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Abstract. Despite their strong modeling capacities, Convolutional Neu-
ral Networks (CNNs) are often scale-sensitive. For enhancing the robust-
ness of CNNs to scale variance, multi-scale feature fusion from different
layers or filters attracts great attention among existing solutions, while
the more granular kernel space is overlooked. We bridge this regret by
exploiting multi-scale features in a finer granularity. The proposed con-
volution operation, named Poly-Scale Convolution (PSConv), mixes up a
spectrum of dilation rates and tactfully allocates them in the individual
convolutional kernels of each filter regarding a single convolutional layer.
Specifically, dilation rates vary cyclically along the axes of input and out-
put channels of the filters, aggregating features over a wide range of scales
in a neat style. PSConv could be a drop-in replacement of the vanilla con-
volution in many prevailing CNN backbones, allowing better represen-
tation learning without introducing additional parameters and compu-
tational complexities. Comprehensive experiments on the ImageNet and
MS COCO benchmarks validate the superior performance of PSConv.
Code and models are available at https://github.com/d-li14/PSConv.

Keywords: Convolutional kernel · Multi-scale feature fusion · Dilated
convolution · Categorization and detection

1 Introduction

With the booming development of CNNs, dramatic progress has been made
in the field of computer vision. As an inherent feature extraction mechanism,
CNNs naturally learn coarse-to-fine hierarchical image representations. To mimic
human visual systems that could process instances and stuff concurrently, it is of
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vital importance for CNNs to gather diverse information from objects of various
sizes and understand meaningful contextual backgrounds. However, streamlined
CNNs usually have fixed-sized receptive fields, lacking the ability to tackle this
kind of issue. Such a deficiency restricts their performance on visual recogni-
tion tasks, especially scale-sensitive dense prediction problems. The advent of
FCN [25] and Inception [35] demonstrates the privilege of multi-scale repre-
sentation to perceive heterogeneous receptive fields with impressive performance
improvement. Motivated by these pioneering works, follow-up approaches explore
and upgrade multi-scale feature fusion with more intricate skip connections or
parallel streams. However, we notice that most of the existing works capture
these informative multi-scale features in a layer-wise or filter-wise style, laying
emphasis on the architecture engineering of the entire network or their composed
building blocks.

From a brand new perspective, we shift the focus of design from macro- to
micro-architecture towards the target of easily exploiting multi-scale features
without touching the overall network architecture. Expanding kernel sizes and
extending the sampling window sizes via increasing dilation rates are two pop-
ular techniques to enlarge the receptive fields inside one convolution operation.
Compared to large kernels that bring about more parameter storage and compu-
tational consumption, dilated convolution is an alternative to cope with objects
in an array of scales without introducing extra computational complexities. In
this paper, we present Poly-Scale Convolution (PSConv), a novel convolution
operation, extracting multi-scale features from the more granular convolutional
kernel space. PSConv respects two design principles: firstly, regarding one single
convolutional filter, its constituent kernels use a group of dilation rates to extract
features corresponding to different receptive fields; secondly, regarding all con-
volutional filters in one single layer, the group of dilation rates corresponding
to each convolutional filter alternates along the axes of input and output chan-
nels in a cyclic fashion, extracting diverse scale information from the incoming
features and mapping them into outgoing features in a wide range of scales.
Through these atomic operations on individual convolutional kernels, we effec-
tively dissolve the aforementioned deficiency of standard convolution and push
the multi-scale feature fusion process to a much more granular level. This pro-
posed approach tiles the kernel lattice1 with hierarchically stacked pyramidal
features defined in the previous methodologies [22]. Each specific feature scale
in one pyramid layer can be grasped with a collection of convolutional kernels in
a PSConv operation with the same corresponding dilation rate, thus the whole
feature pyramid can be represented in a condensed fashion using one compact
PSConv layer with a spectrum of dilation rates. Poly-Scale Convolution extends
the conventional mono-scale convolution living on a homogeneous dilation space
of kernel lattice, hence the name of this convolution form. In our PSConv, scale-
aware features located in different channels collaborate as a unity to deal with

1 kernel lattice refers to the two-dimensional flattened view of convolutional filters
where the kernel space is reduced while the channel space is retained, thus each cell
in the lattice represents an individual kernel (see Fig. 2 for intuitive illustration).
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scale variance problems, which is critical for handling a single instance with a
non-rigid shape or multiple instances with complex scale variations. For scale-
variant stimuli, PSConv is capable of learning self-adaptive attention for different
receptive fields following a dynamic routing mechanism, improving the represen-
tation ability without any additional parameters or memory cost.

