
LevelSet R-CNN: A Deep Variational
Method for Instance Segmentation

Namdar Homayounfar1,2(B), Yuwen Xiong1,2(B), Justin Liang1(B),
Wei-Chiu Ma1,3, and Raquel Urtasun1,2

1 Uber Advanced Technologies Group, Pittsburgh, USA
{namdar,yuwen,justin.liang,weichiu,urtasun}@uber.com

2 University of Toronto, Toronto, Canada
3 MIT, Cambridge, USA

Abstract. Obtaining precise instance segmentation masks is of high
importance in many modern applications such as robotic manipulation
and autonomous driving. Currently, many state of the art models are
based on the Mask R-CNN framework which, while very powerful, out-
puts masks at low resolutions which could result in imprecise bound-
aries. On the other hand, classic variational methods for segmentation
impose desirable global and local data and geometry constraints on the
masks by optimizing an energy functional. While mathematically ele-
gant, their direct dependence on good initialization, non-robust image
cues and manual setting of hyperparameters renders them unsuitable for
modern applications. We propose LevelSet R-CNN, which combines the
best of both worlds by obtaining powerful feature representations that
are combined in an end-to-end manner with a variational segmentation
framework. We demonstrate the effectiveness of our approach on COCO
and Cityscapes datasets.

1 Introduction

Instance segmentation, the task of detecting and categorizing the pixels of unique
countable objects in an image, is of paramount interest in many computer vision
applications such as medical imaging [67], photo editing [68], pose estimation
[50], robotic manipulation [21] and autonomous driving [69]. With the advent of
deep learning [38] and its tremendous success in object classification and detec-
tion tasks [24,58,59], the computer vision community has made great strides in
instance segmentation [2,3,10,30,47,64,66].

Currently, the prevailing instance segmentation approaches are based on the
Mask R-CNN [27] framework which detects and classifies objects in the image
and further processes each instance to produce a binary segmentation mask.
While achieving impressive results in many benchmarks, the predicted masks
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are produced at a low resolution and label predictions are independent per pixel,
which could result in imprecise boundaries and irregular object discontinuities.

In contrast, traditional variational segmentation methods [6,7,31] are explic-
itly designed to delineate the boundaries of objects and handle complicated
topologies. They first encode desired geometric properties into an energy func-
tional and then evolve an initial contour according to the minimization landscape
of the energy functional. One seminal work in this direction is the Chan-Vese [7]
level set method, which formulates the segmentation problem as a partitioning
task where the goal is to divide the image into two regions, each of which has
similar intensity values. Through an energy formulation, Chan-Vese can pro-
duce good results even from a coarse initialization. However, in the real world,
the photometric values may not be consistent, for example due to illumination
changes and varying textures, rendering this method impractical for modern
challenging applications.

With these problems in mind, we propose LevelSet R-CNN, a novel deep
structured model that combines the strengths of modern deep learning with
the energy based Chan-Vese segmentation framework. Specifically, we build our
model in a multi-task setting following the Mask R-CNN framework: four dif-
ferent heads are utilized based on Feature Pyramid Network (FPN) [43] to out-
put object localization and classification, a truncated signed distance function
(TSDF) as the mask initialization, a set of instance-aware energy hyperparame-
ters, and a deep object feature embedding, as shown in Fig. 1. These intermedi-
ate outputs are then passed into a differentiable unrolled optimization module
to refine the predicted TSDF mask of each detected object by minimizing the
Chan-Vese energy functional. This results in more precise object masks at higher
resolutions.

We evaluate the effectiveness of our method on the challenging Cityscapes [15]
instance segmentation task, where we achieve state-of-the-art results. We show
also improvements over the baseline on the COCO [44] and the higher quality
LVIS [25] datasets. Finally, we evaluate our model choices through extensive
ablation studies.

2 Related Work

Instance Segmentation: Current modern instance segmentation methods can
be classified as being either a top down or a bottom up approach. In a top
down approach [5,8,9,22,33], region proposals for each instance are generated
and a voting process is used to determine which ones to keep. Masks are pre-
dicted from these proposals to obtain the final instance segmentation output.
For example, [17] uses a cascade of networks to predict boxes, estimate masks
and categorize objects in a sequential manner so that the convolutional fea-
tures are shared between the tasks. In [40], the authors use position sensitive
inside/outside score maps to jointly perform detection and object segmentation.
Recently, Mask R-CNN [27] augments Faster R-CNN [59] to achieve very strong
instance segmentation performance across benchmarks. Following this paper, the
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authors in [30] optimize the scores of the bounding boxes to match the mask IoU,
[47] adds a bottom to top aggregation path to allow for better information flow
to improve the performance and [35,66] extend it to panoptic segmentation. In
[39] the authors improve an initial segmentation by fine-tuning it using a recur-
rent unit [14] that mimics level set evolution. Our approach is also top down.
Here we add structure to the output space of Mask R-CNN by optimizing an
explicit energy functional that incorporates geometrical constraints.

