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Abstract. Important information that relates to a specific topic in a
document is often organized in tabular format to assist readers with
information retrieval and comparison, which may be difficult to pro-
vide in natural language. However, tabular data in unstructured digital
documents, e.g. Portable Document Format (PDF) and images, are dif-
ficult to parse into structured machine-readable format, due to complex-
ity and diversity in their structure and style. To facilitate image-based
table recognition with deep learning, we develop and release the largest
publicly available table recognition dataset PubTabNet (https://github.
com/ibm-aur-nlp/PubTabNet.), containing 568k table images with cor-
responding structured HTML representation. PubTabNet is automati-
cally generated by matching the XML and PDF representations of the
scientific articles in PubMed Central

TM
Open Access Subset (PMCOA).

We also propose a novel attention-based encoder-dual-decoder (EDD)
architecture that converts images of tables into HTML code. The model
has a structure decoder which reconstructs the table structure and helps
the cell decoder to recognize cell content. In addition, we propose a new
Tree-Edit-Distance-based Similarity (TEDS) metric for table recogni-
tion, which more appropriately captures multi-hop cell misalignment and
OCR errors than the pre-established metric. The experiments demon-
strate that the EDD model can accurately recognize complex tables solely
relying on the image representation, outperforming the state-of-the-art
by 9.7% absolute TEDS score.
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1 Introduction

Information in tabular format is prevalent in all sorts of documents. Compared to
natural language, tables provide a way to summarize large quantities of data in
a more compact and structured format. Tables provide as well a format to assist
readers with finding and comparing information. An example of the relevance
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of tabular information in the biomedical domain is in the curation of genetic
databases in which just between 2% to 8% of the information was available in
the narrative part of the article compared to the information available in tables
or files in tabular format [17].

Tables in documents are typically formatted for human understanding, and
humans are generally adept at parsing table structure, identifying table headers,
and interpreting relations between table cells. However, it is challenging for a
machine to understand tabular data in unstructured formats (e.g. PDF, images)
due to the large variability in their layout and style. The key step of table under-
standing is to represent the unstructured tables in a machine-readable format,
where the structure of the table and the content within each cell are encoded
according to a pre-defined standard. This is often referred as table recognition [9].

This paper solves the following three problems in image-based table recog-
nition, where the structured representations of tables are reconstructed solely
from image input:

– Data. We provide a large-scale dataset PubTabNet, which consists of over
568k images and corresponding HTML representations of heterogeneous
tables. PubTabNet is created by matching the PDF format and the XML
format of the scientific articles contained in PMCOA1.

– Model. We develop a novel attention-based encoder-dual-decoder (EDD)
architecture (see Fig. 1) which consists of an encoder, a structure decoder,
and a cell decoder. The EDD model is the first end-to-end table recognition
model that supports joint training on table structure recognition and cell
content recognition tasks. This model design allows the cell decoder to use
information from the structure decoder to better focus on the local visual
features of the cell being generated. This mechanism back-propagates cell
content recognition loss to the structure decoder, which regularizes it to better
locate table cells. EDD demonstrates superior performance on PubTabNet,
compared to existing table recognition methods.

– Evaluation. By modeling tables as a tree structure, we propose a new tree-
edit-distance-based evaluate metric for image-based table recognition. We
demonstrate that our new metric is superior to the metric [16] commonly
used in literature and competitions.

2 Related Work

Data. Analyzing tabular data in unstructured documents focuses mainly on
three problems: i) table detection: localizing the bounding boxes of tables in
documents, ii) table structure recognition: parsing only the structural (row and
column layout) information of tables, and iii) table recognition: parsing both the
structural information and content of table cells. Table 1 compares the datasets
that have been developed to address one or more of these three problems. The
PubTabNet dataset and the EDD model we develop in this paper aim at the
1 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/


566 X. Zhong et al.

Table 1. Datasets for Table Detection (TD), Table Structure Recognition (TSR) and
Table Recognition (TR).