Thanks to its plug-and-play characteristic, our PSConv can be readily used
to replace the vanilla convolution of arbitrary state-of-the-art CNN architec-
tures, e.g., ResNet [11], giving rise to PS-ResNet. We also build PS-ResNeXt
featuring group convolutions to prove the universality of PSConv. These models
are comprehensively evaluated on the ImageNet [7] dataset and show consistent
gains over the baseline of plain CNN counterparts. More experiments on (semi-
)dense prediction tasks, e.g., object detection and instance segmentation on the
MS COCO dataset, further demonstrate the superiority of our proposed PSConv
over the standard ones under the circumstances with severe scale variations. It
should be noted that PSConv is also independent of other macro-architectural
choices and thus orthogonal and complementary to existing multi-scale network
designs at a coarser granularity, leaving extra room to combine them together
for further performance enhancement.

Our core contributions are summarized as follows:

❏ We extend the scope of the conventional mono-scale convolution operation
by developing our Poly-Scale Convolution, which effectively and efficiently
aggregates multi-scale features via arranging a spectrum of dilation rates in
a cyclic manner inside the kernel lattice.

❏ We investigate the multi-scale network design through the lens of kernel engi-
neering instead of network engineering, which avoids the necessity of tuning
network structure or layer configurations while achieves competitive perfor-
mance, when adapted to existing CNN architectures.

2 Related Work

We briefly review previous relevant network and modular designs and clarify
their similarities and differences compared to our proposed approach.

Multi-scale Network Design. Early works like AlexNet [18] and VGGNet [32]
learn multi-scale features in a data-driven manner, which are naturally equipped
with a hierarchical representation by the inherent design of CNNs. The shal-
low layers seek finer structures in the images like edges, corners, and texture,
while deep layers abstract semantic information, such as outlines and categories.
In order to break the limitation of fixed-sized receptive fields and enhance fea-
ture representation, many subsequent works based on explicit multi-scale feature
fusion are presented. Within this scope, there exists a rich literature making
innovations on skip connection and parallel stream.

The skip connection structure exploits features with multi-size receptive
fields from network layers at different depths. The representative FCN [25] adds
up feature maps from multiple intermediate layers with the skip connection.
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Analogous techniques have also been applied to the field of edge detection, pre-
sented by HED [40]. In the prevalent encoder-decoder architecture, the decoder
network could be a symmetric version of the encoder network, with skip con-
nections over some mirrored layers [26] or concatenation of feature maps [31].
DLA [42] extends the peer-to-peer skip connections into a tree structure, aggre-
gating features from different layers in an iterative and hierarchical style. Fish-
Net [34] stacks an upsampling body and a downsampling head upon the back-
bone tail, refining features that compound multiple resolutions.

The parallel stream structure generates multi-branch features conditioned
on a spectrum of receptive fields. Though too numerous to list in full, recent
research efforts often attack conventional designs via either maintaining a feature
pyramid virtually from bottom to top or repeatedly stacking split-transform-
merge building blocks. The former pathway of design includes several exemplars
like Multigrid [16] and HRNet [33], which operate on a stack of features with
different resolutions in each layer. Similarly, Octave Convolution [5] decomposes
the standard convolution into two resolutions to process features at different
frequencies, removing spatial redundancy by separating scales. The latter path-
way of design is more crowded with the following works. The Inception [13,35,36]
family utilizes parallel pathways with various kernel sizes in one Inception block.
BL-Net [2] is composed of branches with different computational complexities,
where the features at the larger scale pass through fewer blocks to spare compu-
tational resources and the features from different branches at distinct scales are
merged with a linear combination. Res2Net [8] and OSNet [45] construct a group
of hierarchical residual-like connections or stacked Lite 3 × 3 layers along the
channel axis in one single residual block. ELASTIC [38] and ScaleNet [20] learn
a soft scaling policy to allocate weights for different resolutions in the paratactic
branches. Despite distinct with respect to detailed designs, these works all exten-
sively use down-sampling or up-sampling to resize the features to 2n times and
inevitably adjust the original architecture via the selection of new hyperparam-
eters and layer configurations when plugged in. On the contrary, our proposed
PSConv can be a straightforwardly drop-in replacement of the vanilla convo-
lution, leading a trend towards more effective and efficient multi-scale feature
representation. Conventionally, features with multi-size receptive fields are inte-
grated via channel concatenation, weighted summation or attention models. In
stark contrast, we suggest to explore multi-scale features in a finer granularity,
encompassed in merely one single convolutional layer.

