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Abstract. Multi-agent motion prediction is challenging because it aims
to foresee the future trajectories of multiple agents (e.g. pedestrians)
simultaneously in a complicated scene. Existing work addressed this chal-
lenge by either learning social spatial interactions represented by the
positions of a group of pedestrians, while ignoring their temporal coher-
ence (i.e. dependencies between different long trajectories), or by under-
standing the complicated scene layout (e.g. scene segmentation) to ensure
safe navigation. However, unlike previous work that isolated the spatial
interaction, temporal coherence, and scene layout, this paper designs a
new mechanism, i.e., Dynamic and Static Context-aware Motion Predic-
tor (DSCMP), to integrates these rich information into the long-short-
term-memory (LSTM). It has three appealing benefits. (1) DSCMP mod-
els the dynamic interactions between agents by learning both their spatial
positions and temporal coherence, as well as understanding the contex-
tual scene layout. (2) Different from previous LSTM models that pre-
dict motions by propagating hidden features frame by frame, limiting
the capacity to learn correlations between long trajectories, we carefully
design a differentiable queue mechanism in DSCMP, which is able to
explicitly memorize and learn the correlations between long trajectories.
(3) DSCMP captures the context of scene by inferring latent variable,
which enables multimodal predictions with meaningful semantic scene
layout. Extensive experiments show that DSCMP outperforms state-of-
the-art methods by large margins, such as 9.05% and 7.62% relative
improvements on the ETH-UCY and SDD datasets respectively.
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1 Introduction

Multi-agent motion prediction is an important task for many real-world appli-
cations such as self-driving vehicle, traffic surveillance, and autonomous mobile
robot. However, it is challenging because it aims at foreseeing the future tra-
jectories of multiple agents such as pedestrians simultaneously in a complicated
scene. Existing work [1–3,5,15,21,29,35] that addressed this challenge can be
generally partitioned into two categories. In the first category [1,2,5,29], previ-
ous work predicted the motions by learning social spatial interactions, which are
represented by the positions of pedestrians. However, these approaches typically
ignored the dependency between different long trajectories of pedestrians. In the
second category [3,15,21,35], prior arts combined scene understanding to regu-
larize the predicted trajectory, such as visual feature of the complicated scene
layout.

Different from existing work that either model agents’ interactions or the
scene layout, we carefully designed novel mechanisms in LSTM to model dynamic
interactions of pedestrians in both spatial and temporal dimensions, as well as
modeling the semantic scene layout as latent probabilistic variable to constrain
the predictions. These design principles enable our model to predict multiple tra-
jectories for each agent that cohere in time and space with the other agents. We
see that the proposed method outperforms its counterparts in many benchmarks
as shown in Fig. 1(c).

We name the proposed method as Dynamic and Static Context-aware Motion
Predictor (DSCMP), which has an encoder-decoder structure of LSTM that has
carefully devised mechanisms to tackle multi-agent motion prediction. DSCMP
has three appealing benefits that previous work did not have.

For the first benefit, unlike existing methods [1,5,21,29,35] that employed
recurrent neural networks (RNNs) to learn motion by passing message frame by
frame, DSCMP incorporates a queue mechanism in LSTM to explicitly propagate
hidden features of multiple frames, enabling to capture long trajectories among
pedestrians more explicitly than prior arts.

Specifically, the vanilla LSTM in previous approaches [4,22] attempts to learn
a frame-by-frame predictor for each agent i, denoted as mi

t+1 = p(mi
t, h

i
t−1),

where p(·) is a prediction function of LSTM, mi
t represents the current motion

state (i.e. the x, y positions) at the t-th frame and hi
t−1 is the hidden feature

of the previous single frame. The frame-wise models hinders their capacity to
capture the dependency between long trajectories of pedestrians.

The recent approaches of social-aware LSTM models [1,5,27] modified the
above vanilla LSTM by using mi

t+1 = p(mi
t,

⋃N(i)
i hi

t−1), where
⋃

denotes com-
bination of a set of hidden features of the spatial neighbors of the i-th pedestrian
(denoted by N(i)) at the previous (t − 1)-th frame.

However, the above methods are insufficient to consider the interactions
across agents. For example, as shown in Fig. 1a, the agent 2 is heading towards
agent 1 and agent 3. To avoid collision, the agent 2 tends to adjust his future
trajectory by anticipating the intention of agent 1 and 3 based on their recent
movement history, rather than their states at the previous one frame only.
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(a) Illustration of multi-agent
motion prediction.

(b) Comparisons of different approaches.

(c) Comparisons of the Relative Average Distance Error (ADE) on various datasets.

Fig. 1. (a) illustrates motion prediction in a real-world scenario, where both the
dynamic motion context across agents and static context are involved. (b) compares
various methods including LSTM, social-aware models (e.g. SGAN [5]) and DSCMP.
The queue mechanism in DSCMP enriches the scope of dynamic context at each frame,
enabling DSCMP to effectively learn long motions. (c) compares the Average Distance
Error (ADE) of LSTM [6], SGAN [5] and DSCMP on ETH (two subsets: ETH, HOTEL)
[17], UCY (three subsets: UNIV, ZARA1, ZARA2) [13], SDD [19] by using the perfor-
mance of LSTM as baseline (i.e. unit 1; lower value is better). We see that DSCMP
surpasses its counterparts by large margins. Best viewed in color. (Color figure online)

Different from the above existing approaches, a LSTM is carefully designed
in DSCMP to learn both spatial dependencies and temporal coherence of moving
pedestrians. The LSTM contains two modules, including an Individual Context
Module (ICM) and a Social-aware Context Module (SCM). As shown in Fig. 1b,
our model fully understands spatial and temporal contexts across agents by
learning a predictor denoted as mi

t+1 = p(mi
t,

⋃N(i)
i Qi

t), where Qi
t denotes a set

of features not only across agents at a certain frame, but also across multiple
successive frames of different agents.

More specific, the ICM of DSCMP passes feature of the current motion state
and the corresponding feature queue into LSTM cell. Multiple forget gates con-
trol the information flow of the frames in the queue. At each iteration, we update
the queues by appending the features of the latest frame, and popping out the
earliest features. Furthermore, the SCM of DSCMP refines the updated queues
by using the queues of the neighboring agents. Since these queues preserve agent-
specific motion cues in the past multiple frames, we are able to learn a long-range
spatial-temporal interactions with the aggregation of queues.
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For the second benefit, we observe that the future movements of agents in real
scenarios have uncertainty, since multiple trajectories are plausible. For instance,
an agent would naturally consider his/her surrounding scene layout when decid-
ing his/her possible future paths. In particular, an agent could turn left or right in
a crossroad, while he/she has limited choices around a street corner. However,
the recent methods either neglected the guidance of scene layout to produce
diverse predictions for each agent, or even totally ignored the scene informa-
tion. In contrast, DSCMP incorporates the scene information into the learning
of diverse predictions by using mi

t+1 = p(mi
t,

⋃N(i)
i Qi

t, I), where I indicates the
semantic scene feature after scene segmentation. In practice, this semantic scene
feature is modeled as a latent variable of a probabilistic distribution to predict
multiple future trajectories for each agent.

For the third benefit, in order to understand the uniqueness of DSCMP,
we propose a new evaluation metric called Temporal Correlation Coefficient
(TCC) to fully evaluate the temporal correlation of motion patterns, bridging
the gap where the commonly used metric such as Average Distance Error (ADE)
and Final Distance Error (FDE) are insufficient to evaluate temporal motion
correlations. Extensive experiments on dataset ETH [17]-UCY [13], SDD [19]
show that DSCMP surpasses state-of-the-art methods on all the above metrics
by large margins, such as 9.05% and 7.62% relative improvements on metric
ADE compared to the latest method STGAT [7] method.

To summarize the above benefits, this work has three main contributions.
(1) We present a novel future motion predictor, named DSCMP, which is able
to explicitly model both the spatial and temporal interactions between different
agents, as well as producing multiple probabilistic predictions of future paths for
each agent. (2) We carefully design the LSTM modules in DSCMP to achieve
the above purposes, where all modules can be trained end-to-end including the
Individual Context Module (ICM), the Social-aware Context Module (SCM),
and a latent scene information module. (3) Extensive experiments on the ETH
[17], UCY [13], and SDD [19] datasets demonstrate that DSCMP outperforms
its counterparts by large margin in multiple evaluation metrics such as ADE
and FDE, as well as a new metric, Temporal Correlation Coefficient (TCC),
proposed by us to better examine the temporal correlation of motion prediction.

2 Related Work

Motion Prediction. Early approaches for motion prediction [20] like physics-
based methods [17,18,30] and planning-based methods [9,12,25,31] are usually
limited by hand-crafted kinematic equations and reward function respectively.
With the development of recurrent neural networks, pattern-based methods [1,
5,8,10,11,11,16,27,29,33] have been studied recently. While most of the models
consider the agents in world coordinates, some work [10,16] explore trajectory
prediction with egocentric vision.

A pioneering pattern-based work that combine the LSTM and social interac-
tions is introduced in [1]. The authors of [5] proposes an adversarial framework to
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sequentially generate predictions. A social pooling is employed to learn the spa-
tial dependencies among agents. Spatio-temporal graphs [8,14,27] are adopted
to model the relations on a complete graph, whereas these methods suffer from
implicit modelling of dynamic edges or poor scalability with O(N2) complexity.
STGAT [7] is the most relevant method to our work. It considers the temporal
correlations of motion in multiple frames. Unlike STGAT deduces a single cor-
relation representation from the whole observation process, we explicitly keep
track of the temporal correlation for each iteration during observation. We also
take scene context into consideration.

Contextual Understanding. Humans are capable of inferring and reason-
ing by understanding the context. Rich contextual information is proven to be
valuable in sequential data modeling (e.g. video, language, speech). Attention
mechanism [26,32] has shown great success in concentrating on the significant
parts of visual or textual inputs at each time steps. Non-local operation [28]
works as a generic block to capture the dependencies directly by computing the
pair-wise relations in the long-range context. In the field of motion prediction,
graph attention [7,11] assigns different importance to the neighboring pedestri-
ans to involve the social-aware interactions. The authors of [21,35] encode visual
features of scene context in the LSTM to predict physics-feasible trajectories.

Multimodal Predictions. Multi-modality is an important characteristic of
motion prediction that implies the multiple plausible choices of future trajecto-
ries. To model this uncertainty, the model is required to generate diverse predic-
tions. A common approach [5,21,35] is to fuse latent variables sampled from a
predefined Gaussian distribution N (0, 1) with hidden feature. However, prede-
fined latent variables suffer from the absence of context reasoning. In this paper,
the latent variable is learnable from the scene context, which enables our model
to generate multimodal predictions with meaningful semantics.

3 Method

Overview. To be specific, during the observation from frame t1 to tobs, the
motion states of all N agents Mt1:tobs = {Mt|t ∈ [t1, · · · , tobs]} in a scene and
scene information I are given, where Mt ∈ RN×d. Symbol d is the dimension of
input motion state. It refers to the x–y coordinates of agent’s location in this
paper, thereby d = 2. Mt =

{
M i

t |i ∈ N
}
, where M i

t = (xi
t, y

t
t) ∈ R2 denotes the

location of agent i at frame t . Our goal is to predict the locations of all the agents
Mtobs+1:tobs+pred

in the future frames. The workflow of our framework DSCMP is
illustrated in Fig. 2. For each iteration during observation, we send the current
motion states with proposed queues to the encoder, and then we update the
queues via ICM and then refine them via SCM. The last hidden features in the
encoder is concatenated with a scene-guided latent variable. Later, the fused
feature is passed to a LSTM decoder to obtain predicted motion.
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Fig. 2. The overview of our framework (DSCMP). Given a sequence of the observed
motions, we construct agent-specific queue to store the LSTM features of previous
frames within a queue length. The queue length is set to 3 as example. (a) For each
iteration during observation, the current motion state and queues are encoded via
ICM. (b) The queues are updated by appending the latest features and popping the
earliest ones. In the SCM, the queues are adaptively refined by considering the pair-
wise relations of features in the neighbours’ queues. (c) The semantic map of static
context is incorporated with observed motion to generate a learnable latent variable z.
(d) We concatenate the last hidden feature in the encoder and the latent variable to
predict the motions via LSTM decoder.

3.1 The Function of Queues

With the setup of queues, the previous motion context and memory context for
current frame t are temporarily stored. Specifically, we construct a hidden feature
queue Qi

ht
=

[
hi

t−q, · · · , hi
t−1

] ∈ R1∗q∗h and cell queue Qi
ct =

[
ci
t−q, · · · , ci

t−1

] ∈
R1∗q∗h for each agent i The size of LSTM feature is denoted as h. The queue
length q describes a time bucket that the features are explicitly propagated. We
initialize the hidden feature queues and cell queues with zero for each agent.

3.2 Individual Context Module

Based on the aforementioned queues, we firstly capture the temporal correlations
of trajectories from individual level. In order to handle with multiple inputs in
one iteration, we employ a tree-like LSTM cell [24]. The historical states in a
time bucket (t − q, · · · , t − 1) are viewed as the children of the current state t.
After an iteration, the queues are updated by appending features at frame t and
popping features at frame t−q We first average the hidden features in the queue
to obtain a holistic representation h̃i

t−1 =
∑q

l=1 hi
t−l from the past frames. As

the computational graph of ICM shown in Fig. 3a, the propagation is formulated
as follows:
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Fig. 3. (a): The computation graph of Individual Context Module (ICM). (b): An
example to show Euclidean distance-based metric (e.g. ADE and FDE) cannot fully
evaluate motion patterns. The prediction I and prediction II score the same ADE
(5L/6) and FDE (L), whereas the prediction II captures the temporal correlation of
motion pattern much better than the prediction I.

gi
t = σ(W gM i

t + Ugh̃i
t−1 + bg), f il

t = σ(W fM i
t + Ufhi

t−l + bf ),

oi
t = σ(W oM i

t + Uoh̃i
t−1 + bo), ui

t = tanh(WuM i
t + Uuh̃i

t−1 + bu),

ci
t = gi

t � ui
t +

q∑

l=1

f il
t � ci

t−l, hi
t = oi

t � tanh(ci
t),

(1)

where σ is sigmoid function and � is element-wise multiplication. From the Eq. 1,
we could observe that multiple previous frames pass message to the current cell.
The contributions of these frames to the current state are controlled by multiple
forget gates f il

t , l ∈ [1, q]. In the case q = 1, ICM degenerates to a vanilla LSTM
cell, which considers the previous single feature only at one iteration.

In practice, we assign each agent the queues of the fixed length. We point
out that it is inappropriate in some cases. For example, the motion of some
agents may be erratic that temporally incoherent with the past states. However,
the adaptive forget gates could control the volume of information from the past
frames. Hence, irrelevant motions could be filtered during the propagation.

3.3 Social-Aware Context Module

Social interactions works as an important part of dynamic context. Since the
aggregation of neighbors’ queues ