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Abstract. We propose the Square Attack, a score-based black-box l2-
and l∞-adversarial attack that does not rely on local gradient information
and thus is not affected by gradient masking. Square Attack is based on a
randomized search scheme which selects localized square-shaped updates
at random positions so that at each iteration the perturbation is situ-
ated approximately at the boundary of the feasible set. Our method
is significantly more query efficient and achieves a higher success rate
compared to the state-of-the-art methods, especially in the untargeted
setting. In particular, on ImageNet we improve the average query effi-
ciency in the untargeted setting for various deep networks by a factor
of at least 1.8 and up to 3 compared to the recent state-of-the-art l∞-
attack of Al-Dujaili & O’Reilly (2020). Moreover, although our attack
is black-box, it can also outperform gradient-based white-box attacks on
the standard benchmarks achieving a new state-of-the-art in terms of
the success rate. The code of our attack is available at https://github.
com/max-andr/square-attack.

1 Introduction

Adversarial examples are of particular concern when it comes to applications
of machine learning which are safety-critical. Many defenses against adversarial
examples have been proposed [1,5,7,23,32,40,56] but with limited success, as
new more powerful attacks could break many of them [4,10,12,35,57]. In partic-
ular, gradient obfuscation or masking [4,35] is often the reason why seemingly
robust models turn out to be non-robust in the end. Gradient-based attacks are
most often affected by this phenomenon (white-box attacks but also black-box
attacks based on finite difference approximations [35]). Thus it is important to
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have attacks which are based on different principles. Black-box attacks have
recently become more popular [8,36,46] as their attack strategies are quite dif-
ferent from the ones employed for adversarial training, where often PGD-type
attacks [32] are used. However, a big weakness currently is that these black-box
attacks need to query the classifier too many times before they find adversarial
examples, and their success rate is sometimes significantly lower than that of
white-box attacks.

Fig. 1. Avg. number of queries of
successful untargeted l∞-attacks on
three ImageNet models for three
score-based black-box attacks.
Square Attack outperforms all
other attacks by large margin

In this paper we propose Square Attack,
a score-based adversarial attack, i.e. it can
query the probability distribution over the
classes predicted by a classifier but has no
access to the underlying model. The Square
Attack exploits random search1 [41,43]
which is one of the simplest approaches for
black-box optimization. Due to a particu-
lar sampling distribution, it requires signifi-
cantly fewer queries compared to the state-of-
the-art black-box methods (see Fig. 1) in the
score-based threat model while outperform-
ing them in terms of success rate, i.e. the per-
centage of successful adversarial examples.
This is achieved by a combination of a par-
ticular initialization strategy and our square-
shaped updates. We motivate why these updates are particularly suited to attack
neural networks and provide convergence guarantees for a variant of our method.
In an extensive evaluation with untargeted and targeted attacks, three datasets
(MNIST, CIFAR-10, ImageNet), normal and robust models, we show that Square
Attack outperforms state-of-the-art methods in the l2- and l∞-threat model.

2 Related Work

We discuss black-box attacks with l2- and l∞-perturbations since our attack
focuses on this setting. Although attacks for other norms, e.g. l0, exist [16,36],
they are often algorithmically different due to the geometry of the perturbations.

l2- and l∞-Score-Based Attacks. Score-based black-box attacks have only
access to the score predicted by a classifier for each class for a given input. Most
of such attacks in the literature are based on gradient estimation through finite
differences. The first papers in this direction [6,27,51] propose attacks which
approximate the gradient by sampling from some noise distribution around the
point. While this approach can be successful, it requires many queries of the
classifier, particularly in high-dimensional input spaces as in image classifica-
tion. Thus, improved techniques reduce the dimension of the search space via
using the principal components of the data [6], searching for perturbations in
1 It is an iterative procedure different from random sampling inside the feasible region.
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the latent space of an auto-encoder [50] or using a low-dimensional noise dis-
tribution [28]. Other attacks exploit evolutionary strategies or random search,
e.g. [3] use a genetic algorithm to generate adversarial examples and alleviate
gradient masking as they can reduce the robust accuracy on randomization- and
discretization-based defenses. The l2-attack of [25] can be seen as a variant of
random search which chooses the search directions in an orthonormal basis and
tests up to two candidate updates at each step. However, their algorithm can have
suboptimal query efficiency since it adds at every step only small (in l2-norm)
modifications, and suboptimal updates cannot be undone as they are orthogonal
to each other. A recent line of work has pursued black-box attacks which are
based on the observation that successful adversarial perturbations are attained at
corners of the l∞-ball intersected with the image space [0, 1]d [2,34,44]. Search-
ing over the corners allows to apply discrete optimization techniques to generate
adversarial attacks, significantly improving the query efficiency. Both [44] and
[2] divide the image according to some coarse grid, perform local search in this
lower dimensional space allowing componentwise changes only of −ε and ε, then
refine the grid and repeat the scheme. In [2] such a procedure is motivated as an
estimation of the gradient signs. Recently, [34] proposed several attacks based
on evolutionary algorithms, using discrete and continuous optimization, achiev-
ing nearly state-of-the-art query efficiency for the l∞-norm. In order to reduce
the dimensionality of the search space, they use the “tiling trick” of [28] where
they divide the perturbation into a set of squares and modify the values in these
squares with evolutionary algorithms. A related idea also appeared earlier in
[22] where they introduced black rectangle-shaped perturbations for generating
adversarial occlusions. In [34], as in [28], both size and position of the squares
are fixed at the beginning and not optimized. Despite their effectiveness for the
l∞-norm, these discrete optimization based attacks are not straightforward to
adapt to the l2-norm. Finally, approaches based on Bayesian optimization exist,
e.g. [45], but show competitive performance only in a low-query regime.