In addition to the aforementioned networks designed to enhance image clas-
sification, scale variance poses more challenges in (semi-)dense prediction tasks,
e.g., object detection and semantic segmentation. Faster R-CNN [9] uses pre-
defined anchor boxes of different sizes to address this issue. DetNet [21], RFB-
Net [24] and TridentNet [19] apply dilated convolutions to enlarge the receptive
fields. DeepLab [4] and PSPNet [44] construct feature pyramid in a parallel fash-
ion. FPN [22] is designed to fuse features at multiple resolutions through top-
down and lateral connections and provides anchors specific to different scales.
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Dynamic Convolution. All approaches above process multi-scale information
without drilling down into the pure single convolutional layer. Complementarily,
another line of research concentrates on injecting scale modules into the original
network directly and handling various receptive fields in an automated fashion.
STN [14] explicitly learns a parametric manipulation of the feature map condi-
tioned on itself to improve the tolerance to spatial geometric transformations.
ACU [15] and DCN [6,46] learn offsets at each sampling position of the convo-
lutional kernel or the feature map to permit a flexible shape deformation during
the convolution process. SAC [43] inserts an extra regression layer to densely
infer the scale coefficient map and applies an adaptive dilation rate to the con-
volutional kernel at each spatial location of the feature map. POD [28] predicts
a globally continuous scale and then converts the learned fractional scale to a
channel-wise combination of integer scales for fast deployment. We respect the
succinctness of these plugged-in modules and follow these approaches in their
form. In this spirit, we formulate a novel convolution representation through
cyclically alternating dilation rates along both input and output channel dimen-
sions to address the scale variations. We also note that some of the aforemen-
tioned modules are designed specifically for (semi-)dense prediction problems,
e.g., SAC, DCN, and POD and others do not scale to large-scale classification
benchmarks like ImageNet, e.g., STN for MNIST and SVHN, ACU for CIFAR.
In contrast, our proposed PSConv focuses on backbone engineering, empirically
shows its effectiveness on ImageNet and generalizes well to other complicated
tasks on MS COCO. Furthermore, while the offsets are learned efficiently in
some methods (ACU, SAC, and DCN), the inference is time-consuming due to
the dynamic grid sampling and the bilinear interpolation at each position. Align-
ing to the tenet of POD [28], it is unnecessary to permit too much freedom with
floating-point offsets at each spatial location as DCN [6] and learning in such
an aggressive manner places an extra burden on the inference procedure. We
opt for a better accuracy-efficiency trade-off by constraining dilation rates in
the integer domain and organizing them into repeated partitions. Last but not
least, the recently proposed MixConv [37] may be the most related scale module
compared to PSConv, which will be discussed at the end of the next section.

3 Method

Compared to previous multi-scale feature fusion solutions in a coarse granularity,
we seek an alternative design with the finer granularity and stronger feature
extraction ability, while maintaining a similar computational load.

3.1 Sketch of Convolution Operations

We initiate from elaborating the vanilla (dilated) convolution process to make
the definition of our proposed PSConv self-contained. For a single convolutional
layer, let the tensor F ∈ R

Cin×H×W denotes its input feature map with the shape
of Cin×H×W , where Cin is the number of channels, H and W are the height and
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width respectively. A set of Cout filters with the kernel size K×K are convolved
with the input tensor individually to obtain the desired output feature map with
Cout channels, where each filter has Cin kernels to match those channels in the
input feature map. Denote the above filters as G ∈ R

Cout×Cin×K×K , then the
vanilla convolution operation can be represented as

Hc,x,y =
Cin∑

k=1

K−1
2∑

i=−K−1
2

K−1
2∑

j=−K−1
2

Gc,k,i,jFk,x+i,y+j , (1)

where Hc,x,y is one element in the output feature map H ∈ R
Cout×H×W ,

c = 1, 2, · · · , Cout is the index of an output channel, x = 1, 2, · · · ,H and
y = 1, 2, · · · ,W are indices of spatial positions in the feature map.

Fig. 1. Schematic illustration of our proposed PSConv operation. F represents the
input feature map and G represents Cout convolutional filters in a set. Convolutional
kernels with the same dilation rates in the set of filters G are rendered with the same
color. Best viewed in color.

Dilated Convolution [41] enlarges sampling intervals in the spatial domain to
cover objects of larger sizes. A dilated convolution with the dilation rate d can
be represented as

Hc,x,y =
Cin∑

k=1

K−1
2∑

i=−K−1
2

K−1
2∑

j=−K−1
2

Gc,k,i,jFk,x+id,y+jd. (2)

Noticing that a combination of dilation rates is conducive to extract both
global and local information, we propose a new convolution form named Poly-
Scale Convolution (PSConv) which scatters organized dilation rates over differ-
ent kernels inside one convolutional filter. Furthermore, our PSConv integrates
multi-scale features in a one-shot manner and brings characteristics of the dilated
convolution into full play, thus without introducing additional computational
cost. To gather multi-scale information from different input channels via a linear



PSConv: A Compact Poly-Scale Convolutional Layer 621

summation, dilation rates are varied at different kernels in one convolutional
filter. To process an input channel with various receptive fields, dilation rates
are also varied in different filters for a certain channel. It is written as

Hc,x,y =
Cin∑

k=1

K−1
2∑

i=−K−1
2

K−1
2∑

j=−K−1
2

Gc,k,i,jFk,x+iD(c,k),y+jD(c,k) , (3)

where D ∈ R
Cout×Cin is a matrix composed of channel-wise and filter-wise dila-

tion rates in two orthogonal dimensions. An element D(c,k) is associated with a
specific channel in one filter to support Gc,k,·,· as a unique convolutional kernel,
thus the whole matrix D can be interpreted as a mathematical representation
of the kernel lattice in its subspace of dilation rate.

