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Abstract. Anchor-based Siamese trackers have achieved remarkable
advancements in accuracy, yet the further improvement is restricted by
the lagged tracking robustness. We find the underlying reason is that the
regression network in anchor-based methods is only trained on the pos-
itive anchor boxes (i.e., IoU ≥ 0.6). This mechanism makes it difficult
to refine the anchors whose overlap with the target objects are small.
In this paper, we propose a novel object-aware anchor-free network to
address this issue. First, instead of refining the reference anchor boxes,
we directly predict the position and scale of target objects in an anchor-
free fashion. Since each pixel in groundtruth boxes is well trained, the
tracker is capable of rectifying inexact predictions of target objects dur-
ing inference. Second, we introduce a feature alignment module to learn
an object-aware feature from predicted bounding boxes. The object-
aware feature can further contribute to the classification of target objects
and background. Moreover, we present a novel tracking framework based
on the anchor-free model. The experiments show that our anchor-free
tracker achieves state-of-the-art performance on five benchmarks, includ-
ing VOT-2018, VOT-2019, OTB-100, GOT-10k and LaSOT. The source
code is available at https://github.com/researchmm/TracKit.
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1 Introduction

Object tracking is a fundamental vision task. It aims to infer the location of an
arbitrary target in a video sequence, given only its location in the first frame.
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Fig. 1. A comparison of the performance and speed of state-of-the-art tracking methods
on VOT-2018. We visualize the Expected Average Overlap (EAO) with respect to
the Frames-Per-Seconds (FPS). Offline-1 and Offline-2 indicate the proposed offline
trackers with and without feature alignment module, respectively.

The main challenge of tracking lies in that the target objects may undergo heavy
occlusions, large deformation and illumination variations [44,49]. Tracking at
real-time speeds has a variety of applications, such as surveillance, robotics,
autonomous driving and human-computer interaction [16,25,33].

In recent years, Siamese tracker has drawn great attention because of its bal-
anced speed and accuracy. The seminal works, i.e., SINT [35] and SiamFC [1],
employ Siamese networks to learn a similarity metric between the object target
and candidate image patches, thus modeling the tracking as a search problem
of the target over the entire image. A large amount of follow-up Siamese track-
ers have been proposed and achieved promising performances [9,11,21,22,50].
Among them, the Siamese region proposal networks, dubbed SiamRPN [22],
is representative. It introduces region proposal networks [31], which consist of
a classification network for foreground-background estimation and a regression
network for anchor-box refinement, i.e., learning 2D offsets to the predefined
anchor boxes. This anchor-based trackers have shown tremendous potential in
tracking accuracy. However, since the regression network is only trained on the
positive anchor boxes (i.e., IoU ≥ 0.6), it is difficult to refine the anchors whose
overlap with the target objects are small. This will cause tracking failures espe-
cially when the classification results are not reliable. For instance, due to the
error accumulation in tracking, the predictions of target positions may become
unreliable, e.g ., IoU < 0.3. The regression network is incapable of rectifying
this weak prediction because it is previously unseen in the training set. As a
consequence, the tracker gradually drifts in subsequent frames.

It is natural to throw a question: can we design a bounding-box regressor
with the capability of rectifying inaccurate predictions? In this work, we show
the answer is affirmative by proposing a novel object-aware anchor-free tracker.
Instead of predicting the small offsets of anchor boxes, our object-aware anchor-
free tracker directly regresses the positions of target objects in a video frame. More
specifically, the proposed tracker consists of two components: an object-aware
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classification network and a bounding-box regression network. The classification
is in charge of determining whether a region belongs to foreground or background,
while the regression aims to predict the distances from each pixel within the target
objects to the four sides of the groundtruth bounding boxes. Since each pixel in
the groundtruth box is well trained, the regression network is able to localize the
target object even when only a small region is identified as the foreground. Even-
tually, during inference, the tracker is capable of rectifying the weak predictions
whose overlap with the target objects are small.

When the regression network predicts a more accurate bounding box (e.g .,
rectifying weak predictions), the corresponding features can in turn help the clas-
sification of foreground and background. We use the predicted bounding box as a
reference to learn an object-aware feature for classification. More concretely, we
introduce a feature alignment module, which contains a 2D spatial transforma-
tion to align the feature sampling locations with predicted bounding boxes (i.e.,
regions of candidate objects). This module guarantees the sampling is specified
within the predicted regions, accommodating to the changes of object scale and
position. Consequently, the learned features are more discriminative and reliable
for classification.