The bottom up approaches [4,20,36,54,64] typically perform segmentation
by grouping the feature embeddings of individual instances without any early
stage object proposals. In [42], the authors develop a model that predicts the
category confidence, instance number and instance location and use a normalized
spectral clustering algorithm [55] to group the instances together. In [69,70], a
CNN outputs instance labels followed by a Markov Random Field to achieve a
coherent and consistent labeling of the global image. In [3], the authors exploit
a CNN to output a deep watershed energy which can be thresholded to obtain
the instance components. [46] use a sequence of neural networks to solve a sub-
grouping problem that gradually increase in complexity to group pixels of the
same instance. In [32], the authors propose a multi task framework that as a sub-
task groups pixels by regressing a vector pointing towards the object’s center.
[53] are able to achieve real time instance segmentation by introducing and using
a new clustering loss that encourages pixels to point towards an optimal region
around the instance center. While bottom up approaches have a much simpler
design than top down methods, they usually underperform in standard metrics
such as average precision and recall. In our work, we cluster feature embeddings
of an instance by differentiable optimization of an energy functional embedded
within a state of the art top down approach.

Variational Methods: The classic pioneering active contour models (ACM)
of [31] formulate the segmentation task as the minimization of an energy func-
tional w.r.t. an explicit contour parametrization of the boundaries. This energy
functional is comprised of a data term that moves the contours to areas of
high gradient in the image. Furthermore, it regularizes the contour in terms of
its smoothness and curvature. The shortcomings of ACM is that it is sensitive
to initialization and requires heuristics such as re-sampling of points to handle
changes of topology of the contour. The Level Set frameworks of [19,56] overcome
these challenges by formulating the segmentation task as finding the zero-level
crossing of a higher dimensional function. In this framework, the contours of
an object are implicitly defined as the zero crossing of an embedding function
such as the TSDF. This eliminates the need for heuristics to handle complicated
object topologies [16]. In this work, we build upon the level set framework put
forward by Chan and Vese [7] where we exploit neural networks to learn robust
features and optimization schedules from data.

In recent years, several works have explored combining these classical vari-
ational methods with neural networks. In the context of building segmentation
from aerial images, CNNs have been deployed to output the energy terms used
to evolve an active contour and develop a deep structured model that can be
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learned end-to-end [13,51]. In [26,45], the authors predict the offset to an initial
circle to obtain object polygons and use a differentiable renderer to compare
with the ground truth mask in the presence of a ground truth bounding box.
However, they are not minimizing an explicit energy functional. These works
focus on a simpler setting than us where detection is eschewed in favor of using
ground truth boxes and a dedicated neural network for segmentation. Moreover,
they parameterize the output space with explicit polygons which are not able to
handle multi component objects without heuristics. In our work, we tackle the
full instance segmentation setting with a single backbone and also use implicit
level sets that can naturally handle complicated topologies without heuristics.

In the context of implicit contours, certain works have explored leveraging
level sets in neural networks either as a post processing step to obtain ground
truth data, or as a loss function for deep neural networks. In a semi-supervised
setting, initial masks have been predicted for unlabeled data then further refined
with level set evolution to create a quasi ground truth label [63]. The authors
in [11,29,34] employ level set energies as a loss function for saliency estimation
and semantic segmentation. In contrast, we employ level set optimization as a
differentiable module within a deep neural network. In the experimental section,
we evaluate the efficacy of using a level set loss function for the task of instance
segmentation. The closest work to ours is [65], where the authors embed a dif-
ferent level set optimization framework within a neural network for the task of
annotator in the loop foreground segmentation. There are several key differences:
(i) The energy formulation is different, whereas their work is built upon the edge
based method of [6] to push the contour to the boundaries, we exploit the region
based approach of [7] which imposes uniformity of object masks. (ii) their setting
requires ground truth object bounding boxes to output the features used in the
level set optimization, while we embed the optimization within Mask R-CNN to
build on top of shared features. Note that our setting is much more challenging.
In the experimental section, we extend their method to the setting of instance
segmentation and compare to our proposed model.