3.2 Design Details

As stated above, our major work is to reformulate the dilation rate patterns
in the subspace of kernel lattice. We ensure that each row and column of the
matrix D have non-identical elements to achieve the desired properties of multi-
scale feature fusion. On the contrary, if we avoid and retain identical elements
in one row, then we would not collect multi-scale information to produce a new
output channel in this operation, and it can be boiled down to multi-stream
transformation before concatenation; if the similar event occurs in one column,
the corresponding input channel would not have necessarily diverse receptive
fields covered, and it reduces to the split-transform-summation design of multi-
scale networks. These are both suboptimal according to our ablative experiments
in Table 5. The illustration diagrams of these two simplified cases are provided
in the supplementary materials.

Following the above analysis, the design philosophy of PSConv could be
decomposed into two coupled ingredients. Firstly, we concentrate on a single
filter. In order to constrain the number of different dilation rates in a reasonable
range, we heuristically arrange them inside one filter with a cyclic layout, i.e.,
dilation rates vary in a periodical manner along the axis of input channels.
Specifically speaking, a total of Cin input channels are divided into P partitions.
For each partition, t = �Cin

P � channels are accommodated and a fixed pattern
of dilation rates {d1, d2, · · · , dt} is filled in to construct a row of the matrix D.
Secondly, we broaden our horizons to all filters. In order to endow different filters
with capacities to gather different kinds of scale combinations of input features,
we adopt a shift-based strategy for dilation rates to flip the former filter to the
latter one, i.e., the pattern of dilation rates regarding a convolutional filter is
shifted by one channel to build its adjacent filter. In the illustrative example of
Fig. 2, Cin = Cout = 16 and the partition number P is set to 4, hence there leaves
a blank of 4 dilation rates to be determined in the pattern {d1, d2, d3, d4}, where
a specific colorization distinguishes one type of dilation rate from others. It is
noted that viewed from the axis of output channels, dilation rates also present
periodical variation. In other words, all types of dilation rates occur alternately
along the vertical and horizontal axes in the trellis.



622 D. Li et al.

Furthermore, a comparison diagram is shown in Fig. 2, to achieve better
intuitive comprehension about different convolution operations. The filters of
PSConv are exhibited from the vertical view of G (with appropriate rotate trans-
formation) in Fig. 1, where each tile in the grid represents a kernel of K × K
shape and the grid corresponds to the dilation rate matrix D. The filters of
(dilated) convolution and group convolution are likewise displayed. In the con-
ventional filters, if a dilation rate is applied, it will dominate the whole kernel
lattice, while our PSConv has clear distinctions compared with them. We claim
that merely varying dilation rates in the axis of output channels equals to using
split-transform-merge units spanning a spectrum of dilation rates in the differ-
ent streams. Our method takes one step further to spread the scale information
along both input and output channel axes, pushing the selection of scale-variant
features into the entire kernel space. To the best of our knowledge, it is the
first attempt to mix up multi-scale information simultaneously in two
orthogonal dimensions and leverage the complementary multi-scale
benefits from such a fine granularity in the kernel space.

Dilated Convolution Group Convolution Poly-Scale Convolution
Output Channel

Input Channel

g=4

t=4

Poly-Scale Group Convolution

t=4

g=2

Fig. 2. Comparison between dilation space of kernel lattice in different convolution
operations. Kernels of standard convolution (with or without dilation) are showcased
in the leftmost, where each kernel is located at one cell in the lattice. Group convolu-
tion (group number g = 4) extensively utilized in the efficient network design is also
included for reference. Poly-Scale convolution (cyclic interval t = 4) and Poly-Scale
group convolution (group number g = 2 and cyclic interval t = 4) in the right show
significant differences from the former two. Best viewed in color.

It is noteworthy that PSConv is a generalized form of dilated convolution:
since the cyclic interval t decides how many types of dilation rates are contained
in one partition, all kernels may share the same dilation rate once the partition
number equals to that of input channels and then it degenerates into vanilla
dilated convolution. The PSConv can also be applied to the group-wise convo-
lution form by injecting the shared cyclic pattern into each group, as illustrated
in the rightmost of Fig. 2. Owing to the interchangeability of channel indices,
grouping channels with the same dilation rate together leads to an equivalent
but efficient implementation, which is depicted in the supplementary materials.