The effectiveness of the proposed framework is verified on five benchmarks:
VOT-2018 [17], VOT-2019 [18], OTB-100 [44], GOT-10k [14] and LaSOT [8].
Our approach achieves state-of-the-art performance (an EAO of 0.467) on VOT-
2018 [17], while running at 58 fps, as shown in Fig. 1. It obtains up to 92.2 % and
12.8 % relative improvements over the anchor-based methods, i.e., SiamRPN [22]
and SiamRPN++ [21], respectively. On other datasets, the performance of our
tracker is also competitive, compared with recent state-of-the-arts. In addition,
we further equip our anchor-free tracker with a plug-in online update module,
and enable it to capture the appearance changes of objects during inference.
The online module further enhances the tracking performance, which shows the
scalability of the proposed anchor-free tracking approach.

The main contributions of this work are two-fold. 1) We propose an object-
aware anchor-free network based on the observation that the anchor-based
method is difficult to refine the anchors whose overlap with the target object
is small. The proposed algorithm can not only rectify the imprecise bounding-
box predictons, but also learn an object-aware feature to enhance the matching
accuracy. 2) We design a novel tracking framework by combining the proposed
anchor-free network with an efficient feature combination module. The proposed
tracking model achieves state-of-the-art performance on five benchmarks while
running in real-time speeds.

2 Related Work

In this section, we review the related work on anchor-free mechanism and feature
alignment in both tracking and detection, as well as briefly review recent Siamese
trackers.
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Siamese Trackers. The pioneering works, i.e., SINT [35] and SiamFC [1],
employ Siamese networks to offline train a similarity metric between the object
target and candidate image patches. SiamRPN [22] improves it with a region pro-
posal network, which amounts to a target-specific anchor-based detector. With
the predefined anchor boxes, SiamRPN [22] can capture the scale changes of
objects effectively. The follow-up studies mainly fall into two camps: designing
more powerful backbone networks [21,50] or proposing more effective proposal
networks [9]. Although these offline Siamese trackers have achieved very promis-
ing results, their tracking robustness is still inferior to the recent state-of-the-art
online trackers, such as ATOM [4] and DiMP [2].

Anchor-Free Mechanism. Anchor-free approaches recently became popular
in object detection tasks, because of their simplicity in architectures and supe-
riority in performance [7,19,36]. Different from anchor-based methods which
estimate the offsets of anchor boxes, anchor-free mechanisms predict the loca-
tion of objects in a direct way. The early anchor-free work [47] predicts the
intersection over union with objects, while recent works focus on estimating the
keypoints of objects, e.g ., the object center [7] and corners [19]. Another branch
of anchor-free detectors [30,36] predicts the object bounding box at each pixel,
without using any references, e.g ., anchors or keypoints. The anchor-free mecha-
nism in our method is inspired by, but different from that in the recent detection
algorithm [36]. We will discuss the key differences in Sect. 3.4.

Feature Alignment. The alignment between visual features and reference ROIs
(Regions of Interests) is vital for localization tasks, such as detection and track-
ing [40]. For example, ROIAlign [12] are commonly recruited in object detection
to align the features with the reference anchor boxes, leading to remarkable
improvements on localization precision. In visual tracking, there are also several
approaches [15,41] considering the correspondence between visual features and
candidate bounding boxes. However, these approaches only take account of the
bounding boxes with high classification scores. If the high scores indicate the
background regions, then the corresponding features will mislead the detection
of target objects. To address this, we propose a novel feature alignment method,
in which the alignment is independent of the classification results. We sample
the visual features from the predicted bounding boxes directly, without consider-
ing the classification score, generating object-aware features. This object-aware
features, in turn, help the classification of foreground and background.