3 Overview of Chan-Vese Segmentation

In this section we provide a brief overview of the classic Chan-Vese level set
segmentation method [7], which we later combine in a differentiable manner
with Mask R-CNN. Chan-Vese is a region based segmentation approach which
is capable of segmenting objects with complex topologies, e.g., holes and multi-
ple components. This method operates globally on image intensities and is not
dependent on local well-defined edge information. At a high level, Chan-Vese
partitions an image to foreground and background segments by minimizing an
energy functional that encourages regions to have uniform intensity values.

Let I be an image defined on the image plane Ω ⊂ R
2. Suppose I contains

only one object that we wish to segment. Let φ : Ω → R be the truncated
signed distance function (TSDF) to the boundaries of this object taking positive
values inside the object and negative outside. Let the curve C correspond to,
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possibly multi-component, boundaries of this object. The curve C can implicitly
be defined as the zero crossing of φ, i.e., C =

{
x ∈ R

2 | φ(x) = 0
}
.

The core idea is to evolve an initial TSDF φ0 by minimizing an energy func-
tional E such that the zero crossing C of the minimizer coincides with the object
boundaries. In the Chan-Vese [7] framework, the energy functional is defined as:

E(φ,c1, c2) = λ1

∫

Ω

‖I(x) − c1‖2 H(φ(x))dx

+ λ2

∫

Ω

‖I(x) − c2‖2 (1 − H(φ(x)))dx + μ

∫

Ω

δ(φ(x)) ‖∇φ(x)‖ dx (1)

where H and δ are Heaviside and Dirac delta functions respectively. The first
two terms encourage the image intensity values inside and outside of the object
to be close to constants c1 and c2 respectively. These terms impose a partitioning
of the image to two regions of similar intensity values. The last term regularizes
the length of the zero level set C. The parameters μ, λ1 and λ2 are positive global
hyperparameters that regulate the contribution of each energy term.

The minimization of Eq. (1) is achieved by alternatively optimizing the func-
tion φ and the constants c1 and c2. In particular, by holding φ fixed, the mini-
mizer of Eq. (1) w.r.t. c1 and c2 is given by:

c1(φ) =

∫
Ω

I(x)H(φ(x))dx
∫

Ω
H(φ(x))dx

, c2(φ) =

∫
Ω

I(x)(1 − H(φ(x)))dx
∫

Ω
(1 − H(φ(x)))dx

(2)

We thus observe that c1 and c2 correspond to the average of the intensity values
inside and outside of the object respectively.

Next, by holding c1 and c2 fixed and introducing an artificial time constant
t ≥ 0, we compute the functional derivative of E w.r.t. φ:

∂φ(ε)
∂t

= δε(φ)
(
μdiv(

∇φ

‖∇φ‖ ) − λ1 ‖I − c1‖2 + λ2 ‖I − c2‖2
)

(3)

where div is the divergence operator, ∇ is the spatial derivative and we have
used a soft version of H and δ defined as:

Hε(z) =
1
2

(
1 +

2
π

arctan(
z

ε
)
)

, δε(z) =
1
π

· ε2

ε2 + z2
(4)

Finally, the update step of φ is given by:

φn = φn−1 + Δt
∂φ(ε)

∂t
(5)

The alternating optimization is repeated for N iterations. This procedure draws
similarities to clustering techniques such as K-Means, where the optimization
involves alternating assignments and cluster center computations.

While Chan-Vese segmentation is mathematically elegant and powerful,
working directly on image intensities is not robust due to factors such as light-
ing, different textures, motion blur or backgrounds that have similar intensities
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to the foreground. Moreover, the energy and optimization hyperparameters such
as μ, λ1 and λ2, that balance the energy terms, and ε and Δt that regulate
the gradient descent have to be manually adjusted depending on the image and
domain. Furthermore, different objects have different optimal hyperparameters
as their appearance and resolution might be very different. As a consequence,
this method is not used in modern segmentation algorithms. In this paper, we
leverage the power of deep learning to learn high dimensional object represen-
tations where the representations of pixels of the same object instance cluster
together. We also learn complex inference schedules via data dependent adaptive
hyperparameters for the energy terms and the optimization.