The recently proposed MixConv [37] might be similar to PSConv at the first
glimpse. However, they are distinct regarding both the design principle and the
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application focus. On the one hand, MixConv integrates multiple kernel sizes for
different patterns of resolutions which inevitably increases the parameters and
computational budget, while PSConv mixes up a spectrum of dilation rates with
a unified kernel size to economically condense multi-scale features within one
convolution operation. Thus, for these two convolution forms, the manipulations
on the kernel lattice are shaped from orthogonal perspectives. On the other
hand, MixConv is dedicatedly developed for depthwise convolution (DWConv),
while PSConv is versatile to both standard and group convolution. Due to the
inherent constraint of DWConv, each individual channel in a MixConv operation
exploits feature representation of a certain scale. However, in our PSConv, multi-
scale representations are scattered along both input and output channels in
a periodical manner. Hence, an individual channel could gather multifarious
feature resolutions from the view of either input or output channels. We attach
a more in-depth discussion around their differences and an illustration of the
DWConv-based variant of PSConv in the supplementary materials.

4 Experiments

We conduct extensive experiments from conceptual to dense prediction tasks on
several large-scale visual recognition benchmarks. Experimental results empiri-
cally validate the effectiveness and efficiency of our proposed convolution form.
All experiments are performed with the PyTorch [27] library.

4.1 ILSVRC 2012

ImageNet [7] is one of the most challenging datasets for image classification,
which is served as the benchmark of the ILSVRC2012 competition. It includes
1,281,167 training images and 50,000 validation images, and each image is man-
ually annotated as one of the 1,000 object categories.

We incorporate our PSConv layer into various state-of-the-art convolutional
neural networks, including ResNet [11], ResNeXt [39] and SE-ResNet [12]. The
training procedure is performed on the ImageNet training set by the SGD opti-
mizer with the momentum of 0.9 and the weight decay of 1e-4. The mini-batch
size is set to 256 and the optimization process lasts for a period of 120 epochs
to achieve full convergence. The learning rate initiates from 0.1 and decays to
zero following a half cosine function shaped schedule, the same as [2] and [5].
We adopt random scale and aspect ratio augmentation together with random
horizontal flipping to process each training sample prior to feeding it into neu-
ral networks. We select the best-performing model along the training trajectory
and report its performance on the ImageNet validation set. As is the common
practice, we first resize the shorter side of validation images to 256 pixels and
then crop the central region of 224 × 224 size for evaluation.
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As shown in Table 1, network models equipped with PSConv layers demon-
strate consistent improvement over counterpart baseline models mostly with over
1% gains of the top-1 error. We replace all the 3 × 3 standard convolutional lay-
ers in the middle of bottleneck blocks with our PSConv layers. In all of our
main experiments, the cyclic interval is set to 4 and the dilation rate pattern is
fixed as {d1, d2, d3, d4} = {1, 2, 1, 4} which are determined by ablation studies,
as detailed in the next subsection. It is observed that the PS-ResNet-50 model
achieves 21.126% top-1 error, which is comparable to the vanilla ResNet-101
model with almost half of the trainable parameter storage and computational
resource consumption. The PS-ResNeXt-50 (32 × 4d) model even achieves supe-
rior performance over the vanilla 101-layer ResNeXt model, which demonstrates
the wide applicability of our PSConv in boosting both standard and group con-
volution. Furthermore, we integrate PSConv into the modern SE-ResNet models
and obtain performance margins again, which showcases the compatibility of our
proposed convolution operation to other advanced atomic operations such as the
channel-attention modules. Notably, all the above gains are obtained without
theoretically introducing any additional computational cost.

Table 1. Recognition error comparisons on the ImageNet validation set. The standard
metrics of top-1/top-5 errors are measured using single center crop evaluation. The
baseline results are re-implemented by ourselves.

Architecture Conv Type Top-1/Top-5 Err.(%) Architecture Conv Type Top-1/Top-5 Err.(%)

ResNet-50 Standard 22.850/6.532 ResNet-101 Standard 21.102/5.696

PSConv 21.126/5.724 PSConv 19.954/5.052

ResNeXt-50

(32 × 4d)

Standard 21.802/6.084 ResNeXt-101 (32 × 4d) Standard 20.502/5.390

PSConv 20.378/5.296 PSConv 19.498/4.724

SE-ResNet-50 Standard 22.192/6.040 SE-ResNet-101 Standard 20.732/5.406

PSConv 20.814/5.578 PSConv 19.786/4.924

For horizontal comparison, we give a brief synopsis of some recent multi-
scale networks in Table 2 for reference. Despite that discrepancies in model
profiles and training strategies could lead to no apple-to-apple comparisons in
most cases, our PS-ResNet-50 achieves competitive accuracy compared to other
ResNet-50-based architectures under the similar level of parameters and com-
putational complexities. Specifically, two variants of Dilated Residual Networks
(DRN) increase the computation cost to a large extent due to the removed
strides in the last two residual stages, but only achieves inferior or comparable
performance.
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Table 2. Performance comparison with state-of-the-art multi-scale network architec-
tures on the ImageNet validation set.

