graph also has various types of edges, such as UsedFor and
PartOf, as detailed in Sect. 5.2. Our method is independent of the types of
commonsense edges, and can utilize any provided graph from any source.

So far, we have two isolated graphs, scene and commonsense. An SE node
representing a detected Person intuitively refers to the Person concept in the
ontology, and hence the Person node in the commonsense graph. Therefore,
we connect each SE node to the CE node that corresponds the semantic label
predicted by Faster R-CNN, via a classifiedTo edge type. Instead of a hard
classification, we connect each entity to top Kbridge classes using pj (class distri-
bution predicted by Faster R-CNN) as weights. We also create a reverse connec-
tion from each CE node to corresponding SE nodes, using an hasInstance edge,
but with the same weights pj . As mentioned earlier, this is to make sure infor-
mation flows from commonsense to scene as well as scene to commonsense, but
not in the same way. We similarly define two other edge types, classifiedTo
and hasInstance for predicates, which are initially an empty set, and will be
updated to bridge SP nodes to CP nodes as we explain in the following. These
4 edge types can be seen as flexible bridges that connect the two fixed graphs,
which are considered latent variables to be determined by the model.

This forms a heterogeneous graph with four types of nodes (SE, SP, CE, and
CP) and various types of edges: scene graph edges ES such as subjectOf, com-
monsense edges EC such as usedFor, and bridge edges EB such as classifiedTo.
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Next, we explain how our proposed method updates node representations and
bridge edges, while keeps commonsense and scene edges constant.

4.2 Successive Message Passing and Bridging

Given a heterogeneous graph as described above, we employ a variant of
GGNN [25] to propagate information among nodes. First, each node represen-
tation is fed into a fully connected network to compute outgoing messages, that
is

mΔ→
i = φΔ

send(x
Δ
i ), (8)

for each i and node type Δ, where φsend is a trainable send head which has
shared weights across nodes of each type. After computing outgoing messages,
we send them through all outgoing edges, multiplying by the edge weight. Then
for each node, we aggregate incoming messages, by first adding across edges
of the same type, and then concatenating across edge types. We compute the
incoming message for each node by applying another fully connected network
on the aggregated messages:

mΔ←
j = φΔ

receive

(⋃
Δ′

Ek∈EΔ′→Δ⋃ ∑
(i,j,ak

ij)∈Ek

ak
ijm

Δ′→
i

)
, (9)

where φreceive is a trainable receive head and ∪ denotes concatenation. Note that
the first concatenation is over all 4 node types, the second concatenation is over
all edge types from Δ′ to Δ, and the sum is over all edges of that type, where i
and j are the head and tail nodes, and ak

ij is the edge weight. Given the incoming
message for each node, we update the representation of the node using a Gated
Recurrent Unit (GRU) update rule, following [4]:

zΔ
j = σ

(
WΔ

z mΔ←
j + UΔ

z xΔ
j

)
,

rΔ
j = σ

(
WΔ

r mΔ←
j + UΔ

r xΔ
j

)
,

hΔ
j = tanh

(
WΔ

h mΔ←
j + UΔ

h (rΔ
j � xΔ

j )
)
,

xΔ
j ⇐ (1 − zΔ

j ) � xΔ
j + zΔ

j � hΔ
j ,

(10)

where σ is the sigmoid function, and WΔ
. and UΔ

. are trainable matrices that are
shared across nodes of the same type, but distinct for each node type Δ. This
update rule can be seen as an extension of GGNN [25] to heterogeneous graphs,
with a more complex message aggregation strategy. Note that ⇐ means we
update the node representation. Mathematically, this means xΔ

j(t+1) = U(xΔ
j(t)),

where U is the aforementioned update rule and (t) denotes iteration number.
For simplicity, we drop this subscript throughout this paper.