4 LevelSet R-CNN

In this section, we develop a deep structured model for the task of instance
segmentation by combining the strengths of modern deep neural networks with
the classical continuous energy based Chan-Vese [7] segmentation framework. In
particular, we build on top of Mask R-CNN [27], which has been widely adopted
for object localization and segmentation. However, the masks it produces suffer
from low resolution resulting in segmentations that roughly have the right shape
but are not precise. Moreover, pixel predictions are independent and there is
no explicit mechanism encouraging neighboring pixels to have the same label.
On the other hand, the Chan-Vese segmentation framework provides an elegant
mathematical approach for global region based segmentation which encourages
the pixels within the object to have the same label. However, it suffers in the
presence of objects with different appearances within the instance, as it relies
on non-robust intensity cues. In this paper we take the best of both worlds by
combining these two paradigms.

We build on top of Mask R-CNN to first locate the objects in the image
from the detection branch. Next, for each detected RoI corresponding to that
object, we predict an initial TSDF φ0, the set of hyperparameters {μ, λ1, λ2}
for the energy terms and {ε,Δt} for the optimization, and finally a deep feature
embedding F that will replace the image intensities in (1). These predictions in
turn will be fed into the Chan-Vese module where the costs are created and the
optimization is unrolled for N steps as layers of a feedforward neural network.
This module will output an evolved TSDF φN for each object such that its zero
crossing corresponds to the boundaries of this object.

In what follows, we first describe how we build on top of Mask R-CNN, and
then discuss how inference is performed in the deep Chan-Vese module. Finally,
we will describe how learning is done in an end-to-end manner.

4.1 LevelSet R-CNN Architecture

Here we describe the specifics of the backbone and the additional heads of our
model that provide the necessary components for the Chan-Vese optimization.
The model architecture is presented in Fig. 1.
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Fig. 1. LevelSet R-CNN for Instance Segmentation: We build on top of Mask
R-CNN to first detect and classify all objects in the image. Then for each detection,
the corresponding RoI is fed to a series of convolutions to obtain a truncated signed
distance function (TSDF) initialization, a deep feature tensor, and a set of instance
aware adaptive hyperparameters. These in turn are inputted into an unrolled Chan-
Vese level set optimization procedure which outputs a final TSDF. We obtain a mask
by applying the Heaviside function to the TSDF.

Backbone, Object Localization and Classification: As our shared back-
bone we employ a Residual Network [28] augmented with an FPN [43] and an
RPN [59] that provides object region proposals. For object localization and clas-
sification, we maintain the original head structure of Mask R-CNN where RoIs
are passed through a series of fully connected layers to output bounding box
coordinates and object classification scores. Next, using RoIAlign [27] we extract
features from the backbone that are further processed by the initial TSDF head,
hyperparameter head, and the Chan-Vese features head. We denote the features
corresponding to a RoI by rm for m ∈ {1, . . . , M}. We refer the reader to the
supplementary material for the exact architectural details.

Initial TSDF Head: We replace the binary output of the mask head of Mask
R-CNN to produce a TSDF output instead. Specifically, each pixel of the 28 ×
28 output provides the signed 
2 distance to the closest point on the object
boundary. Furthermore, we threshold the values to a fixed symmetric range and
normalize to [−1, 1]. This output is upsampled to 112 × 112 and used as the
initial TSDF φ0(rm) in Eq. (1).

Hyperparameter Head: Each object instance could benefit from an adaptive
set of hyperparameters for the energy terms and optimization steps. To achieve
this, we output λ1(rm) and λ2(rm) to adaptively balance the influence of the
foreground and background pixels in Eq. 1 for the object. We also predict μ(rm)
to regulate the length of its boundary. For the optimization hyperparameters,
we output a separate εn(rm) for each of the N iterations. As shown in Eqs. 3
and 5, larger values of εn(rm) update the TSDF φn more globally and smaller
values focus the evolution on the boundaries. Similarly, we output N step sizes
Δtn(rm) for each gradient descent step.
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To predict the above hyperparameters, we add an additional head to the RoI
rm that applies a series of convolutions followed by average pooling and two
fully connected layers to output a vector of dimension 2N + 3. To ensure that
these hyperparameters are positive, we found that applying a sigmoid layer and
multiplying by 2 works well.