Network Params GFLOPs LR decay schedule Top-1/Top-5 Err.(%)

ResNet-50 [11] 25.557M 4.089 Cosine (120 epoch) 22.850/6.532

PS-ResNet-50 (ours) 25.557M 4.089 Cosine (120 epoch) 21.126/5.724

DRN-A-50 [41] 25.557M 19.079 Stepwise (120 epoch) 22.9/6.6

DRN-D-54 [41] 35.809M 28.487 Stepwise (120 epoch) 21.2/5.9

FishNet-150 [34] 24.96M 6.45 Stepwise (100 epoch) 21.86/6.05

FishNet-150 [34] 24.96M 6.45 Cosine (200 epoch)

w/ label smoothing

20.65/5.25

HRNet-W18-C [33] 21.3M 3.99 Stepwise (100 epoch) 23.2/6.6

OctResNet-50 [5]

(α = 0.5)

25.6M 2.4 cosine (110 epoch) 22.6/6.4

bL-ResNet-50 [2]

(α = 2, β = 4)

26.69M 2.85 cosine (110 epoch) 22.69/-

Res2Net-50 [8]

(26w × 4s)

25.70M 4.2 Stepwise (100 epoch) 22.01/6.15

ScaleNet-50 [20] 31.483M 3.818 Stepwise (100 epoch) 22.02/6.05

4.2 Ablation and Analysis

We first systematically probe the impact of partition numbers and dilation rate
patterns in one cycle. We next assess the ability of PSConv to generalize to
another classification benchmark beyond ImageNet, namely CIFAR-100.

Partition Number. On the one hand, provided that channels are divided into
too many partitions, there leaves limited room for varied dilation rates within one
partition and it frequently alternates around certain values. In the extreme case
that the partition number equals to the number of channels, PSConv degenerates
into the vanilla dilated convolution with a shared dilation rate. On the other
hand, if there are too few partitions, each partition can accommodate a large
number of heterogeneous dilation rates, which may have contradictory effects
on extracting diverse features, hence we initially constrain the dilation rate in
one basic pattern to toggle between 1 and 2 in this set of ablation experiments.
Specifically, we set the dilation rate in one slot of a cycle to 2 and the other slots
to 1. Under this constraint, features corresponding to large receptive fields will
infrequently emerge with the growing cyclic interval, which may still impede the
full utilization of multi-scale features.

Table 3. Performance comparison of PS-ResNet-50 with varied cyclic intervals on the
ImageNet validation set. The best result is highlighted in bold, the same hereinafter.

Architecture ResNet-50 PS-ResNet-50

Cyclic Interval t = 1 (baseline) t = 2 t = 4 t = 8

Top-1/Top-5 Err.(%) 22.850/6.532 21.948/5.978 21.476/5.720 21.634/5.816
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Table 4. Performance comparison of PS-ResNet-50 with various dilation patterns on
the ImageNet validation set.

Dilation Pattern {1, 1, 1, 1}
(baseline)

{1, 2, 1, 1} {1, 4, 1, 1} {1, 2, 1, 2} {1, 2, 1, 4} (default)

Top-1/Top-5

Err.(%)

22.850/6.532 22.368/6.214 22.754/6.470 21.948/5.978 21.126/5.724

We use the ResNet-50 model on the ImageNet dataset for experiments and
tune the partition numbers, giving rise to a spectrum of cyclic intervals. The cor-
responding results shown in Table 3 empirically support our speculation above.
The PS-ResNet-50 (t = 4) achieves better performance when the cyclic interval
increases from 2 to 4. The accuracy tends to decline when its cyclic interval gets
further increment. Thus we set t = 4 as the default value in our main experi-
ments. In each case, PS-ResNet-50 with a specific cyclic setting outperforms the
vanilla ResNet-50 baseline result.