3 Object-Aware Anchor-Free Networks

This section proposes the Object-aware anchor-free networks (Ocean) for visual
tracking. The network architecture consists of two components: an object-aware
classification network for foreground-background probability prediction and a
regression network for target scale estimation. The input features to these two
networks are generated by a shared backbone network (elaborated in Sect. 4.1).
We introduce the regression network first, followed by the classification branch,
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Fig. 2. (a) Regression: the pixels in groundtruth box, i.e. the red region, are labeled as
the positive samples in training. (b) Regular-region classification: the pixels closing to
the target’s center, i.e. the red region, are labeled as the positive samples. The purple
points indicate the sampled positions of a location in the score map. (c) Object-aware
classification: the IoU of predicted box and groundtruth box, i.e., the region with red
slash lines, is used as the label during training. The cyan points represent the sampling
positions for extracting object-aware features. The yellow arrows indicate the offsets
induced by spatial transformation. Best viewed in color. (Color figure online)

because the regression branch provides object scale information to enhance the
classification of the target object and background.

3.1 Anchor-Free Regression Network

Revisiting recent anchor-based trackers [21,22], we observed that the track-
ers drift speedily when the predicted bounding box becomes unreliable. The
underlying reason is that, during training, these approaches only consider the
anchor boxes whose IoU with groundtruth are larger than a high threshold, i.e.,
IoU ≥ 0.6. Hence, these approaches lack the competence to amend the weak
predictions, e.g ., the boxes whose overlap with the target are small.

To remedy this issue, we introduce a novel anchor-free regression for visual
tracking. It considers all the pixels in the groundtruth bounding box as the
training samples. The core idea is to estimate the distances from each pixel
within the target object to the four sides of the groundtruth bounding box.
Specifically, let B = (x0, y0, x1, y1) ∈ R

4 denote the top-left and bottom-right
corners of the groundtruth bounding box of a target object. A pixel is considered
as the regression sample if its coordinates (x, y) fall into the groundtruth box B.
Hence, the labels T ∗ = (l∗, t∗, r∗, b∗) of training samples are calculated as

l∗ = x − x0, t
∗ = y − y0,

r∗ = x1 − x, b∗ = y1 − y,
(1)

which represent the distances from the location (x, y) to the four sides of the
bounding box B, as shown in Fig. 2(a). The learning of the regression network
is through four 3×3 convolution layers with channel number of 256, followed by
one 3 × 3 layer with channel number of 4 for predicting the distances. As shown
in Fig. 3, the upper “Conv” block indicates the regression network.
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This anchor-free regression allows for all the pixels in the groundtruth box
during training, thus it can predict the scale of target objects even when only a
small region is identified as foreground. Consequently, the tracker is capable of
rectifying weak predictions during inference to some extent.

3.2 Object-Aware Classification Network

In prior Siamese tracking approaches [1,21,22], the classification confidence is
estimated by the feature sampled from a fixed regular region in the feature map,
e.g ., the purple points in Fig. 2(b). This sampled feature depicts a fixed local
region of the image, and it is not scalable to the change of object scale. As a
result, the classification confidence is not reliable in distinguishing the target
object from complex background.

To address this issue, we propose a feature alignment module to learn an
object-aware feature for classification. The alignment module transforms the
fixed sampling positions of a convolution kernel to align with the predicted
bounding box. Specifically, for each location (dx, dy) in the classification map, it
has a corresponding object bounding box M = (mx,my,mw,mh) predicted by
the regression network, where mx and my denote the box center while mw and
mh represent its width and height. Our goal is to estimate the classification confi-
dence for each location (dx, dy) by sampling features from the corresponding can-
didate region M . The standard 2D convolution with kernel size of k ×k samples
features using a fixed regular grid G = {(− �k/2� ,− �k/2�), ..., (�k/2� , �k/2�)},
where �·� denotes the floor function. The regular grid G cannot guarantee the
sampled features cover the whole content of region M .

Therefore, we propose to equip the regular sampling grid G with a spatial
transformation T to convert the sampling positions from the fixed region to the
predicted region M . As shown in Fig. 2(c), the transformation T (the dashed
yellow arrows) is obtained by measuring the relative direction and distance from
the sampling positions in G (the purple points) to the positions aligned with
the predicted bounding box (the cyan points). With the new sampling positions,
the object-aware feature is extracted by the feature alignment module, which is
formulated as

f [u] =
∑

g∈G,Δt∈T
w[g] · x[u + g + Δt], (2)

where x represents the input feature map, w denotes the learned convolution
weight, u indicates a location on the feature map, and f represents the output
object-aware feature map. The spatial transformation Δt ∈ T represents the
distance vector from the original regular sampling points to the new points
aligned with the predicted bounding box. The transformation is defined as