Chan-Vese Features Head: The energy in Eq. (1) encourages partitioning of
the image based on the uniformity of image intensities I inside and outside of the
object. However, image intensity values can be non-regular due to many factors
such as lighting, different textures, motion blur, etc. Hence, we map the image
intensities to a higher dimensional feature embedding space which is learned
such that pixels of the same instance are close together in embedding space.
We achieve this by passing the RoI rm through a sequence of convolutions and
upsampling layers to output a feature embedding F (rm) of dimension C×H×W .
In our experiments we found C = 64 and H = W = 112 to be the most efficient
in terms of memory for training and inference. The feature embedding F (rm)
will replace the image intensities I in Eq. 1.

Chan-Vese Optimization as a Recurrent Net: After obtaining the initial
TSDF, the set of hyperparameters, and the Chan-Vese feature map, we optimize
the following deep energy functional Em for each RoI rm:

Em(φ,c1, c2) = λ1(rm)
∫

Ωm

‖F (rm)(x) − c1‖2 H(φ(x))dx

+ λ2(rm)
∫

Ωm

‖F (rm)(x) − c2‖2 (1 − H(φ(x)))dx

+ μ(rm)
∫

Ωm

δε(φ(x)) ‖∇φ(x)‖ dx (6)

Note that the integration is over the image subset Ωm ⊂ Ω corresponding to
rm. We perform alternating optimization of φ and c1, c2. We implement the φ
update step:

φn = φn−1 + Δtn(rm)
∂φ(εn(rm))

∂t
(7)

for n = 1, . . . , N as a set of feedforward layers with

∂φ(εn(rm))
∂t

= δεn(rm)(φ)
(
μ(rm)div(

∇φ

‖∇φ‖ ) − λ1(rm) ‖F (rm) − c1‖2

+ λ2(rm) ‖F (rm) − c2‖2
)

(8)

In practice, we implement the gradient and the divergence term by using the
Sobel operator [61] and the integration as a sum on the discrete image grid. At
each update step, the constants c1 and c2 have closed-form updates as:

c1(φ) =

∫
Ωm

F (rm)(x)H(φ(x))dx
∫

Ωm
H(φ(x))dx

, c2(φ) =

∫
Ωm

F (rm)(x)(1 − H(φ(x)))dx
∫

Ωm
(1 − H(φ(x)))dx

(9)
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Here c1 and c2 are vectors where each element is the average of the corresponding
feature embedding channel inside or outside of the object in the ROI respectively.

4.2 Learning

We train our model jointly in an end-to-end manner, as the Mask R-CNN back-
bone, the three extra heads, and the deep Chan-Vese recurrent network are all
fully differentiable. We employ the standard regression and cross-entropy losses
for the bounding box and classification components of both the RPN and the
detection/classification heads of the backbone. For training the weights of the
initial TSDF head, the hyperparameter head and the Chan-Vese features head,
we apply the following loss, which is a mix of l1 and binary cross-entropy BCE,
to the initial and final TSDFs φ0 and φN :


TSDF (φ{0,N}, φGT ,MGT ) =
∥
∥φ{0,N} − φGT

∥
∥
1

+ BCE(Hε(φ{0,N}),MGT )

Here MGT and φGT are the ground truth mask and TSDF targets. In order
to apply BCE on φ0 and φN , similar to [65] we map them to [0, 1] with the
soft Heaviside function and ε = 0.1. During backpropagation, the loss gradient
from φN flows through the unrolled level set optimization and then through the
Chan-Vese features head, the hyperparameter head, and the initial TSDF head.

5 Experimental Evaluation

In this section, we describe the datasets, implementation details and the metrics
and compare our approach with the state-of-the-art. Next, we study the various
aspects of our proposed approach through ablations.

Datasets: We evaluate our model on Cityscapes [15] and COCO [44] datasets.
Cityscapes contains very precise annotations for 8 categories split into 2975
train, 500 validation and 1525 test images of resolution 1024×2048. The COCO
dataset has 80 categories with 118k images in the train2017 set for training and
5k images in the val2017 set for evaluation. However, as demonstrated quantita-
tively by [25], COCO does not consistently provide accurate object annotations
rendering mask quality evaluation of a method not indicative. As such, we follow
the approach of [37] and also evaluate our model on the COCO sub-categories
of the validation set of the LVIS dataset [25] with our model trained only on
COCO. Note that LVIS re-annotates all the COCO validation images with high
quality masks which makes it suitable for evaluating mask improvements. We
follow this protocol since the LVIS dataset has more than 1000 categories and is
designed for large vocabulary instance segmentation which is still in its infancy
and an exciting topic for future research.
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Table 1. Instance segmentation on Cityscapes val and test sets: This table
shows our instance segmentation results on Cityscape on val and test. We report models
trained on Cityscapes with and without COCO/Mapillary pre-training as well the
methods that use horizontal flipping (F) or multiscale (MS) inference at test time.