Pattern of Dilation Rates. Let the cyclic interval be 4. Noticing that the
dilation rate pattern is an unordered set, we initially set any one of the dilation
rate to a larger numeric value. For example, {d1, d2, d3, d4} is set to {1, 2, 1, 1},
where the unique large dilation rate is placed in the second slot without loss of
generality owing to its unordered nature. Next we assume that further increas-
ing this large dilation rate (e.g., setting {d1, d2, d3, d4} = {1, 4, 1, 1}) would lead
to intra-group separation of these two dilation rates and unsmoothed transi-
tion of the receptive fields. Then we tend to inject another large dilation rate
into this pattern. Considering that the setting of {d1, d2, d3, d4} = {1, 2, 1, 2}
is equivalent to t = 2 in the above experiments, we change the pattern to
{d1, d2, d3, d4} = {1, 2, 1, 4} for the sake of perceiving larger receptive fields and
interspacing the two different large dilation rates. This consequent PS-ResNet-
50 achieves 21.126% top-1 error in the ImageNet evaluation, which is exactly
the one reported in Table 1. For further exploration, we tentatively incorporate
larger dilation rate to compose the combination of {d1, d2, d3, d4} = {1, 2, 4, 8},
but it shows much inferior performance (over 5% drop). We attribute this fail-
ure to the exclusively aggressive dilation rate arrangement, since inappropriately
enlarging the receptive field can involve irrelevant pixels into spatial correlation
(Table 4).

Apart from the static setting of dilation rates, we develop a learnable binary
mask to distinguish the large dilation rate from the small one. This binary mask
is decomposed via the Kronecker product, where the STE (Straight-Through
Estimator) [29] technique is utilized to solve the discrete optimization problem.
As a consequence, the dynamic version of PS-ResNet-50 with optional dilation
rates of 1 and 2 reduces the top-1 error to 21.138%, that is close to the best-
performing static PS-ResNet-50 (t = 4, {d1, d2, d3, d4} = {1, 2, 1, 4}) involv-
ing larger dilation rates in its PSConv pattern. Although extra parameters and
computational complexity result in no fair comparison, it opens up a promising
perspective deserving future research development.
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Table 5. Performance comparison of PS-ResNet-50 on the ImageNet validation set,
with the variation of dilation rates along different axes of kernel lattice.

Input Channel Axis Output Channel Axis Top-1/Top-5 Err.(%)

✓ ✗ 21.658/5.832

✗ ✓ 22.056/6.174

✓ ✓ 21.126/5.724

Table 6. Top-1 error comparisons on the CIFAR-100 test set. Our results were obtained
by computing mean and standard deviation over 5 individual runs (denoted by mean
± std. in the table).

Architecture Conv Type Top-1 Error(%) Architecture Conv Type Top-1 Error(%)

ResNeXt-29

(8 × 64d)

Standard (official) 17.77 ResNeXt-29

(16 × 64d)

Standard (official) 17.31

Standard (self impl.) 18.074 ± 0.130 Standard (self impl.) 17.538 ± 0.094

PSConv 17.138 ± 0.286 PSConv 16.528 ± 0.353

Following the searched optimal setting of {d1, d2, d3, d4} = {1, 2, 1, 4}, we
remove the shift strategy among different filters, which means the variation of
dilation rates only exists in the axis of input channels. In this setup, we observe
a drop of around 1% regarding the top-1 validation accuracy. Symmetrically, we
only vary the dilation rates in the axis of output channels with the same setting
of {d1, d2, d3, d4} = {1, 2, 1, 4}, which indicates no cyclic operations inside each
individual filter. As shown in Table 5, it also achieves inferior performance.

Beyond ImageNet. CIFAR-100 [17] is another widely-adopted benchmark for
image classification, which consists of 50,000 training images and 10,000 test
images. Each colorful image in the dataset is of 32× 32 size and drawn from 100
classes, hence it is more challenging than CIFAR-10 with similar image qualities
but a coarser taxonomy. We choose the high-performing ResNeXt [39] archi-
tecture as a strong baseline, and replace all the 3 × 3 convolutional layers in
every bottleneck block with PSConv layers to build our PS-ResNeXt models for
comparison. The data augmentation is the same as the preprocessing method
in [11,39], utilizing sequential zero padding, random cropping and standardiza-
tion. The whole training regime strictly follows the original paper to isolate the
contribution of our PSConv. For evaluation, we perform five independent runs
of training the same architecture with different initialization seeds and report
the mean top-1 error as well as the standard deviation.

We summarize the comparison results in Table 6. The performance of our
reproduced ResNeXt-29 is slightly degraded, thus we list results from both the
official release and our implementation, annotated as official and self impl.
with the standard convolution respectively. It is evident that PS-ResNeXt-29
(8 × 64d) and PS-ResNeXt-29 (16 × 64d) outperform the original ResNeXts
by around 1% accuracy gains. Even compared to the results from the original
author, absolute gains of 0.632% and 0.782% are achieved using our PSConv
neural networks. It is observed that using networks with various cardinalities on



628 D. Li et al.

datasets with distinct characteristics (like thumbnails), PSConv could still yield
satisfactory performance gains.