Different Threat and Knowledge Models. We focus on lp-norm-bounded
adversarial perturbations (for other perturbations such as rotations, translations,
occlusions in the black-box setting see, e.g., [22]). Perturbations with minimal
lp-norm are considered in [13,50] but require significantly more queries than
norm-bounded ones. Thus we do not compare to them, except for [25] which has
competitive query efficiency while aiming at small perturbations.

In other cases the attacker has a different knowledge of the classifier. A more
restrictive scenario, considered by decision-based attacks [8,9,11,14,24], is when
the attacker can query only the decision of the classifier, but not the predicted
scores. Other works use more permissive threat models, e.g., when the attacker
already has a substitute model similar to the target one [15,20,39,47,52] and
thus can generate adversarial examples for the substitute model and then transfer
them to the target model. Related to this, [52] suggest to refine this approach
by running a black-box gradient estimation attack in a subspace spanned by the
gradients of substitute models. However, the gain in query efficiency given by
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such extra knowledge does not account for the computational cost required to
train the substitute models, particularly high on ImageNet-scale. Finally, [31] use
extra information on the target data distribution to train a model that predicts
adversarial images that are then refined by gradient estimation attacks.

3 Square Attack

In the following we recall the definitions of the adversarial examples in the threat
model we consider and present our black-box attacks for the l∞- and l2-norms.

Algorithm 1: The Square Attack via random search
Input: classifier f , point x ∈ R

d, image size w, number of color channels c,
lp-radius ε, label y ∈ {1, . . . , K}, number of iterations N

Output: approximate minimizer x̂ ∈ R
d of the problem stated in Eq. (1)

1 x̂ ← init(x), l∗ ← L(f(x), y), i ← 1
2 while i < N and x̂ is not adversarial do

3 h(i) ← side length of the square to modify (according to some schedule)

4 δ ∼ P (ε, h(i), w, c, x̂, x) (see Alg. 2 and 3 for the sampling distributions)

5 x̂new ← Project x̂ + δ onto {z ∈ R
d : ‖z − x‖p ≤ ε} ∩ [0, 1]d

6 lnew ← L(f(x̂new), y)
7 if lnew < l∗ then x̂ ← x̂new, l∗ ← lnew ;
8 i ← i + 1

9 end

3.1 Adversarial Examples in the lp-threat Model

Let f : [0, 1]d → R
K be a classifier, where d is the input dimension, K the

number of classes and fk(x) is the predicted score that x belongs to class k. The
classifier assigns class arg max

k=1,...,K
fk(x) to the input x. The goal of an untargeted

attack is to change the correctly predicted class y for the point x. A point x̂ is
called an adversarial example with an lp-norm bound of ε for x if

arg max
k=1,...,K

fk(x̂) �= y, ‖x̂ − x‖p ≤ ε and x̂ ∈ [0, 1]d,

where we have added the additional constraint that x̂ is an image. The task of
finding x̂ can be rephrased as solving the constrained optimization problem

min
x̂∈[0,1]d

L(f(x̂), y), s.t. ‖x̂ − x‖p ≤ ε, (1)

for a loss L. In our experiments, we use L(f(x̂), y) = fy(x̂) − maxk �=y fk(x̂).
The goal of targeted attacks is instead to change the decision of the classifier

to a particular class t, i.e., to find x̂ so that arg maxk fk(x̂) = t under the same
constraints on x̂. We further discuss the targeted attacks in Sup. E.1.
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3.2 General Algorithmic Scheme of the Square Attack

Square Attack is based on random search which is a well known iterative tech-
nique in optimization introduced by Rastrigin in 1963 [41]. The main idea of
the algorithm is to sample a random update δ at each iteration, and to add this
update to the current iterate x̂ if it improves the objective function. Despite its
simplicity, random search performs well in many situations [54] and does not
depend on gradient information from the objective function g.

Many variants of random search have been introduced [33,42,43], which differ
mainly in how the random perturbation is chosen at each iteration (the origi-
nal scheme samples uniformly on a hypersphere of fixed radius). For our goal
of crafting adversarial examples we come up with two sampling distributions
specific to the l∞- and the l2-attack (Sect. 3.3 and Sect. 3.4), which we inte-
grate in the classic random search procedure. These sampling distributions are
motivated by both how images are processed by neural networks with convo-
lutional filters and the shape of the lp-balls for different p. Additionally, since
the considered objective is non-convex when using neural networks, a good ini-
tialization is particularly important. We then introduce a specific one for better
query efficiency.

Our proposed scheme differs from classical random search by the fact that
the perturbations x̂ − x are constructed such that for every iteration they lie
on the boundary of the l∞- or l2-ball before projection onto the image domain
[0, 1]d. Thus we are using the perturbation budget almost maximally at each step.
Moreover, the changes are localized in the image in the sense that at each step
we modify just a small fraction of contiguous pixels shaped into squares. Our
overall scheme is presented in Algorithm 1. First, the algorithm picks the side
length h(i) of the square to be modified (step 3), which is decreasing according
to an a priori fixed schedule. This is in analogy to the step-size reduction in
gradient-based optimization. Then in step 4 we sample a new update δ and add
it to the current iterate (step 5). If the resulting loss (obtained in step 6) is
smaller than the best loss so far, the change is accepted otherwise discarded.
Since we are interested in query efficiency, the algorithm stops as soon as an
adversarial example is found. The time complexity of the algorithm is dominated
by the evaluation of f(x̂new), which is performed at most N times, with N total
number of iterations. We plot the resulting adversarial perturbations in Fig. 3
and additionally in Sup. E where we also show imperceptible perturbations.

We note that previous works [28,34,44] generate perturbations containing
squares. However, while those use a fixed grid on which the squares are con-
strained, we optimize the position of the squares as well as the color, making our
attack more flexible and effective. Moreover, unlike previous works, we motivate
squared perturbations with the structure of the convolutional filters (see Sect. 4).

Size of the Squares. Given images of size w×w, let p ∈ [0, 1] be the percentage
of elements of x to be modified. The length h of the side of the squares used is
given by the closest positive integer to

√
p · w2 (and h ≥ 3 for the l2-attack).

Then, the initial p is the only free parameter of our scheme. With N = 10000
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iterations available, we halve the value of p at i ∈ {10, 50, 200, 1000, 2000, 4000,
6000, 8000} iterations. For different N we rescale the schedule accordingly.

3.3 The l∞-Square Attack

Initialization. As initialization we use vertical stripes of width one where the
color of each stripe is sampled uniformly at random from {−ε, ε}c (c number of
color channels). We found that convolutional networks are particularly sensitive
to such perturbations, see also [53] for a detailed discussion on the sensitivity of
neural networks to various types of high frequency perturbations.

Sampling Distribution. Similar to [44] we observe that successful l∞-
perturbations usually have values ±ε in all the components (note that this does
not hold perfectly due to the image constraints x̂ ∈ [0, 1]d). In particular, it holds

x̂i ∈ {max{0, xi − ε},min{1, xi + ε}}.

Algorithm 2: Sampling distribu-
tion P for l∞-norm
Input: maximal norm ε, window size h,

image size w, color channels c
Output: New update δ

1 δ ← array of zeros of size w × w × c
2 sample uniformly

r, s ∈ {0, . . . , w − h} ⊂ N

3 for i = 1, . . . , c do
4 ρ ← Uniform({−2ε, 2ε})
5 δr+1:r+h, s+1:s+h, i ← ρ · 1h×h

6 end

Our sampling distribution P for
the l∞-norm described in Algorithm 2
selects sparse updates of x̂ with ‖δ‖0 =
h · h · c where δ ∈ {−2ε, 0, 2ε}d and
the non-zero elements are grouped to
form a square. In this way, after the
projection onto the l∞-ball of radius
ε (Step 5 of Algorithm 1) all compo-
nents i for which ε ≤ xi ≤ 1− ε satisfy
x̂i ∈ {xi − ε, xi + ε}, i.e. differ from the
original point x in each element either
by ε or −ε. Thus x̂ − x is situated at
one of the corners of the l∞-ball (modulo the components which are close to the
boundary). Note that all projections are done by clipping. Moreover, we fix the
elements of δ belonging to the same color channel to have the same sign, since we
observed that neural networks are particularly sensitive to such perturbations
(see Sect. 4.3).

3.4 The l2-Square Attack

Fig. 2. Perturbation of the l2-attack

Initialization. The l2-perturbation is
initialized by generating a 5×5 grid-like
tiling by squares of the image, where the
perturbation on each tile has the shape
described next in the sampling distribu-
tion. The resulting perturbation x̂−x is
rescaled to have l2-norm ε and the result-
ing x̂ is projected onto [0, 1]d by clipping.
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Sampling Distribution. First, let us notice that the adversarial perturbations
typically found for the l2-norm tend to be much more localized than those for the
l∞-norm [49], in the sense that large changes are applied on some pixels of the
original image, while many others are minimally modified. To mimic this feature
we introduce a new update η which has two “centers” with large absolute value
and opposite signs, while the other components have lower absolute values as one
gets farther away from the centers, but never reaching zero (see Fig. 2 for one
example with h = 8 of the resulting update η). In this way the modifications are
localized and with high contrast between the different halves, which we found to
improve the query efficiency. Concretely, we define η(h1,h2) ∈ R

h1×h2 (for some
h1, h2 ∈ N+ such that h1 ≥ h2) for every 1 ≤ r ≤ h1, 1 ≤ s ≤ h2 as

η(h1,h2)
r,s =

M(r,s)∑

k=0

1
(n + 1 − k)2

, with n =
⌊

h1

2

⌋
,

and M(r, s) = n − max{|r − ⌊
h1
2

⌋ − 1|, |s − ⌊
h2
2

⌋ − 1|}. The intermediate square
update η ∈ R

h×h is then selected uniformly at random from either

η =
(
η(h,k),−η(h,h−k)

)
, with k = �h/2	 , (2)

or its transpose (corresponding to a rotation of 90◦).

Algorithm 3: Sampling distribution P for l2-norm
Input: maximal norm ε, window size h, image size w, number of color channels

c, current image x̂, original image x
Output: New update δ

1 ν ← x̂ − x
2 sample uniformly r1, s1, r2, s2 ∈ {0, . . . , w − h}
3 W1 := r1 + 1 : r1 + h, s1 + 1 : s1 + h, W2 := r2 + 1 : r2 + h, s2 + 1 : s2 + h

4 ε2unused ← ε2 − ‖ν‖2
2, η∗ ← η/‖η‖2 with η as in (2)

5 for i = 1, . . . , c do
6 ρ ← Uniform({−1, 1})
7 νtemp ← ρη∗ + νW1,i/‖νW1,i‖2

8 εi
avail ←

√
‖νW1∪W2,i‖2

2 + ε2unused/c

9 νW2,i ← 0, νW1,i ← (νtemp/‖νtemp‖2
)εi

avail

10 end
11 δ ← x + ν − x̂

Second, unlike l∞-constraints, l2-constraints do not allow to perturb each
component independently from the others as the overall l2-norm must be kept
smaller than ε. Therefore, to modify a perturbation x̂−x of norm ε with localized
changes while staying on the hypersphere, we have to “move the mass” of x̂ − x
from one location to another. Thus, our scheme consists in randomly selecting
two squared windows in the current perturbation ν = x̂ − x, namely νW1 and
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original l∞-attack - ε∞ = 0.05 l2-attack - ε2 = 5

Fig. 3. Visualization of the adversarial perturbations and examples found by the l∞-
and l2-versions of the Square Attack on ResNet-50

νW2 , setting νW2 = 0 and using the budget of ‖νW2‖2 to increase the total
perturbation of νW1 . Note that the perturbation of W1 is then a combination of
the existing perturbation plus the new generated η. We report the details of this
scheme in Algorithm 3 where step 4 allows to utilize the budget of l2-norm lost
after the projection onto [0, 1]d. The update δ output by the algorithm is such
that the next iterate x̂new = x̂ + δ (before projection onto [0, 1]d by clipping)
belongs to the hypersphere B2(x, ε) as stated in the following proposition.

Proposition 1. Let δ be the output of Algorithm3. Then ‖x̂ + δ − x‖2 = ε.