So far, we have explained how to update node representations using graph
edges. Now using the new node representations, we should update the bridge
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edges EB that connect scene nodes to commonsense nodes. To this end, we com-
pute a pairwise similarity from each SE to all CE nodes, and from each SP to
all CP nodes.

aEB
ij =

exp〈xSE
i ,xCE

j 〉EB∑
j′ exp〈xSE

i ,xCE
j′ 〉EB

, where 〈x,y〉EB = φSE
att(x)T φCE

att (y), (11)

and similarly for predicates,

aPB
ij =

exp〈xSP
i ,xCP

j 〉PB∑
j′ exp〈xSP

i ,xCP
j′ 〉PB

, where 〈x,y〉PB = φSP
att(x)T φCP

att (y). (12)

Here φΔ
att is a fully connected network that resembles attention head in transform-

ers. Note that since φΔ
att is not shared across node types, our similarity metric is

asymmetric. We use each aEB
ij to set the edge weight of the classifiedTo edge

from xSE
i to xCE

j , as well as the hasInstance edge from xCE
j to xSE

i . Similarly
we use each aPB

ij to set the weight of edges between xSP
i and xCP

j . In preliminary
experiments we realised that such fully connected bridges hurt performance in
large graphs. Hence, we only keep the top Kbridge values of aEB

ij for each i, and
set the rest to zero. We do the same thing for predicates, keeping the top Kbridge

values of aPB
ij for each i. Given the updated bridges, we propagate messages

again to update node representations, and iterate for a fixed number of steps,
T . The final values of aEB

ij and aPB
ij are the outputs of our model, which can be

used to classify each entity and predicate in the scene graph.

4.3 Training

We closely follow [2] which itself follows [52] for training procedure. Specifically,
given the output and ground truth graphs, we align output entities and predi-
cates to ground truth counterparts. To align entities we use IoU and predicates
will be aligned naturally since they correspond to aligned pairs of entities. Then
we use the output probability scores of each node to define a cross-entropy loss.
The sum of all node-level loss values will be the objective function to be mini-
mized using Adam [18].

Due to the highly imbalanced predicate statistics in Visual Genome, we
observed that best-performing models usually concentrate their performance
merely on the most frequent classes such as on and wearing. To alleviate this, we
modify the basic cross-entropy objective that is commonly used by assigning an
importance weight to each class. We follow the recently proposed class-balanced
loss [5] where the weight of each class is inversely proportional to its frequency.
More specifically, we use the following loss function for each predicate node:

LP
i = − 1 − β

1 − βnj
log aPB

ij , (13)

where j is the class index of the ground truth predicate aligned with i, nj is
the frequency of class j in training data, and β is a hyperparameter. Note that



616 A. Zareian et al.

β = 0 leads to a regular cross-entropy loss, and the more it approaches 1, the
more strictly it suppresses frequent classes. To be fair in comparison with other
methods, we include a variant of our method without reweighting, which still
outperforms all other methods.

5 Experiments

Following the literature, we use the large-scale Visual Genome benchmark [20]
to evaluate our method. We first show our GB-Net outperforms the state of the
art, by extensively evaluating it on 24 performance metrics. Then we present an
ablation study to illustrate how each innovation contributes to the performance.
In the Supplementary Material, we also provide a per-class performance break-
down to show the consistency and robustness of our performance across frequent
and rare classes. That is accompanied by a computational speed analysis, and
several qualitative examples of our generated graphs compared to the state of
the art, side by side.

5.1 Task Description

Visual Genome [20] consists of 108,077 images with annotated objects (entities)
and pairwise relationships (predicates), which is then post-processed by [44]
to create scene graphs. They use the most frequent 150 entity classes and 50
predicate classes to filter the annotations. Figure 1 shows an example of their
post-processed scene graphs which we use as ground truth. We closely follow
their evaluation settings such as train and test splits.

The task of scene graph generation, as described in Sect. 4, is equivalent to
the SGGen scenario proposed by [44] and followed ever since. Given an image,
the task of SGGen is to jointly infer entities and predicates from scratch. Since
this task is limited by the quality of the object proposals, [44] also introduced
two other tasks that more clearly evaluate entity and predicate recognition. In
SGCls, we take localization (here region proposal network) out of the picture, by
providing the model with ground truth bounding boxes during test, simulating a
perfect proposal model. In PredCls, we take object detection for granted, and
provide the model with not only ground truth bounding boxes, but also their
true entity class. In each task, the main evaluation metric is average per-image
recall of the top K subject-predicate-object triplets. The confidence of a triplet
that is used for ranking is computed by multiplying the classification confidence
of all three elements. Given the ground truth scene graph, each predicate forms a
triplet, which we match against the top K triplets in the output scene graph. A
triplet is matched if all three elements are classified correctly, and the bounding
boxes of subject and object match with an IoU of at least 0.5. Besides the choice
of K, there are two other choices to be made: (1) Whether or not to enforce the
so-called Graph Constraint (GC), which limits the top K triplets to only one
predicate for each ordered entity pair, and (2) Whether to compute the recall
for each predicate class separately and take the mean (mR), or compute a single
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recall for all triplets (R) [2]. We comprehensively report both mean and overall
recall, both with and without GC, and conventionally use both 50 and 100 for
K, resulting in 8 metrics for each task, 24 in total.