Speed Benchmark. For an input tensor with the size of (N,C,H,W ) =
(200, 64, 56, 56), a standard 3 × 3 convolutional layer with 64 output channels
takes 4.85ms to process on a single Titan X GPU, using CUDA v9.0 and cuDNN
v7.0 as the backend. The dilated convolution with a dilation rate of 2 consumes
2.99 times of above and the inference time of our PSConv is 1.14× of dilated
convolution. There exist a similar trend in the comparison of their group convo-
lution based counterparts. Thus, improved performance of inference speed can
be achieved by optimizing vanilla dilated convolutions on GPU/CPU inference.
The further optimized results for practical deployment are provided in the sup-
plementary materials.

Scale Allocation. We dive into the PSConv kernels to analyze the law of scale-
relevant feature distributions by dissecting the weight proportion with respect
to different dilation rates, as is shown in the supplementary materials.

4.3 MS COCO 2017

To further demonstrate the generality of our proposed convolution, we apply
the PSConv-based backbones to object detection and instance segmentation
frameworks and finetune the PSConv-based detectors on the 2017 version of
Microsoft COCO [23] benchmark. This large-scale dataset including 118,287
training images and 5,000 validation images is considered highly challenging
owing to the huge number of objects within per image and large variation among
these instances, which is suitable for inspecting the superiority of our PSConv
models.

We use the popular MMDetection [3] toolbox to conduct experiments.
ResNet-50/101 and ResNeXt-101 (32 × 4d) along with FPN [22] necks are
selected as the backbone networks. For object detection and instance segmenta-
tion tasks, we adopt the main-stream Faster R-CNN [30] and Mask R-CNN [10]
as the basic detectors respectively. We replace all the 3 × 3 convolutional layers
in the pre-trained backbone network by PSConv layers, while the convolution
layers in the FPN neck are kept as standard convolutions2. Then we finetune
these detectors on the training set following the 1× learning rate schedule, which
indicates a total of 12 epochs with the learning rate divided by 10 at the epoch
of 8th and 11st respectively. During this transfer learning process, we maintain
the same data preparation pipeline and hyperparameter settings for our models
as the baseline detectors. During evaluation, we test on the validation set and
report the COCO-style Average Precision (AP) under IOU thresholds ranging
from 0.5 to 0.95 with an increment of 0.05. We also keep track of scores for small,
medium and large objects. These metrics comprehensively assess the qualities of
detection and segmentation results from various views of different scales.
2 Actually we have preliminary experiments by also replacing these layers with PSConv

layers, but it achieves marginal benefit. For instance, APbbox of Faster R-CNN with
ResNet-50 and FPN only increases from 38.4% to 38.6%.
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The comparison results of Mask R-CNN are shown in Table 7 (similar com-
parisons of Faster R-CNN are provided in the supplementary materials), where
the baseline results with standard backbone networks are extracted from the
model zoo of MMDetection, and absolute gains of AP concerning our PSConv
models are indicated in the parentheses. Since our ImageNet pre-trained back-
bones in Sect. 4.1 are trained using the cosine learning rate annealing, we would
have an unfair accuracy advantage against the pre-trained backbones in MMDe-
tection. In order to pursue fair comparison to its published baseline results, we
first retrain backbones of ResNet and ResNeXt following the conventional step-
wise learning rate annealing strategy [11] and then load these backbones to the
detectors3. It is evident that PSConv brings consistent and considerable perfor-
mance gains over the baseline results, across different tasks and various back-
bones. In addition, we introduce the Cascade (Mask) R-CNN [1] as a stronger
baseline detector and reach the conclusion that our PSConv operation can ben-
efit both basic detectors and more advanced cascade detectors.

Detectors with the ResNet-101 backbone consistently show larger margins
among different tasks and frameworks compared to the other two backbones.
Compared to ResNet-50, the 101-layer network almost quadruples the depth of
the conv4 x stage, guaranteeing a higher capacity for performance amelioration.
In addition, we come up with the hypothesis that its ResNeXt counterpart has
already efficiently deployed the model capacity through adjusting the dimen-
sion of cardinality beyond network depth and width, leaving a bottleneck for
further performance improvement in both classification and detection tasks. It
is observed that the most significant improvement of Faster R-CNN and Mask
R-CNN locates in the metric of APL among various object sizes, speaking to
the theoretically enlarged receptive fields. Finally, representative visualization
results of predicted bounding-boxes and masks are attached in the supplemen-
tary materials to raise the qualitative insight of our method.

5 Conclusion

In this paper, we have proposed a novel convolution operation named PSConv,
which cyclically alternates dilation rates along the axes of input and output
channels. PSConv permits to aggregate multi-scale features from a granular per-
spective and efficiently allocates weights to a collection of scale-specific features
through dynamic execution. It is amenable to be plugged into arbitrary state-
of-the-art CNN architectures in-place, demonstrating its superior performance
on various vision tasks compared to the counterparts with regular convolutions.
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