4 Theoretical and Empirical Justification of the Method

We provide high-level theoretical justifications and empirical evidence regarding
the algorithmic choices in Square Attack, with focus on the l∞-version (the l2-
version is significantly harder to analyze).

4.1 Convergence Analysis of Random Search

First, we want to study the convergence of the random search algorithm when
considering an L-smooth objective function g (such as neural networks with acti-
vation functions like softplus, swish, ELU, etc.) on the whole space R

d (without
projection2) under the following assumptions on the update δt drawn from the
sampling distribution Pt:

E‖δt‖22 ≤ γ2
t C and E|〈δt, v〉| ≥ C̃γt‖v‖2, ∀v ∈ R

d, (3)

where γt is the step size at iteration t, C, C̃ > 0 some constants and 〈·, ·〉 denotes
the inner product. We obtain the following result, similar to existing convergence
rates for zeroth-order methods [21,37,38]:

Proposition 2. Suppose that E[δt] = 0 and the assumptions in Eq. (3) hold.
Then for step-sizes γt = γ/

√
T , we have

min
t=0,...,T

E‖∇g(xt)‖2≤ 2
γC̃

√
T

(
g(x0) − Eg(xT+1) +

γ2CL

2

)
.

2 Nonconvex constrained optimization under noisy oracles is notoriously harder [19].
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This basically shows for T large enough one can make the gradient arbitrary
small, meaning that the random search algorithm converges to a critical point of
g (one cannot hope for much stronger results in non-convex optimization without
stronger conditions).

Unfortunately, the second assumption in Eq. (3) does not directly hold for
our sampling distribution P for the l∞-norm (see Sup. A.3), but holds for a
similar one, Pmultiple, where each component of the update δ is drawn uniformly
at random from {−2ε, 2ε}. In fact we show in Sup. A.4, using the Khintchine
inequality [26], that

E‖δt‖22 ≤ 4cε2h2 and E|〈δt, v〉| ≥
√

2cεh2

d
‖v‖2, ∀v ∈ R

d.

Moreover, while Pmultiple performs worse than the distribution used in Algo-
rithm 2, we show in Sect. 4.3 that it already reaches state-of-the-art results.

4.2 Why Squares?

Previous works [34,44] build their l∞-attacks by iteratively adding square mod-
ifications. Likewise we change square-shaped regions of the image for both our
l∞- and l2-attacks—with the difference that we can sample any square subset
of the input, while the grid of the possible squares is fixed in [34,44]. This leads
naturally to wonder why squares are superior to other shapes, e.g. rectangles.

Let us consider the l∞-threat model, with bound ε, input space R
d×d and a

convolutional filter w ∈ R
s×s with entries unknown to the attacker. Let δ ∈ R

d×d

be the sparse update with ‖δ‖0 = k ≥ s2 and ‖δ‖∞ ≤ ε. We denote by S(a, b)
the index set of the rectangular support of δ with |S(a, b)| = k and shape a × b.
We want to provide intuition why sparse square-shaped updates are superior to
rectangular ones in the sense of reaching a maximal change in the activations of
the first convolutional layer.

Let z = δ ∗ w ∈ R
d×d denote the output of the convolutional layer for

the update δ. The l∞-norm of z is the maximal componentwise change of the
convolutional layer:

‖z‖∞ = max
u,v

|zu,v| = max
u,v

∣
∣∣

s∑

i,j=1

δu−� s
2 �+i,v−� s

2 �+j · wi,j

∣
∣∣

≤ max
u,v

ε
∑

i,j

|wi,j |1(u−� s
2 �+i,v−� s

2 �+j)∈S(a,b),

where elements with indices exceeding the size of the matrix are set to zero. Note
that the indicator function attains 1 only for the non-zero elements of δ involved
in the convolution to get zu,v. Thus, to have the largest upper bound possible
on |zu,v|, for some (u, v), we need the largest possible amount of components of
δ with indices in

C(u, v) =
{

(u − �s

2
	 + i, v − �s

2
	 + j) : i, j = 1, . . . , s

}
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to be non-zero (that is in S(a, b)).
Therefore, it is desirable to have the shape S(a, b) of the perturbation δ

selected so to maximize the number N of convolutional filters w ∈ R
s×s which

fit into the rectangle a×b. Let F be the family of the objects that can be defined
as the union of axis-aligned rectangles with vertices on N

2, and G ⊂ F be the
squares of F of shape s × s with s ≥ 2. We have the following proposition:

Proposition 3. Among the elements of F with area k ≥ s2, those which contain
the largest number of elements of G have

N∗ = (a − s + 1)(b − s + 1) + (r − s + 1)+ (4)

of them, with a =
⌊√

k
⌋
, b =

⌊
k
a

⌋
, r = k − ab and z+ = max{z, 0}.