5.2 Implementation Details

We use three-layer fully connected networks with ReLU activation for all train-
able networks φinit, φsend, φreceive and φatt. We set the dimension of node rep-
resentations to 1024, and perform 3 message passing steps, except in ablation
experiments where we try 1, 2 and 3. We tried various values for β. Generally
the higher it is, mean recall improves and recall falls. We found 0.999 is a good
trade-off, and chose Kbridge = 5 empirically. All hyperparameters are tuned using
a validation set randomly selected from training data. We borrow the Faster R-
CNN trained by [52] and shared among all our baselines, which has a VGG-16
backbone and predicts 128 proposals.

In our commonsense graph, the nodes are the 151 entity classes and 51 pred-
icate classes that are fixed by [44], including background. We use the GloVE
[33] embedding of category titles to initialize their node representation (via
φinit), and fix GloVE during training. We compile our commonsense edges from
three sources, WordNet [30], ConceptNet [27], and Visual Genome. To sum-
marize, there are three groups of edge types in our commonsense graph. We
have SimilarTo from WordNet hierarchy, we have PartOf, RelatedTo, IsA,
MannerOf, and UsedFor from ConceptNet, and finally from VG training data we
have conditional probabilities of subject given predicate, predicate given subject,
subject given object, etc. We explain the details in the supplementary material.
The process of compiling and pruning the knowledge graph is semi-automatic
and takes less than a day from a single person. We make it publicly available
as a part of our code. We have also tried using each individual source (e.g. only
ConceptNet) independently, which requires less effort, and does not significantly
impact the performance. There are also recent approaches to automate the pro-
cess of commonsense knowledge graph construction [1,13], which can be utilized
to further reduce the manual labor.

5.3 Main Results

Table 1 summarizes our results in comparison to the state of the art. IMP+ refers
to the re-implementation of [44] by [52] using their new Faster R-CNN backbone.
That method does not use any external knowledge and only uses message passing
among the entities and predicates and then classifies each. Hence, it can be seen
as a strong, but knowledge-free baseline. FREQ is a simple baseline proposed
by [52], which predicts the most frequent predicate for any given pair of entity
classes, solely based on statistics from the training data. FREQ surprisingly
outperforms IMP+, confirming the efficacy of commonsense in SGG.

SMN [52] applies bi-directional LSTMs on top of the entity features, then
classifies each entity and each pair. They bias their classifier logits using statis-
tics from FREQ, which improves their total recall significantly, at the expense
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Table 1. Evaluation in terms of mean and overall triplet recall, at top 50 and top 100,
with and without Graph Constraint (GC), for the three tasks of SGGen, SGCls and
PredCls. Numbers are in percentage. All baseline numbers were borrowed from [2].
Top two methods for each metric is shown in bold and italic respectively.