Dataset TD TSR TR # Tables

Marmot [5] ✓ ✗ ✗ 958

PubLayNet [39] ✓ ✗ ✗ 113k

DeepFigures [33] ✓ ✗ ✗ 1.4m

ICDAR2013 [9] ✓ ✓ ✓ 156

ICDAR2019 [6] ✓ ✓ ✗ 3.6k

UNLV [32] ✓ ✓ ✗ 558

TableBanka ✓ ✓ ✗ 417k (TD)

145k (TSR)

SciTSRb ✗ ✓ ✓ 15k

Table2Latex [3] ✗ ✓ ✓ 450k

Synthetic data in [26] ✗ ✓ ✓ Unbounded

PubTabNet ✗ ✓ ✓ 568k
ahttps://github.com/doc-analysis/TableBank
b https://github.com/Academic-Hammer/SciTSR

image-based table recognition problem. Comparing to other existing datasets for
table recognition (e.g. SciTSR2, Table2Latex [3], and TIES [26]), PubTabNet has
three key advantages:

1. The tables are typeset by the publishers of over 6,000 journals, which offers
considerably more diversity in table styles than other table datasets.

2. Cells are categorized into headers and body cells, which is important when
retrieving information from tables.

Model. Traditional table detection and recognition methods rely on pre-
defined rules [7,14,15,24,31,37] and statistical machine learning [1,4,18,20,34].
Recently, deep learning exhibit great performance in image-based table detec-
tion and structure recognition. Hao et al. used a set of primitive rules to pro-
pose candidate table regions and a convolutional neural network to determine
whether the regions contain a table [10]. Fully-convolutional neural networks,
followed by a conditional random field, have also been used for table detec-
tion [11,19,36]. In addition, deep neural networks for object detection, such as
Faster-RCNN [28], Mask-RCNN [12], and YOLO [27] have been exploited for
table detection and row/column segmentation [8,30,35,39]. Furthermore, graph
neural networks are used for table detection and recognition by encoding docu-
ment images as graphs [26,29].

There are several tools (see Table 2) that can convert tables in text-based
PDF format into structured representations. However, there is limited work on
image-based table recognition. Attention-based encoder-decoder was first pro-
posed by Xu et al. for image captioning [38]. Deng et al. extended it by adding a
2 https://github.com/Academic-Hammer/SciTSR.

https://github.com/doc-analysis/TableBank
https://github.com/Academic-Hammer/SciTSR
https://github.com/Academic-Hammer/SciTSR
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recurrent layer in the encoder for capturing long horizontal spatial dependencies
to convert images of mathematical formulas into LATEX representation [2]. The
same model was trained on the Table2Latex [3] dataset to convert table images
into LATEX representation. As show in [3] and in our experimental results (see
Table 2), the efficacy of this model on image-based table recognition is mediocre.

This paper considerably improves the performance of the attention-based
encoder-decoder method on image-based table recognition with a novel EDD
architecture. Our model differs from other existing EDD architectures [23,40],
where the dual decoders are independent from each other. In our model, the cell
decoder is triggered only when the structure decoder generates a new cell. In the
meanwhile, the hidden state of the structure decoder is sent to the cell decoder
to help it place its attention on the corresponding cell in the table image.

Evaluation. The evaluation metric proposed in [16] is commonly used in table
recognition literature and competitions. This metric first flattens the ground
truth and recognition result of a table are into a list of pairwise adjacency rela-
tions between non-empty cells. Then precision, recall, and F1-score can be com-
puted by comparing the lists. This metric is simple but has two obvious problems:
1) as it only checks immediate adjacency relations between non-empty cells, it
cannot detect errors caused by empty cells and misalignment of cells beyond
immediate neighbors; 2) as it checks relations by exact match3, it does not have
a mechanism to measure fine-grained cell content recognition performance. In
order to address these two problems, we propose a new evaluation metric: Tree-
Edit-Distance-based Similarity (TEDS). TEDS solves problem 1) by examining
recognition results at the global tree-structure level, allowing it to identify all
types of structural errors; and problem 2) by computing the string-edit-distance
when the tree-edit operation is node substitution.

3 Automatic Generation of PubTabNet

PMCOA contains over one million scientific articles in both unstructured (PDF)
and structured (XML) formats. A large table recognition dataset can be auto-
matically generated if the corresponding location of the table nodes in the XML
can be found in the PDF. In our previous work, we proposed an algorithm to
match the XML and PDF representations of the articles in PMCOA [39]. We use
this algorithm to extract the table regions from the PDF for the tables nodes in
the XML. The table regions are converted to images with a 72 pixels per inch
(PPI) resolution. We use this low PPI setting to relax the requirement of our
model for high-resolution input images. For each table image, the corresponding
table node (HTML) is extracted from the XML as the ground truth annotation.

It is observed that the algorithm generates erroneous bounding boxes for
some tables, hence we use a heuristic to automatically verify the bounding boxes.
For each annotation, the text within the bounding box is extracted from the PDF
and compared with that in the annotation. The bounding box is considered to be
3 Both cells are identical and the direction matches.
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correct if the cosine similarity of the term frequency-inverse document frequency
(Tf-idf) features of the two texts is greater than 90% and the length of the two
texts differs less than 10%. In addition, to improve the learnability of the data, we
remove rare tables which contains any cell that spans over 10 rows or 10 columns,
or any character that occurs less than 50 times in all the tables. Tables of which
the annotation contains math and inline-formula nodes are also removed, as
we found they do not have a consistent XML representation.

After filtering the table samples, we curate the HTML code of the tables to
remove unnecessary variations. First, we remove the nodes and attributes that
are not reconstructable from the table image, such as hyperlinks and definition
of acronyms. Second, table header cells are defined as th nodes in some tables,
but as td nodes in others. We unify the definition of header cells as td nodes,
which preserves the header identify of the cells as they are still descendants of the
thead node. Third, all the attributes except ‘rowspan’ and ‘colspan’ in td nodes
are stripped, since they control the appearance of the tables in web browsers,
which do not match with the table image. These curations lead to consistent
and clean HTML code and make the data more learnable.

Finally, the samples are randomly partitioned into 60%/20%/20% train-
ing/development/test sets. The training set contains 548,592 samples. As only
a small proportion of tables contain spanning (multi-column or multi-row) cells,
the evaluation on the raw development and test sets would be strongly biased
towards tables without spanning cells. To better evaluate how a model performs
on complex table structures, we create more balanced development and test sets
by randomly drawing 5,000 tables with spanning cells and 5,000 tables without
spanning cells from the corresponding raw set.

4 Encoder-Dual-Decoder (EDD) Model

Figure 1 shows the architecture of the EDD model, which consists of an encoder,
an attention-based structure decoder, and an attention-based cell decoder. The
use of two decoders is inspired by two intuitive considerations: i) table structure
recognition and cell content recognition are two distinctively different tasks. It
is not effective to solve both tasks at the same time using a single attention-
based decoder. ii) information in the structure recognition task can be helpful
for locating the cells that need to be recognized. The encoder is a convolutional
neural network (CNN) that captures the visual features of input table images.
The structure decoder and cell decoder are recurrent neural networks (RNN)
with the attention mechanism proposed in [38]. The structure decoder only gen-
erates the HTML tags that define the structure of the table. When the structure
decoder recognizes a new cell, the cell decoder is triggered and uses the hid-
den state of the structure decoder to compute the attention for recognizing the
content of the new cell. This ensures a one-to-one match between the cells gener-
ated by the structure decoder and the sequences generated by the cell decoder.
The outputs of the two decoders can be easily merged to get the final HTML
representation of the table.
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Fig. 1. EDD architecture. The encoder is a convolutional neural network which cap-
tures the visual features of the input table image. As and Ac are attention network for
the structure decoder and cell decoder, respectively. Rs and Rc are recurrent units for
the structure decoder and cell decoder, respectively. The structure decoder reconstructs
table structure and helps the cell decoder to generate cell content. The output of the
structure decoder and the cell decoder is merged to obtain the HTML representation
of the input table image.

As the structure and the content of an input table image are recognized sepa-
rately by two decoders, during training, the ground truth HTML representation
of the table is tokenized into structural tokens, and cell tokens as shown in Fig. 2.
Structural tokens include the HTML tags that control the structure of the table.
For spanning cells, the opening tag is broken down into multiple tokens as ‘<td’,
‘rowspan’ or ‘colspan’ attributes, and ‘>’. The content of cells is tokenized at
the character level, where HTML tags are treated as single tokens.

Two loss functions can be computed from the EDD network: i) cross-entropy
loss of generating the structural tokens (ls); and ii) cross-entropy loss of gener-
ating the cell tokens (lc). The overall loss (l) of the EDD network is calculated
as,

l = λls + (1 − λ)lc, (1)

where λ ∈ [0, 1] is a hyper-parameter.
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Fig. 2. Example of tokenizing a HTML table. Structural tokens define the structure of
the table. HTML tags in cell content are treated as single tokens. The rest cell content
is tokenized at the character level.

5 Tree-Edit-Distance-Based Similarity (TEDS)

Tables are presented as a tree structure in the HTML format. The root has
two children thead and tbody, which group table headers and table body cells,
respectively. The children of thead and tbody nodes are table rows (tr). The
leaves of the tree are table cells (td). Each cell node has three attributes, i.e.
‘colspan’, ‘rowspan’, and ‘content’. We measure the similarity between two tables
using the tree-edit distance proposed by Pawlik and Augsten [25]. The cost of
insertion and deletion operations is 1. When the edit is substituting a node no

with ns, the cost is 1 if either no or ns is not td. When both no and ns are
td, the substitution cost is 1 if the column span or the row span of no and
ns is different. Otherwise, the substitution cost is the normalized Levenshtein
similarity [22] (∈ [0, 1]) between the content of no and ns. Finally, TEDS between
two trees is computed as

TEDS(Ta, Tb) = 1 − EditDist(Ta, Tb)
max(|Ta|, |Tb|) , (2)

where EditDist denotes tree-edit distance, and |T | is the number of nodes in T .
The table recognition performance of a method on a set of test samples is defined
as the mean of the TEDS score between the recognition result and ground truth
of each sample.

In order to justify that TEDS solves the two problems of the adjacency rela-
tion metric [16] described previously in Sect. 2, we add two types of perturbations
to the validation set of PubTabNet and examine how TEDS and the adjacency
relation metric respond to the perturbations.
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1. To demonstrate the empty-cell and multi-hop misalignment issue, we shift
some cells in the first row downwards4, and pad the leftover space with empty
cells. The shift distance of a cell is proportional to its column index. We tested
5 perturbation levels, i.e., 10%, 30%, 50%, 70%, or 90% of the cells in the
first row are shifted. Figure S1 in supplemental material shows a perturbed
example, where 90% of the cells in the first row are shifted.

2. To demonstrate the fine-grained cell content recognition issue, we randomly
modify some characters into a different one. We tested 5 perturbation levels,
i.e., the chance that a character gets modified is set to be 10%, 30%, 50%,
70%, or 90%. Figure S2 in supplemental material shows an example at the
10% perturbation level.

Fig. 3. Comparison of the response of TEDS and the adjacency relation metric to
cell shift perturbation and cell content perturbation. The adjacency relation metric is
under-reacting to cell shift perturbation and over-reacting to cell content perturbation.
Whereas TEDS demonstrates superiority at appropriately capturing the errors.

Figure 3 illustrates how TEDS and the adjacency relation F1-score respond
to the two types of perturbations at different levels. The adjacency relation met-
ric is under-reacting to the cell shift perturbation. At the 90% perturbation level,
the table is substantially different from the original (see example in Fig. S1 in
supplemental material). However, the adjacency relation F1-score is still nearly
80%. On the other hand, the perturbation causes a 60% drop on TEDS, demon-
strating that TEDS is able to capture errors that the adjacency relation metric
cannot.

When it comes to cell content perturbations, the adjacency relation metric
is over-reacting. Even the 10% perturbation level (see example in Fig. S2 in
supplemental material) leads to over 70% decrease in adjacency relation F1-
score, which drops close to zero from the 50% perturbation level. In contrast,
TEDS linearly decreases from 90% to 40% as the perturbation level increases
from 10% to 90%, demonstrating the capability of capturing fine-grained cell
content recognition errors.
4 If the number of rows is greater than the number of columns, we shift the cells in

the first column rightwards instead.
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6 Experiments

The test performance of the proposed EDD model is compared with five off-
the-shelf tools (Tabula5, Traprange6, Camelot7, PDFPlumber8, and Adobe
AcrobatR© Pro9) and the WYGIWYS model10 [2]. We crop the test tables from
the original PDF for Tabula, Traprange, Camelot, and PDFPlumber, as they
only support text-based PDF as input. Adobe AcrobatR© Pro is tested with both
PDF tables and high-resolution table images (300 PPI). The outputs of the off-
the-shelf tools are parsed into the same tree structure as the HTML tables to
compute the TEDS score.

6.1 Implementation Details

To avoid exceeding GPU RAM, the EDD model is trained on a subset (399k
samples) of PubTabNet training set, which satisfies

width and height ≤ 512 pixels
structural tokens ≤ 300 tokens

longest cell ≤ 100 tokens. (3)

Note that samples in the validation and test sets are not constrained by these
criteria. The vocabulary size of the structural tokens and the cell tokens of the
training data is 32 and 281, respectively. Training images are rescaled to 448×448
pixels to facilitate batching and each channel is normalized by z-score.

We use the ResNet-18 [13] network as the encoder. The default ResNet-18
model downsamples the image resolution by 32. We modify the last CNN layer of
ResNet-18 to study if a higher-resolution feature map improves table recognition
performance. A total of five different settings are tested in this paper:

– EDD-S2: the default ResNet-18
– EDD-S1: stride of the last CNN layer set to 1
– EDD-S2S2: two independent last CNN layers for structure (stride = 2) and

cell (stride = 2) decoder
– EDD-S2S1: two independent last CNN layers for structure (stride = 2) and

cell (stride = 1) decoder
– EDD-S1S1: two independent last CNN layers for structure (stride = 1) and

cell (stride = 1) decoder

5 v1.0.4 (https://github.com/tabulapdf/tabula-java).
6 v1.0 (https://github.com/thoqbk/traprange).
7 v0.7.3 (https://github.com/camelot-dev/camelot).
8 v0.6.0-alpha (https://github.com/jsvine/pdfplumber).
9 v2019.012.20040.

10 WYGIWYS is trained on the same samples as EDD by truncated back-propagation
through time (200 steps). WYGIWYS and EDD use the same CNN in the encoder
to rule out the possibility that the performance gain of EDD is due to difference in
CNN.

https://github.com/tabulapdf/tabula-java
https://github.com/thoqbk/traprange
https://github.com/camelot-dev/camelot
https://github.com/jsvine/pdfplumber
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We evaluate the performances of these five settings on the validation set (see
Table S3 in supplemental material) and find that a higher-resolution feature
map and independent CNN layers improve performance. As a result, the EDD-
S1S1 setting provides the best validation performance, and is therefore chosen
to compare with baselines on the test set.

The structure decoder and the cell decoder are single-layer long short-term
memory (LSTM) networks, of which the hidden state size is 256 and 512, respec-
tively. Both of the decoders weight the feature map from the encoder with soft-
attention, which has a hidden layer of size 256. The embedding dimension of
structural tokens and cell tokens is 16 and 80, respectively. At inference time,
the output of both of the decoders are sampled with beam search (beam = 3).

The EDD model is trained with the Adam [21] optimizer with two stages.
First, we pre-train the encoder and the structure decoder to generate the struc-
tural tokens only (λ = 1), where the batch size is 10, and the learning rate
is 0.001 in the first 10 epochs and reduced by 10 for another 3 epochs. Then
we train the whole EDD network to generate both structural and cell tokens
(λ = 0.5), with a batch size 8 and a learning rate 0.001 for 10 epochs and 0.0001
for another 2 epochs. Total training time is about 16 days on two V100 GPUs.

6.2 Quantitative Analysis

Table 2 compares the test performance of the proposed EDD model and the
baselines, where the average TEDS of simple11 and complex (See footnote 11)
test tables is also shown. By solely relying on table images, EDD substantially
outperforms all the baselines on recognizing simple and complex tables, even the
ones that directly use text extracted from PDF to fill table cells. Camelot is the
best off-the-shelf tool in this comparison. Furthermore, the performance of Adobe
AcrobatR© Pro on image input is dramatically lower than that on PDF input,
demonstrating the difficulty of recognizing tables solely on table images. When
trained on the PubTabNet dataset, WYGIWYS also considerably outperform
the off-the-shelf tools, but is outperformed by EDD by 9.7% absolute TEDS
score. The advantage of EDD to WYGIWYS is more profound on complex tables
(9.9% absolute TEDS) than simple tables (9.5% absolute TEDS). This proves
the great advantage of jointly training two separate decoders to solve structure
recognition and cell content recognition tasks.

6.3 Qualitative Analysis

To illustrate the differences in the behavior of the compared methods, Fig. 4
shows the rendering of the predicted HTML given an example input table. The
table has 7 columns, 3 header rows, and 4 body rows. The table header has
a complex structure, which consists of 4 multi-row (span = 3) cells, 2 multi-
column (span = 3) cells, and three normal cells. Our EDD model is able to
generate an extremely close match to the ground truth, making no error in

11 Tables without multi-column or multi-row cells.
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Table 2. Test performance of EDD and 7 baseline approaches. Our EDD model, by
solely relying on table images, substantially outperforms all the baselines.

Input Method Average TEDS (%)

Simplea Complexb All

PDF Tabula 78.0 57.8 67.9

Traprange 60.8 49.9 55.4

Camelot 80.0 66.0 73.0

PDFPlumber 44.9 35.9 40.4

AcrobatR© Pro 68.9 61.8 65.3

Image AcrobatR© Pro 53.8 53.5 53.7

WYGIWYS 81.7 75.5 78.6

EDD 91.2 85.4 88.3
a Tables without multi-column or multi-row cells.
b Tables with multi-column or multi-row cells.

structure recognition and a single optical character recognition (OCR) error
(‘PF’ recognized as ‘PC’). The second header row is missing in the results of
WYGIWYS, which also makes a few errors in the cell content. On the other
hand, the off-the-shelf tools make substantially more errors in recognizing the
complex structure of the table headers. This demonstrates the limited capability
of these tools on recognizing complex tables.

Figures S4 (a)–(c) illustrate the attention of the structure decoder when
processing an example input table. When a new row is recognized (‘<tr>’ and
‘</tr>’), the structure decoder focuses its attention around the cells in the row.
When the opening tag (‘<td>’) of a new cell is generated, the structure decoder
pays more attention around the cell. For the closing tag ‘</td>’ tag, the atten-
tion of the structure decoder spreads across the image. Since ‘</td>’ always
follows the ‘<td>’ or ‘>’ token, the structure decoder relies on the language
model rather than the encoded feature map to predict it. Figure S4 (d) shows
the aggregated attention of the cell decoder when generating the content of
each cell. Compared to the structure decoder, the cell decoder has more focused
attention, which falls on the cell content that is being generated.

6.4 Error Analysis

We categorize the test set of PubTabNet into 15 equal-interval groups along
four key properties of table size: width, height, number of structural tokens, and
number of tokens in the longest cell. Figure 5 illustrates the number of tables
in each group and the performance of the EDD model and the WYGIWYS
model on each group. The EDD model outperforms the WYGIWYS model on
all groups. The performance of both models decreases as table size increases. We
train the models with tables that satisfy Eq. 3, where the thresholds are indicated
with vertical dashed lines in Fig. 5. Except for width, we do not observe a steep
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Fig. 4. Table recognition results of EDD and 7 baseline approaches on an example
input table which has a complex header structure (4 multi-row (span = 3) cells, 2
multi-column (span = 3) cells, and three normal cells). Our EDD model perfectly
recognizes the complex structure and cell content of the table, whereas the baselines
struggle with the complex table header.

decrease in performance near the thresholds. We think the lower performance on
larger tables is mainly due to rescaling images for batching, where larger tables
are more strongly downsampled. The EDD model may better handle large tables
by grouping table images into similar sizes as in [2] and using different rescaling
sizes for each group.
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Fig. 5. Impact of table size in terms of width, height, number of structural tokens,
and number of tokens in the longest cell on the performance of EDD and WYGIWYS.
The bar plots (left axis) are the histogram of PubTabNet test set w.r.t. the above
properties. The line plots (right axis) are the mean TEDS of the samples in each bar.
The vertical dashed lines are the thresholds in Eq. 3.

6.5 Generalization

To demonstrate that the EDD model is not only suitable for PubTabNet, but
also generalizable to other table recognition datasets, we train and test EDD
on the synthetic dataset proposed in [26]. We did not choose the ICDAR2013
or ICDAR2019 table recognition competition datasets. Because, as shown in
Table 1, ICDAR2013 does not provide enough training data; and ICDAR2019
does not provide ground truth of cell content (cell position only). We synthesize
500K table images with the corresponding HTML representation12, evenly dis-
tributed among the four categories of table styles defined in [26] (see Fig. S3 in
supplemental material for example). The synthetic data is partitioned (stratified
sampling by category) into 420K/40k/40k training/validation/test sets.

We compare the test performance of EDD to the graph neural network model
TIES proposed in [26] on each table category. We compute the TEDS score
only for EDD, as TIES predicts if two tokens (recognized by an OCR engine
from the table image) share the same cell, row, and column, but not a HTML
representation of the table13. Instead, as in [26], the exact match percentage is
calculated and compared between EDD and TIES. Note that the exact match for
TIES only checks if the cell, row, and column adjacency matrices of the tokens
perfectly match the ground truth, but does not check if the OCR engine makes
any mistakes. For a fair comparison, we also ignore cell content recognition errors
when checking the exact match for EDD, i.e., the recognized table is considered
as an exact match as long as the structure perfectly matches the ground truth.

Table 3 shows the test performance of EDD and TIES, where EDD achieves
an extremely high TEDS score (99.7+%) on all the categories of the synthetic
dataset. This means EDD is able to nearly perfectly reconstructed both the
structure and cell content from the table images. EDD outperforms TIES in
terms of exact match on all table categories. In addition, unlike TIES, EDD
does not show any significant downgrade in performance on category 3 or 4, in

12 https://github.com/hassan-mahmood/TIES DataGeneration.
13 [26] does not describe how the adjacency relations can be converted to a unique

HTML representation.

https://github.com/hassan-mahmood/TIES_DataGeneration
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Table 3. Test performance of EDD and TIES on the dataset proposed in [26]. TEDS
score is not computed for TIES, as it does not generate the HTML representation of
input image.

Model Average TEDS (%) Exact match (%)

C1 C2 C3 C4 C1 C2 C3 C4

TIES – – – – 96.9 94.7 52.9 68.5

EDD 99.8 99.8 99.8 99.7 99.7 99.9 97.2 98.0

which the samples have a more complex structure. This demonstrates that EDD
is much more robust and generalizable than TIES on more difficult examples.

7 Conclusion

This paper makes a comprehensive study of the image-based table recognition
problem. A large-scale dataset PubTabNet is developed to train and evaluate
deep learning models. By separating table structure recognition and cell content
recognition tasks, we propose an attention-based EDD model. The structure
decoder not only recognizes the structure of input tables, but also helps the cell
decoder to place its attention on the right cell content. We also propose a new
evaluation metric TEDS, which captures both the performance of table structure
recognition and cell content recognition. Compare to the traditional adjacency
relation metric, TEDS can more appropriately capture multi-hop cell misalign-
ment and OCR errors. The proposed EDD model, when trained on PubTabNet,
is effective on recognizing complex table structures and extracting cell content
from image. PubTabNet has been made available and we believe that PubTabNet
will accelerate future development in table recognition and provide support for
pre-training table recognition models.

Our future works will focus on the following two directions. First, current
PubTabNet dataset does not provide coordinates of table cells, which we plan
to supplement in the next version. This will enable adding an additional branch
to the EDD network to also predict cell location. We think this additional task
will assist cell content recognition. In addition, when tables are available in text-
based PDF format, the cell location can be used to extract cell content directly
from PDF without using OCR, which might improve the overall recognition
quality. Second, the EDD model takes table images as input, which implicitly
assumes that the accurate location of tables in documents is given by users.
We will investigate how the EDD model can be integrated with table detection
neural networks to achieve end-to-end table detection and recognition.

References

1. Cesarini, F., Marinai, S., Sarti, L., Soda, G.: Trainable table location in document
images. In: Object Recognition Supported by User Interaction for Service Robots,
vol. 3, pp. 236–240. IEEE (2002)



578 X. Zhong et al.

2. Deng, Y., Kanervisto, A., Ling, J., Rush, A.M.: Image-to-markup generation with
coarse-to-fine attention. In: Proceedings of the 34th International Conference on
Machine Learning, vol. 70, pp. 980–989 (2017). JMLR.org

3. Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific
table recognition. In: 2019 International Conference on Document Analysis and
Recognition (ICDAR), pp. 894–901. IEEE, September 2019. https://doi.org/10.
1109/ICDAR.2019.00166

4. Fan, M., Kim, D.S.: Table region detection on large-scale pdf files without labeled
data. CoRR, abs/1506.08891 (2015)

5. Fang, J., Tao, X., Tang, Z., Qiu, R., Liu, Y.: Dataset, ground-truth and perfor-
mance metrics for table detection evaluation. In: 2012 10th IAPR International
Workshop on Document Analysis Systems, pp. 445–449. IEEE (2012)

6. Gao, L., et al.: ICDAR 2019 competition on table detection and recognition. In:
2019 International Conference on Document Analysis and Recognition (ICDAR),
pp. 1510–1515. IEEE, September 2019. https://doi.org/10.1109/ICDAR.2019.
00166

7. Gatos, B., Danatsas, D., Pratikakis, I., Perantonis, S.J.: Automatic table detection
in document images. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR
2005. LNCS, vol. 3686, pp. 609–618. Springer, Heidelberg (2005). https://doi.org/
10.1007/11551188 67

8. Gilani, A., Qasim, S.R., Malik, I., Shafait, F.: Table detection using deep learning.
In: 2017 14th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR). vol. 1, pp. 771–776. IEEE (2017)
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