This proposition states that, if we can modify only k elements of δ, then shaping
them to form (approximately) a square allows to maximize the number of pairs
(u, v) for which |S(a, b) ∩ C(u, v)| = s2. If k = l2 then a = b = l are the optimal
values for the shape of the perturbation update, i.e. the shape is exactly a square.

Table 1. Ablation study of the l∞-Square Attack which shows how the individual
design decisions improve the performance. The fourth row corresponds to the method
for which we have shown convergence guarantees in Sect. 4.1. The last row corresponds
to our final l∞-attack. c indicates the number of color channels, h the length of the
side of the squares, so that “# random sign” c represents updates with constant sign
for each color, while c · h2 updates with signs sampled independently of each other

Update shape # random signs Initialization Failure rate Avg. queries Median queries

random c · h2 vert. stripes 0.0% 401 48

random c · h2 uniform rand. 0.0% 393 132

random c vert. stripes 0.0% 339 53

square c · h2 vert. stripes 0.0% 153 15

rectangle c vert. stripes 0.0% 93 16

square c uniform rand. 0.0% 91 26

square c vert. stripes 0.0% 73 11

4.3 Ablation Study

We perform an ablation study to show how the individual design decisions for
the sampling distribution of the random search improve the performance of l∞-
Square Attack, confirming the theoretical arguments above. The comparison is
done for an l∞-threat model of radius ε = 0.05 on 1, 000 test points for a ResNet-
50 model trained normally on ImageNet (see Sect. 5 for details) with a query
limit of 10, 000 and results are shown in Table 1. Our sampling distribution is
special in two aspects: i) we use localized update shapes in form of squares and
ii) the update is constant in each color channel. First, one can observe that our
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update shape “square” performs better than “rectangle” as we discussed in the
previous section, and it is significantly better than “random” (the same amount
of pixels is perturbed, but selected randomly in the image). This holds both for
c (constant sign per color channel) and c · h2 (every pixel and color channel is
changed independently of each other), with an improvement in terms of average
queries of 339 to 73 and 401 to 153 respectively. Moreover, with updates of
the same shape, the constant sign over color channels is better than selecting
it uniformly at random (improvement in average queries: 401 to 339 and 153
to 73). In total the algorithm with “square-c” needs more than 5× less average
queries than “random-c · h2”, showing that our sampling distribution is the key
to the high query efficiency of Square Attack.

The last innovation of our random search scheme is the initialization, crucial
element of every non-convex optimization algorithm. Our method (“square-c”)
with the vertical stripes initialization improves over a uniform initialization on
average by ≈ 25% and, especially, median number of queries (more than halved).

We want to also highlight that the sampling distribution “square-c · h2” for
which we shown convergence guarantees in Sect. 4.1 performs already better in
terms of the success rate and the median number of queries than the state of the
art (see Sect. 5). For a more detailed ablation, also for our l2-attack, see Sup. C.

Table 2. Results of untargeted attacks on ImageNet with a limit of 10,000 queries.
For the l∞-attack we set the norm bound ε = 0.05 and for the l2-attack ε = 5. Models:
normally trained I: Inception v3, R: ResNet-50, V: VGG-16-BN. The Square Attack
outperforms for both threat models all other methods in terms of success rate and
query efficiency. The missing entries correspond to the results taken from the original
paper where some models were not reported

Norm Attack Failure rate Avg. queries Med. queries

I R V I R V I R V

l∞ Bandits [28] 3.4% 1.4% 2.0% 957 727 394 218 136 36

Parsimonious [44] 1.5% – – 722 – – 237 – –

DFOc–CMA [34] 0.8% 0.0% 0.1% 630 270 219 259 143 107

DFOd–Diag. CMA [34] 2.3% 1.2% 0.5% 424 417 211 20 20 2

SignHunter [2] 1.0% 0.1% 0.3% 471 129 95 95 39 43

Square attack 0.3% 0.0% 0.0% 197 73 31 24 11 1

l2 Bandits [28] 9.8% 6.8% 10.2% 1486 939 511 660 392 196

SimBA-DCT [25] 35.5% 12.7% 7.9% 651 582 452 564 467 360

Square attack 7.1% 0.7% 0.8% 1100 616 377 385 170 109

5 Experiments

In this section we show the effectiveness of the Square Attack. Here we concen-
trate on untargeted attacks since our primary goal is query efficient robustness
evaluation, while the targeted attacks are postponed to the supplement. First,
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Inception v3 ResNet-50 VGG-16-BN

l∞ attacks
low query regime

l2-attacks
low query regime

Fig. 4. Success rate in the low-query regime (up to 200 queries). ∗ denotes the results
obtained via personal communication with the authors and evaluated on 500 and 10,000
randomly sampled points for BayesAttack [45] and DFO [34] methods, respectively

we follow the standard setup [28,34] of comparing black-box attacks on three
ImageNet models in terms of success rate and query efficiency for the l∞- and
l2-untargeted attacks (Sect. 5.1). Second, we show that our black-box attack can
even outperform white-box PGD attacks on several models (Sect. 5.2). Finally, in
the supplement we provide more experimental details (Sup. B), a stability study
of our attack for different parameters (Sup. C) and random seeds (Sup. D), and
additional results including the experiments for targeted attacks (Sup. E).

5.1 Evaluation on ImageNet

We compare the Square Attack to state-of-the-art score-based black-box attacks
(without any extra information such as surrogate models) on three pretrained
models in PyTorch (Inception v3, ResNet-50, VGG-16-BN) using 1,000 images
from the ImageNet validation set. Unless mentioned otherwise, we use the code
from the other papers with their suggested parameters. As it is standard in the
literature, we give a budget of 10,000 queries per point to find an adversarial
perturbation of lp-norm at most ε. We report the average and median number of
queries each attack requires to craft an adversarial example, together with the
failure rate. All query statistics are computed only for successful attacks on the
points which were originally correctly classified.

Tables 2 and 3 show that the Square Attack, despite its simplicity, achieves
in all the cases (models and norms) the lowest failure rate, (<1% everywhere
except for the l2-attack on Inception v3), and almost always requires fewer
queries than the competitors to succeed. Figure 4 shows the progression of the
success rate of the attacks over the first 200 queries. Even in the low query
regime the Square Attack outperforms the competitors for both norms. Finally,
we highlight that the only hyperparameter of our attack, p, regulating the size of
the squares, is set for all the models to 0.05 for l∞ and 0.1 for l2-perturbations.



496 M. Andriushchenko et al.

l∞-Attacks. We compare our attack to Bandits [29], Parsimonious [44],
DFOc/DFOd [34], and SignHunter [2]. In Table 2 we report the results of the
l∞-attacks with norm bound of ε = 0.05. The Square Attack always has the
lowest failure rate, notably 0.0% in 2 out of 3 cases, and the lowest query con-
sumption. Interestingly, our attack has median equal 1 on VGG-16-BN, meaning
that the proposed initialization is particularly effective for this model.

Table 3. Query statistics for untargeted l2-attacks
computed for the points for which all three attacks
are successful for fair comparison

Attack Avg. queries Med. queries

I R V I R V

Bandits [28] 536 635 398 368 314 177

SimBA-DCT [25] 647 563 421 552 446 332

Square attack 352 287 217 181 116 80

The closest competitor
in terms of the average num-
ber of queries is SignHunter
[2], which still needs on aver-
age between 1.8 and 3 times
more queries to find adver-
sarial examples and has
a higher failure rate than
our attack. Moreover, the
median number of queries of
SignHunter is much worse
than for our method (e.g. 43 vs 1 on VGG). We note that although DFOc–CMA
[34] is competitive to our attack in terms of median queries, it has a significantly
higher failure rate and between 2 and 7 times worse average number of queries.
Additionally, our method is also more effective in the low-query regime (Fig. 4)
than other methods (including [45]) on all the models.

l2-Attacks. We compare our attack to Bandits [28] and SimBA [25] for ε = 5,
while we do not consider SignHunter [2] since it is not as competitive as for the
l∞-norm, and in particular worse than Bandits on ImageNet (see Fig. 2 in [2]).

As Table 2 and Fig. 4 show, the Square Attack outperforms by a large mar-
gin the other methods in terms of failure rate, and achieves the lowest median
number of queries for all the models and the lowest average one for VGG-16-
BN. However, since it has a significantly lower failure rate, the statistics of
the Square Attack are biased by the “hard” cases where the competitors fail.
Then, we recompute the same statistics considering only the points where all the
attacks are successful (Table 3). In this case, our method improves by at least
1.5× the average and by at least 2× the median number of queries.

5.2 Square Attack Can Be More Accurate Than White-Box Attacks

Table 4. On the robust models of [32] and
[55] on MNIST l∞-Square Attack with ε =
0.3 achieves state-of-the-art (SOTA) results
outperforming white-box attacks

Model Robust accuracy

SOTA Square

Madry et al. [32] 88.13% 88.25%

TRADES [55] 93.33% 92.58%

Here we test our attack on prob-
lems which are challenging for both
white-box PGD and other black-
box attacks. We use for evaluation
robust accuracy, defined as the worst-
case accuracy of a classifier when an
attack perturbs each input in some
lp-ball. We show that our algorithm
outperforms the competitors both on
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state-of-the-art robust models and defenses that induce different types of gradi-
ent masking. Thus, our attack is useful to evaluate robustness without introduc-
ing adaptive attacks designed for each model separately.

Outperforming White-Box Attacks on Robust Models. The models
obtained with the adversarial training of [32] and TRADES [55] are standard
benchmarks to test adversarial attacks, which means that many papers have
tried to reduce their robust accuracy, without limit on the computational bud-
get and primarily via white-box attacks. We test our l∞-Square Attack on these
robust models on MNIST at ε = 0.3, using p = 0.8, 20k queries and 50 random
restarts, i.e., we run our attack 50 times and consider it successful if any of the
runs finds an adversarial example (Table 4). On the model of Madry et al. [32]
Square Attack is only 0.12% far from the white-box state-of-the-art, achieving
the second best result (also outperforming the 91.47% of SignHunter [2] by a
large margin). On the TRADES benchmark [57], our method obtains a new
SOTA of 92.58% robust accuracy outperforming the white-box attack of [17].
Additionally, the subsequent work of [18] uses the Square Attack as part of their
AutoAttack where they show that the Square Attack outperforms other white-
box attacks on 9 out of 9 MNIST models they evaluated. Thus, our black-box
attack can be also useful for robustness evaluation of new defenses in the setting
where gradient-based attacks require many restarts and iterations.

Resistance to Gradient Masking. In Table 5 we report the robust accuracy
at different thresholds ε of the l∞-adversarially trained models on MNIST of
[32] for the l2-threat model. It is known that the PGD is ineffective since it suf-
fers from gradient masking [48]. Unlike PGD and other black-box attacks, our
Square Attack does not suffer from gradient masking and yields robust accu-
racy close to zero for ε = 2.5, with only a single run. Moreover, the l2-version
of SignHunter [2] fails to accurately assess the robustness because the method
optimizes only over the extreme points of the l∞-ball of radius ε/

√
d embedded

in the target l2-ball.

Table 5. l2-robustness of the l∞-adversarially trained models of [32] at different thresh-
olds ε. PGD is shown with 1, 10, 100 random restarts. The black-box attacks are given
a 10 k queries budget (see the supplement for details)

ε2 Robust accuracy

White-box Black-box

PGD1 PGD10 PGD100 SignHunter Bandits SimBA Square

2.0 79.6% 67.4% 59.8% 95.9% 80.1% 87.6% 16.7%

2.5 69.2% 51.3% 36.0% 94.9% 32.4% 75.8% 2.4%

3.0 57.6% 29.8% 12.7% 93.8% 12.5% 58.1% 0.6%
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Table 6. l∞-robustness of Clean Logit Pairing (CLP), Logit Squeezing (LSQ) [30].
The Square Attack is competitive to white-box PGD with many restarts (R= 10,000,
R= 100 on MNIST, CIFAR-10 resp.) and more effective than black-box attacks [2,28]

ε∞ Model Robust accuracy

White-box Black-box

PGD1 PGDR Bandits SignHunter Square

0.3 CLPMNIST 62.4% 4.1% 33.3% 62.1% 6.1%

LSQMNIST 70.6% 5.0% 37.3% 65.7% 2.6%

16/255 CLPCIFAR 2.8% 0.0% 14.3% 0.1% 0.2%

LSQCIFAR 27.0% 1.7% 27.7% 13.2% 7.2%

Attacking Clean Logit Pairing and Logit Squeezing. These two l∞
defenses proposed in [30] were broken in [35]. However, [35] needed up to 10k
restarts of PGD which is computationally prohibitive. Using the publicly avail-
able models from [35], we run the Square Attack with p = 0.3 and 20k query
limit (results in Table 6). We obtain robust accuracy similar to PGDR in most
cases, but with a single run, i.e. without additional restarts. At the same time,
although on some models Bandits and SignHunter outperform PGD1, they on
average achieve significantly worse results than the Square Attack. This again
shows the utility of the Square Attack to accurately assess robustness.

6 Conclusion

We have presented a simple black-box attack which outperforms by a large mar-
gin the state-of-the-art both in terms of query efficiency and success rate. Our
results suggest that our attack is useful even in comparison to white-box attacks
to better estimate the robustness of models that exhibit gradient masking.
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