Task Metric GC Method

IMP+ FREQ SMN KERN GB-Net GB-Net-β

SGGen mR@50 Y 3.8 4.3 5.3 6.4 6.1 7.1

N 5.4 5.9 9.3 11.7 9.8 11.7

mR@100 Y 4.8 5.6 6.1 7.3 7.3 8.5

N 8.0 8.9 12.9 16.0 14.0 16.6

R@50 Y 20.7 23.5 27.2 27.1 26.4 26.3

N 22.0 25.3 30.5 30.9 29.4 29.3

R@100 Y 24.5 27.6 30.3 29.8 30.0 29.9

N 27.4 30.9 35.8 35.8 35.1 35.0

SGCls mR@50 Y 5.8 6.8 7.1 9.4 9.6 12.7

N 12.1 13.5 15.4 19.8 21.4 25.6

mR@100 Y 6.0 7.8 7.6 10.0 10.2 13.4

N 16.9 19.6 20.6 26.2 29.1 32.1

R@50 Y 34.6 32.4 35.8 36.7 38.0 37.3

N 43.4 40.5 44.5 45.9 47.7 46.9

R@100 Y 35.4 34.0 36.5 37.4 38.8 38.0

N 47.2 43.7 47.7 49.0 51.1 50.3

PredCls mR@50 Y 9.8 13.3 13.3 17.7 19.3 22.1

N 20.3 24.8 27.5 36.3 41.1 44.5

mR@100 Y 10.5 15.8 14.4 19.2 20.9 24.0

N 28.9 37.3 37.9 49.0 55.4 58.7

R@50 Y 59.3 59.9 65.2 65.8 66.6 66.6

N 75.2 71.3 81.1 81.9 83.6 83.5

R@100 Y 61.3 64.1 67.1 67.6 68.2 68.2

N 83.6 81.2 88.3 88.9 90.5 90.3

of higher bias against less frequent classes, as revealed by [2]. More recently,
KERN [2] encodes VG statistics into the edge weights of the graph, which is
then incorporated by propagating messages. Since it encodes statistics more
implicitly, KERN is less biased compared to SMN, which improves mR. Our
method improves both R and mR significantly, and our class-balanced model,
GB-Net-β, further enhances mR (+2.7% in average) without hurting R by much
(−0.2%).

We observed that the state of the art performance has been saturated in the
SGGen setting, especially for overall recall. This is partly because object detec-
tion performance is a bottleneck that limits the performance. It is worth noting
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Table 2. Ablation study on Visual Genome. All numbers are in percentage, and graph
constraint is enforced.

Method SGGen PredCls

mR@50 mR@100 R@50 R@100 mR@50 mR@100 R@50 R@100

No Knowledge 5.5 6.6 25.3 28.8 15.4 16.8 62.5 64.5

T = 1 5.6 6.7 24.9 28.5 15.6 17.1 62.1 64.2

T = 2 5.7 6.9 26.1 29.7 18.2 19.7 66.7 68.4

GB-Net 6.1 7.3 26.4 30.0 18.2 19.7 67.0 68.6

that mean recall is a more important metric than overall recall, since most SGG
methods tend to score a high overall recall by investing on few most frequent
classes, and ignoring the rest [2]. As shown in Table 1, our method achieves sig-
nificant improvements in mean recall. We provide in-depth performance analysis
by comparing our recall per predicate class with that of the state of the art, as
well as qualitative analysis in the Supplementary Material.

There are other recent SGG methods that are not used for comparison here,
because their evaluation settings are not identical to ours, and their code is not
publicly available to the best of our knowledge [10,34]. For instance, [34] reports
only 8 out of our 24 evaluation metrics, and although our method is superior in
6 metrics out of those 8, that is not sufficient to fairly compare the two methods.

5.4 Ablation Study

To further explain our performance improvement, Table 2 compares our full
method with its weaker variants. Specifically, to investigate the effectiveness of
commonsense knowledge, we remove the commonsense graph and instead classify
each node in our graph using a 2-layer fully connected classifier after message
passing. This negatively impacts performance in all metrics, proving our method
is able to exploit commonsense knowledge through the proposed bridging tech-
nique. Moreover, to highlight the importance of our proposed message passing
and bridge refinement process, we repeated the experiments with fewer steps.
We observe the performance drops significantly with fewer steps, proving the
effectiveness of our model, but it saturates as we go beyond 3 steps.

6 Conclusion

We proposed a new method for Scene Graph Generation that incorporates exter-
nal commonsense knowledge in a novel, graphical neural framework. We unified
the formulation of scene graph and commonsense graph as two types of knowl-
edge graph, which are fused into a single graph through a dynamic message
passing and bridging algorithm. Our method iteratively propagates messages to
update nodes, then compares nodes to update bridge edges, and repeats until the
two graphs are carefully connected. Through extensive experiments, we showed
our method outperforms the state of the art in various metrics.
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