T = {(mx,my) + B} − {(dx, dy) + G}, (3)

where {(mx,my) + B} represents the sampling positions aligned with M , e.g .,
the cyan points in Fig. 2(c), {(dx, dy) + G} indicates the regular sampling posi-
tions used in standard convolution, e.g ., the purple points in Fig. 2(c), and
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B = {(−mw/2,−mh/2), ..., (mw/2,mh/2)} denotes the coordinates of the new
sampling positions (e.g ., the cyan points in Fig. 2(c)) relative to the box center
(e.g ., (mx,my)). It is worth noting that when the transformation Δt ∈ T is
set to 0 in Eq. (2), the feature sampling mechanism is degenerated to the fixed
sampling on regular points, generating the regular-region feature. The transfor-
mations of the sampling positions are adaptive to the variations of the predicted
bounding boxes in video frames. Thus, the extracted object-aware feature is
robust to the changes of object scale, which is beneficial for feature matching
during tracking. Moreover, the object-aware feature provides a global descrip-
tion of the candidate targets, which enables the distinguish of the object and
background to be more reliable.

We exploit both the object-aware feature and the regular-region feature to
predict whether a region belongs to target object or image background. For the
classification based upon the object-aware feature, we apply a standard convo-
lution with kernel size of 3 × 3 over f to predict the confidence po (visualized as
the “OA.Conv” block of the classification network in Fig. 3). For the classifica-
tion based on the regular-region feature, four 3 × 3 standard convolution layers
with channel number of 256, followed by one standard 3 × 3 layer with channel
number of one are performed over the regular-region feature f ′ to predict the
confidence pr (visualized as the “Conv” block of the classification network in
Fig. 3). Calculating the summation of the confidence po and pr obtains the final
classification score. The object-aware feature provides a global description of the
target, thus enhancing the matching accuracy of candiate regions. Meanwhile,
the regular-region feature concentrates on local parts of images, which is robust
to localize the center of target objects. The combination of the two features
improves the reliability of the classification network.

3.3 Loss Function

To optimize the proposed anchor-free networks, we employ IoU loss [47] and
binary cross-entropy (BCE) loss [6] to train the regression and classification
networks jointly. In regression, the loss is defined as

Lreg = −
∑

i
ln(IoU(preg, T

∗)), (4)

where preg denotes the prediction, and i indexes the training samples. In classi-
fication, the loss Lo based upon the object-aware feature f is formulated as

Lo = −
∑

j
p∗

olog(po) + (1 − p∗
o)log(1 − po), (5)

while the loss Lr based upon the regular-region feature f ′ is formulated as

Lr = −
∑

j
p∗

rlog(pr) + (1 − p∗
r)log(1 − pr), (6)

where po and pr are the classification score maps computed over the object-aware
feature and regular-region feature respectively, j indexes the training samples
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for classification, and p∗
o and p∗

r denote the groundtruth labels. More concretely,
p∗

o is a probabilistic label, in which each value indicates the IoU between the
predicted bounding box and groundtruth, i.e., the region with red slash lines in
Fig. 2(c). p∗

r is a binary label, where the pixels closing to the center of the target
are labeled as 1, i.e., the red region in Fig. 2(b), which is formulated as

p∗
r [v] =

{
1, if ||v − c|| ≤ R,
0, otherwise.

(7)

The joint training of the entire object-aware anchor-free networks is to opti-
mize the following objective function:

L = Lreg + λ1Lo + λ2Lr, (8)

where λ1 and λ2 are the tradeoff hyperparameters.

3.4 Relation to Prior Anchor-Free Work

Our anchor-free mechanism shares similar spirit with recent detection meth-
ods [7,19,36] (discussed in Sect. 2). In this section, we further discuss the dif-
ferences to the most related work, i.e., FCOS [36]. Both FCOS and our method
predict the object locations directly on the image plane at pixel level. However,
our work differs from FCOS [36] in two fundamental ways. 1) In FCOS [36],
the training samples for the classification and regression networks are identical.
Both are sampled from the positions within the groundtruth boxes. Differently,
in our method, the data sampling strategies for classification and regression are
asymmetric which is tailored for tracking tasks. More specifically, the classifica-
tion network only considers the pixels closing to the target as positive samples
(i.e., R ≤ 16 pixels), while the regression network considers all the pixels in the
ground-truth box as training samples. This fine-grained sampling strategy guar-
antees the classification network can learn a robust similarity metric for region
matching, which is important for tracking. 2) In FCOS [36], the objectness score
is calculated with the feature extracted from a fixed regular-region, similar to
the purple points in Fig. 2(b). By contrast, our method additionally introduce
an object-aware feature, which captures the global appearance of target objects.
The object-aware feature aligns the sampling regions with the predicted bound-
ing box (e.g ., cyan points in Fig. 2(c)), thus it is adaptive to the scale change
of objects. The combination of the regular-region feature and the object-aware
feature allows the classification to be more reliable, as verified in Sect. 5.3.