Training data APval APtest AP50
test person rider car truck bus train mcycle bcycle

DWT [3] fine 21.2 19.4 35.3 15.5 14.1 31.5 22.5 27.0 22.9 13.9 8.0

Kendall et al. [32] fine − 21.6 39.0 19.2 21.4 36.6 18.8 26.8 15.9 19.4 14.5

Arnab et al. [2] fine − 23.4 45.2 21.0 18.4 31.7 22.8 31.1 31.0 19.6 11.7

SGN [46] fine+coarse 29.2 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

PolyRNN++ [1] fine − 25.5 45.5 29.4 21.8 48.3 21.2 32.3 23.7 13.6 13.6

Mask R-CNN [27] fine 31.5 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

BShapeNet+ [33] fine − 27.3 50.4 29.7 23.4 46.7 26.1 33.3 24.8 20.3 14.1

GMIS [48] fine+coarse − 27.3 45.6 31.5 25.2 42.3 21.8 37.2 28.9 18.8 12.8

Neven et al. [53] fine − 27.6 50.9 34.5 26.1 52.4 21.7 31.2 16.4 20.1 18.9

PANet [47] fine 36.5 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8

Ours fine 37.9 33.3 58.2 37.0 29.2 54.6 30.4 39.4 30.2 25.5 20.3

AdaptIS [62] (F) fine 36.3 32.5 52.5 31.4 29.1 50.0 31.6 41.7 39.4 24.7 12.1

SSAP [23] (MS+F) fine 37.3 32.7 51.8 35.4 25.5 55.9 33.2 43.9 31.9 19.5 16.2

Pan-DL [12] (MS+F) fine 38.5 34.6 57.3 34.3 28.9 55.1 32.8 41.5 36.6 26.3 21.6

Ours (MS+F) fine 40.0 35.8 61.2 40.5 31.7 56.9 31.4 42.4 32.5 28.6 22.2

Mask R-CNN [27] fine+COCO 36.4 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7

BShapeNet+ [33] fine+COCO − 32.9 58.8 36.6 24.8 50.4 33.7 41.0 33.7 25.4 17.8

UPSNet [66] fine+COCO 37.8 33.0 59.7 35.9 27.4 51.9 31.8 43.1 31.4 23.8 19.1

PANet [47] fine+COCO 41.4 36.4 63.1 41.5 33.6 58.2 31.8 45.3 28.7 28.2 24.1

Pan-DL [12] fine+MV 42.5 39.0 64.0 36.0 30.2 56.7 41.5 50.8 42.5 30.4 23.7

Polytransform [41] fine+COCO 44.6 40.1 65.9 42.4 34.8 58.5 39.8 50.0 41.3 30.9 23.4

Ours (COCO) fine+COCO 43.3 40.0 65.7 43.4 33.9 59.0 37.6 49.4 39.4 32.5 24.9

Implementation Details: For Cityscapes, we follow [27] and adopt multi-
scale training where we resize the input image in a way that the length of the
shorter edge is randomly sampled from [800, 1024]. We train the model on 8
GPUs for 24 K iterations with a learning rate of 0.01, decayed to 0.001 at 18 K
iterations. We set the loss weights for the initial and final TSDF output to 1
and 5 in the multitask objective. For COCO, following [27], we train the model
without multi-scaling on 16 GPUs for 90 K iterations with a learning rate of 0.02
decayed by a factor of 10 at 60 K and 80 K iterations. We set the loss weights for
the initial and final TSDF output to 0.2 and 1 in the multitask objective. For
both datasets, we set the weight decay as 0.0001, with mini-batch size of 8. We
employ WideResNet-38 [60] on Cityscapes test set and ResNet-50 [28] in all the
other experiments. For the level set optimization, we unroll the optimization for
3 steps. Finally, we simply apply the Heaviside function to the TSDF output to
obtain a mask. Note that if we apply marching squares [49] to the final TSDF
instead, we could obtain sub-pixel accuracy for the boundaries. However for sim-
plicity and since the AP metric of COCO and Cityscapes requires binary masks
for evaluation, we simply threshold our TSDFs using the heaviside function.

Evaluation Metrics: We report the standard AP metric of [44] on both
Cityscapes and COCO. For LVIS, we report the federated average precision
metric denoted by AP* [25] on the COCO subcategories.
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Table 2. LevelSet R-CNN vs. Mask R-CNN: We report mask AP for both COCO
and Cityscapes on the val set with Resnet-50 backbone. We also report the federated
AP, i.e. AP*, of the LVIS dataset with COCO subcategories trained only COCO. For
our model we report both the initial and final mask results after optimization.

Cityscapes AP COCO AP LVIS AP*

Mask R-CNN 32.3 33.8 35.6

Ours (Initial Mask) 35.4 33.7 35.8

Ours 36.2 34.3 36.4

Table 3. LevelSet R-CNN vs. deep level set methods on the val set of
Cityscapes: Using level sets as a loss function (LS Loss) or using the geodesic level
sets (DELSE).

LS Loss [29] DELSE [65] DELSE [65] + HP head Ours

Initial Mask AP – 34.6 34.9 35.4

Final Mask AP 34.3 34.6 35 36.2

Cityscapes Test: We compare LevelSet R-CNN against published state-of-the-
art (SOTA) methods on Cityscapes in Table 1. LevelSet R-CNN outperforms all
previous methods that are trained on Cityscapes data without test time augmen-
tations achieving a new state-of-the-art performance by 1.5 AP over PANet [47].
We also compare against models that adopt multiscale (MS) and horizontal flip-
ping (F) at test time. We improve upon the state-of-the-art, Panoptic-Deeplab
[12], by 1.2 AP. Next, we evaluate against models that pretrain on external
datasets such as COCO [44] or Mapillary Vistas [52]. For a fair comparison, we
follow the exact setting of Polytransform [41] which was the state-of-the-art at
the time of submission. In particular, we use a WideResNet-38 backbone with
deformable convolutions [18] and PANet modifications [47]. We train on COCO
for 270000 iterations with a learning rate of 0.02 decayed by a factor of 10 at
210000 and 250000 iterations on 16 GPUs. On Cityscapes, we finetuned for 6000
iterations on 8 GPUs with a learning rate of 0.01 decayed to 0.001 at 4000 itera-
tions. As shown in Table 1, our performance is comparable with Polytransform.

AP Improvements Across Datasets: In Table 2, we compare Mask R-CNN
with our initial and final mask outputs on the validation sets of Cityscapes,
COCO and LVIS. All models employ the Resnet-50 backbone. LevelSet R-CNN
outperforms Mask R-CNN on all datasets. Note that while Levelset R-CNN was
only trained on COCO and not with the precise boundaries of LVIS, it improves
upon the baseline by 0.8 AP*. We also see an improvement of about 4 AP on
Cityscapes.

Different Deep Level Set Formulations: To further justify our deep region
based level set formulation, we compare with two different variations of level sets
applied to the task of instance segmentation. [29] use the Chan-Vese energy as a
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Table 4. Backproping through the initial mask from the final TSDF loss �TSDF

on the val set of Cityscapes

Detach φ0 Backprop Thru φ0

Initial Mask AP 33 35.4

Final Mask AP 34.2 36.2

Table 5. Boundary metric: on val set of Cityscapes: We evaluate the AF at thresh-
olds of 1 and 2 pixels against Mask R-CNN across two backbones.

Backbone AF1 AF2

Mask R-CNN [27] Resnet-50 40.2 57.6

Ours Resnet-50 45.8 63.1

Mask R-CNN [27] WideResnet-38 42.7 59.9

Ours WideResnet-38 46.8 64.6

loss function for salient object detection. Here, we employ their loss for instance
segmentation. In particular, we shift the mask output of Mask R-CNN by −0.5,
apply the soft Heaviside and pass to the Chan-Vese energy loss function. In Table
3 we observe that LevelSet R-CNN improves the level set loss by about 2 AP.
Next, we combine the deep edge based level set of [65], referred to as DELSE,
with Mask R-CNN by changing the mask head to a TSDF head and adding two
more heads: the velocity head that predicts the direction to the object boundaries
and the modulation head which regulates the effect of the curvature term on the
object boundaries. We evaluate in two settings: 1) Similar to their work, we
use hand-tuned hyperpameters and use their exact loss functions, i.e., L2 for
the initial TSDF, class balanced cross entropy for the final TSDF and L2 on
angular domain. 2) To remove the effect of loss functions and hyperparameters
choices and provide the most fair comparison, we add our hyperparameter head
to their model and use our loss functions with the exception of having an extra
loss function for the velocity head. In Table 3, we observe that LevelSet R-CNN
has a 1.2 AP improvement over the DELSE formulation. Moreover, we obtain
0.8 AP improvement over the initial mask whereas DELSE gain is 0.1 AP.

Passing Gradients Through the Initial TSDF: Table 4 shows that by
passing the gradient from φN through the initial TSDF head, we improve the
AP of both the initial TSDF φ0 and the final TSDF φN . As an alternative we
could have detached φ0 from the computation graph so that it does not take
supervision from the final TSDF φN ; Passing the gradient improves φ0 by 2.4
AP and φN by 2 AP. Finally, we see that the AP of the initial TSDF when
passing gradients is higher than the AP of the final TSDF when not passing the
gradient by 1.2 AP. This suggests that the hyperparameter head, the Chan-Vese
features head and the unrolled optimization, can also be used during training
for improving the performance of the mask head and discarded during inference.
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GT Instance Segmentation Ours Baseline

Fig. 2. We showcase qualitative instance segmentation results of our model on the
Cityscapes validation set. We can see that our method produces masks with higher
quality when bounding box results are similar.

Boundary Metric: In addition, to evaluate the capacity of our model in
improving the boundaries of objects, we adapt the boundary metric of DAVIS
[57] to our task. In particular, for a True Positive detection, we compute F1
between the prediction and ground truth boundary pixels at thresholds of 1 and
2 pixels. Similar to AP, we obtain the True Positives at IoUs in range [0.5, 0.95]
at 0.05 increments. The F1s are averaged over all the classes and thresholds
and are denoted by (AF1) and (AF2) for thresholds of 1 and 2 pixels away. In
Table 5, we observe that our method is able to improve the boundaries of the
objects by at least 4 AF at each threshold compared to the baseline across the
two backbones Resnet-50 and WideResnet-38.

Mask R-CNN with Different Training Targets: We modify the mask head
of Mask R-CNN to output a TSDF instead of a binary mask and we train with

TSDF rather than BCE as loss function. To understand the dependence of the
Mask R-CNN performance on this TSDF target 
TSDF , we trained a model with
only the mask head modification and without the other Chan-Vese components
(i.e., the adaptive hyperparameter head and the deep Chan-Vese module and
unrolled optimization). We obtain the same AP of 32.3 for model with 
TSDF as
the original Mask R-CNN. This indicates that the model improvements do not
simply come from changing the loss of the mask head.

Effect of the Hyperparameter Head: To verify the importance of learning
adaptive hyperparameters per object instance, we perform an ablation where we
remove the hyperparameter head and just learn a set of global hyperparameters
for the whole dataset. The adaptive hyper parameter head achieves 36.2 AP vs.
the 35.4 AP of a global set giving a boost of 0.8 AP.
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Fig. 3. We showcase qualitative instance segmentation results of our model on the
COCO validation set.

Higher Resolution Mask R-CNN: We evaluate whether we could improve
the performance of Mask R-CNN by just increasing the resolution of the mask
head. We train Mask R-CNN on Cityscapes with ResNet-50 backbone at 112 ×
112 resolution which is the same resolution of the Chan-Vese features and our
final TSDF φN . Interestingly the performance drops by 2.2 AP from 32.3. We
hypothesize that by increasing the resolution, the ratio of non-boundary pixels
vs. boundary pixels will become higher and they dominate the loss function
gradients leading to worse masks. In our proposed method however, there is a
global competition between the foreground/background regions to minimize the
energy and hence we are able to increase the resolution.

Inference Time: LevelSet R-CNN with a ResNet-50 runs on average at 182 ms
vs. Mask R-CNN at 145 ms on GTX 1080 ti on images of dimension 1024×2048.

Qualitative Results: As shown in Figs. 2 and 3 we observe mask boundary
and region improvements compared to the baseline.

6 Conclusion

In this paper, we proposed LevelSet R-CNN which combines the strengths of
modern deep learning based Mask R-CNN and classical energy based Chan-
Vese level set segmentation framework in an end-to-end manner. In particular,
we utilize four heads based on FPN to obtain each detected object, an initial
level set, deep robust feature representation for the Chan-Vese energy data terms
and a set of instance dependent hyperparameters that balance the energy terms
and schedule the optimization procedure. We demonstrated the effectiveness of
our method on COCO and Cityscapes showing improvements on both datasets.
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