4 Object-Aware Anchor-Free Tracking

This section depicts the tracking algorithm building upon the proposed object-
aware anchor-free networks (Ocean). It contains two parts: an offline anchor-free
model and an online update model, as illustrated in Fig. 3.
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4.1 Framework

The offline tracking is built on the object-aware anchor-free networks, consisting
of three steps: feature extraction, combination and target localization.

Feature Extraction. Following the architecture of Siamese tracker [1], our
approach takes an image pair as input, i.e., an exemplar image and a candidate
search image. The exemplar image represents the object of interest, i.e., an image
patch centered on the target object in the first frame, while the search image is
typically larger and represents the search area in subsequent video frames. Both
inputs are processed by a modified ResNet-50 [13] backbone and then yield two
feature maps. More specifically, we cut off the last stage of the standard ResNet-
50 [13], and only retain the first fourth stages as the backbone. The first three
stages share the same structure as the original ResNet-50. In the fourth stage,
the convolution stride of down-sampling unit [13] is modified from 2 to 1 to
increase the spatial size of feature maps, meanwhile, all the 3 × 3 convolutions
are augmented with a dilation with stride of 2 to increase the receptive fields.
These modifications increase the resolution of output features, thus improving
the feature capability on object localization [3,21].

Fig. 3. Overview of the proposed tracking framework, consisting of an offline anchor-
free part (top) and an online model update part (bottom). The offline tracking
includes feature extraction, feature combination and target localization with object-
aware anchor-free networks, as elaborated in Sect. 4.1. The plug-in online update net-
work models the appearance changes of target objects, as detailed in Sect. 4.2. Φab

indicates a 3 × 3 convolution layer with dilation stride of a along the X-axis and b
along the Y -axis.

Feature Combination. This step exploits a depth-wise cross-correlation oper-
ation [21] to combine the extracted features of the exemplar and search images,
and generates the corresponding similarity features for the subsequent target
localization. Different from the previous works performing the cross-correlation
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on multi-scale features [21], our method only performs over a single scale, i.e.,
the last stage of the backbone. We pass the single-scale features through three
parallel dilated convolution layers [48], and then fuse the correlation features
through point-wise summation, as presented in Fig. 3 (feature combination).

For concreteness, the feature combination process can be formulated as

S =
∑

ab
Φab(fe) ∗ Φab(fs) (9)

where fe and fs represent the features of the exemplar and search images respec-
tively, Φab indicates a single dilated convolution layer, and ∗ denotes the cross-
correlation operation [1]. The kernel size of the dilated convolution Φab is set to
3 × 3, while the dilation strides are set to a along the X-axis and b along the
Y -axis. Φab also reduces the feature channels from 1024 to 256 to save compu-
tation cost. In experiments, we found that increasing the diversity of dilations
can improve the representability of features, thereby we empirically choose three
different dilations, whose strides are set to (a, b) ∈ {(1, 1), (1, 2), (2, 1)}. The
convolutions with different dilations can capture the features of regions with
different scales, improving the scale invariance of the final combined features.

Target Localization. This step employs the proposed object-aware anchor-free
networks to localize the target from search images. The probabilities po and pr

predicted by the classification network are averaged with a weight ω as

pcls = ωpo + (1 − ω)pr. (10)

Similar to [1,21], we impose a penalty on scale change to suppress the large
variation of object size and aspect ratio. We provide more details in the supple-
mentary materials.

4.2 Integrating Online Update

We further equip the offline algorithm with an online update model. Inspired
by [2,4], we introduce an online branch to capture the appearance changes of tar-
get object during tracking. As shown in Fig. 3 (bottom part), the online branch
inherits the structure and parameters from the first three stages of the backbone
network, i.e., modified ResNet-50 [13]. The fourth stage keep the same structure
as the backbone, but its initial parameters are obtained through the pretraining
strategy proposed in [2]. For model update, we employ the fast conjugate gadient
algorithm [2] to train online branch during inference. The foreground score maps
estimated by the online branch and the classification branch are weighted as

p = ω′ponl + (1 − ω′)p̂cls, (11)

where ω′ represents the weights between the classification score p̂cls and the
online estimation score ponl. Note that the IoUNet in [2,4] is not used in our
model. We refer readers to [2,4] for more details.
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5 Experiments

This section presents the results of our Ocean tracker on five tracking bench-
mark datasets, with comparisons to the state-of-the-art algorithms. Experimen-
tal analysis is provided to evaluate the effects of each component in our model.

5.1 Implementation Details

Training. The backbone network is initialized with the parameters pretrained
on ImageNet [32]. The proposed trackers are trained on the datasets of Youtube-
BB [29], ImageNet VID [32], ImageNet DET [32], GOT-10 k [14] and COCO [26].
The size of input exemplar image is 127 × 127 pixels, while the search image is
255 × 255 pixels. We use synchronized SGD [20] on 8 GPUs, with each GPU
hosting 32 images, hence the mini-batch size is 256 images per iteration. There
are 50 epochs in total. Each epoch uses 6 × 105 training pairs. For the first 5
epochs, we start with a warmup learning rate of 10−3 to train the object-aware
anchor-free networks, while freezing the parameters of the backbone. For the
remaining epochs, the backbone network is unfrozen, and the whole network is
trained end-to-end with a learning rate exponentially decayed from 5 × 10−3 to
10−5. The weight decay and momentum are set to 10−3 and 0.9, respectively.
The threshold R of the classification label in Eq. (7) is set to 16 pixels. The
weight parameters λ1 and λ2 in Eq. (8) are set to 1 and 1.2, respectively.

We noticed that the training settings (data selection, iterations, etc.) are
often different in recent trackers, e.g ., SiamRPN [22], SiamRPN++[21], ATOM
[4] and DiMP [4]. It is difficult to compare different models under a unified
training schedule. But for a fair comparison, we additionally evaluate our method
and SiamRPN++ [21] under the same training setting, as discussed in Sect. 5.3.

Testing. For the offline model, tracking follows the same protocols as in [1,
22]. The feature of the target object is computed once at the first frame, and
then is continuously matched to subsequent search images. The fusion weight
ω of the object-aware classification score in Eq. (10) is set to 0.07, while the
weight ω′ in Eq. (11) is set to 0.5. These hyper-parameters in testing are selected
with the tracking toolkit [50], which contains an automated parameter tuning
algorithm. Our trackers are implemented using Python 3.6 and PyTorch 1.1.0.
The experiments are conducted on a server with 8 Tesla V100 GPUs and a Xeon
E5-2690 2.60 GHz CPU. Note that we run the proposed tracker three times, the
standard deviation of the performance is ±0.5%, demonstrating the stability of
our model. We report the average performance of the three-time runs in the
following comparisons.

Evaluation Datasets and Metrics. We use five benchmark datasets including
VOT-2018 [17], VOT-2019 [18], OTB-100 [44], GOT-10k [14] and LaSOT [8]
for tracking performance evaluation. In particular, VOT-2018 [17] contains 60
sequences. VOT-2019 [18] is developed by replacing the 20% least challenging
videos in VOT-2018 [17]. We adopt the Expected Average Overlap (EAO) [18]
which takes both accuracy (A) and robustness (R) into account to evaluate
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Table 1. Performance comparisons on VOT-2018 benchmark. Red, green and blue
fonts indicate the top-3 trackers. “Ocean” denotes our propose model.

CRPN ECO STRCF LADCF ATOM SRCNN SiamRPN++ DiMP Ocean Ocean

[9] [5] [23] [45] [4] [39] [21] [2] offline online

EAO ↑ 0.273 0.280 0.345 0.389 0.401 0.408 0.414 0.440 0.467 0.489

A ↑ 0.550 0.484 0.523 0.503 0.590 0.609 0.600 0.597 0.598 0.592

R ↓ 0.320 0.276 0.215 0.159 0.204 0.220 0.234 0.153 0.169 0.117

Table 2. Performance comparisons on VOT-2019. The “DiMPr” and “DiMPb” indicate
realtime and baseline performances of DiMP, as reported in [18].

MemDTC SiamMASK SiamRPN++ ATOM STN DiMPr DiMPb Ocean Ocean

[46] [43] [21] [4] [37] [2] [2] offline online

EAO ↑ 0.228 0.287 0.292 0.301 0.314 0.321 0.379 0.327 0.350

A ↑ 0.485 0.594 0.580 0.603 0.589 0.582 0.594 0.590 0.594

R ↓ 0.587 0.461 0.446 0.411 0.349 0.371 0.278 0.376 0.316

Table 3. Performance comparisons on GOT-10k test set.

CFNet MDNet SiamFC ECO DSiam SiamRPN++ ATOM DiMP Ocean Ocean

[38] [27] [1] [5] [11] [21] [4] [2] offline online

AO ↑ 0.261 0.299 0.392 0.395 0.417 0.518 0.556 0.611 0.592 0.611

SR0.5 ↑ 0.243 0.303 0.406 0.407 0.461 0.618 0.634 0.712 0.695 0.721

overall performance. The standardized OTB-100 [44] benchmark consists of 100
videos. Two metrics, i.e., precision (Prec.) and area under curve (AUC) are used
to rank the trackers. GOT-10k [14] is a large-scale dataset containing over 10
thousand videos. The trackers are evaluated using an online server on a test set
of 180 videos. It employs the widely used average overlap (AO) and success rate
(SR) as performance indicators. Compared to these benchmark datasets, LaSOT
[8] has longer sequences, with an average of 2,500 frames per sequence. Success
(SUC) and precision (Prec.) are used to evaluate tracking performance.

5.2 State-of-the-art Comparison

To extensively evaluate the proposed method, we compare it with 22 state-
of-the-art trackers, which cover most of current representative methods. There
are 9 anchor-based Siamese framework based methods (SiamFC [1], GradNet
[24], DSiam [11], MemDTC [46], SiamRPN [22], C-RPN [9], SiamMASK [43],
SiamRPN++ [21] and SiamRCNN [39]), 8 discriminative correlation filter based
methods (CFNet [38], ECO [5], STRCF [23], LADCF [45], UDT [42], STN [37],
ATOM [4] and DiMP [2]), 3 multi-domain learning based methods (MDNet [27],
RT-MDNet [15] and VITAL [34]), 1 graph network based method (GCT [10]) and
1 meta-learning based tracker (MetaCREST [28]). The results are summarized
in Table. 1 - 3 and Fig. 4.
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VOT-2018. The evaluation on VOT-2018 is performed by the official toolkit
[17]. As shown in Table. 1, Our offline Ocean tracker outperforms the cham-
pion method of VOT-2018, i.e., (LADCF [45]), by 7.8 points. Compared to the
state-of-the-art offline tracker SiamRPN++ [21], our offline model achieves EAO
improvements of 5.3 points, while running faster, as shown in Fig. 1. It is worth
noting that the improvements mainly come from the robustness score, which
obtains 27.8% relative increases over SiamRPN++. Moreover, our offline model
is superior to the recent online trackers ATOM [4] and DiMP [2]. The online
augmented model further improves our tracker by 2.2 points in terms of EAO.

VOT-2019. Table. 2 reports the evaluation results with the comparisons to
recent prevailing trackers on VOT-2019. We can see that the recent proposed
DiMP [2] achieves the best performance, while our method ranks second. How-
ever, in real-time testing scenarios, our offline Ocean tracker achieves the best
performance, surpassing DiMPr by 0.6 points in terms of EAO. Moreover, the
EAO of our offline model surpasses SiamRPN++ [21] by 3.5 points.

GOT-10k. The evaluation on GOT-10k follows the protocols in [14]. The pro-
posed offline Ocean tracker model achieves the state-of-the-art AO score of
0.592, outperforming SiamRPN++ [21], as shown in Table. 3. Our online model
improves the AO by 4.5 points over ATOM [4], while outperforming DiMP [2]
by 0.9 points in terms of success rate.

Fig. 4. Success and precision plots on OTB-100 [44]
(top) and LaSOT [8] (bottom).

OTB-100. The last evalu-
ation in short-term track-
ing is performed on the clas-
sical OTB-100 benchmark.
As reported in Fig. 4, among
the compared methods, our
online tracker achieves the
best precision score of 0.920,
while DiMP [21] achieves
best AUC score of 0.686.

LaSOT. To further eval-
uate the proposed mod-
els, we report the results
on LaSOT, which is larger
and more challenging than
previous benchmarks. The
results on the 280 videos test
set is presented in Fig. 4.
Our offline Ocean tracker
achieves SUC score of 0.527,
outperforming SiamRPN++
with score of 0.496. Com-
pared to ATOM [4], our online tracker improves the SUC score by 4.6 points,
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giving comparable results to top-ranked tracker DiMP-50 [2]. Moreover, the pro-
posed online tracker achieves the best precision score of 0.566.

5.3 Analysis of the Proposed Method

Component-Wise Analysis. To verify the efficacy of the proposed method, we
perform a component-wise analysis on the VOT-2018 benchmark, as presented
in Table. 4. The baseline model consists of a backbone network (detailed in Sect.
4.1), an anchor-free regression network (detailed in Sect. 3.1) and a classifica-
tion network using regular-region feature (detailed in Sect. 3.2). In the training
of baseline model, all pixels in the groundtruth box are considered as positive
samples. The baseline model obtains an EAO of 0.358. In 2©, the “centralized
sampling” indicates that we only consider the pixels closing to the target’s cen-
ter as positive samples in the training of classification (formulated as Eq. (7)).
It brings significant gains, i.e., 3.8 points on EAO ( 2© vs. 1©). This verifies
that the sampling helps to learn a robust similarity metric for region matching.
Adding the feature combination module (detailed in Sect. 4.1) can bring a large
improvement of 4.2 points in terms of EAO ( 3© vs. 2©). This demonstrates the
effectiveness of the proposed irregular dilated convolution module. It introduces
a multi-scale modeling of target objects, without increasing much computation
overhead. Furthermore, the object-aware classification (detailed in Sect. 3.2) can
also bring an improvement of 2.9 points in terms of EAO ( 4© vs. 3©). This shows
that the object-aware features generated by the proposed feature alignment mod-
ule contribute significantly to the tracker. Finally, the tracker equipped with the
plug-in online update module (detailed in Sect. 4.2) yields another improvement
of 2.2 points ( 5© vs. 4©), showing the scalability of the proposed framework.

Training Setting. We conduct another ablation study to evaluate the impact
of training settings. For a fair comparison, we follow the same setting as the
well-performing SiamRPN++[21], i.e. training on YTB [29], VID [32], DET [32]
and COCO [26] datasets for 20 epochs and using 6 × 105 image pairs in each
epoch. As the results presented in Table. 5 ( 2© v.s. 1©), our model surpasses
SiamRPN++ by 4.1 points in terms of EAO under the same training settings.
Moreover, we further add GOT-10k [14] images into training, and observe that
it brings an improvement of 1.2 points ( 3© v.s. 2©). This demonstrates that the
main performance gains are induced by the proposed model. If we continue to
add LaSOT [8] into training, the performance cannot improve further ( 4© v.s.
3©). One possible reason is that the object categories in LaSOT [8] have been
covered by other datasets, thus it cannot further elevate model capacities.

We provide the ablation experiments on feature combination module and
alignment module in supplementary material due to space limit.



Ocean: Object-Aware Anchor-Free Tracking 785

Table 4. Component-wise analysis.

#Num Components EAO

1© baseline 0.358

2© + centralized sampling 0.396

3© + feature combination 0.438

4© + object-aware classification 0.467

5© + online update 0.489

Table 5. Analysis of training settings
on VOT2018.

#Num Settings EAO

1© SiamRPN++ [21] 0.414

2© Ocean tracker (ours) 0.455

3© + GOT-10k in training 0.467

4© + LaSOT in training 0.462

6 Conclusion

In this work, we propose a novel object-aware anchor-free tracking framework
(Ocean) based upon the observation that the anchor-based method is difficult to
refine the anchors whose overlap with the target objects are small. Our model
directly regresses the positions of target objects in a video frame instead of pre-
dicting offsets for predefined anchors. Moreover, the learned object-aware feature
by the alignment module provides a global description of the target, contributing
to the reliable matching of objects. The experiments demonstrate that the pro-
posed tracker achieves state-of-the-art performance on five benchmark datasets.
In the future work, we will study applying our framework to other online video
tasks, e.g ., video object detection and segmentation.
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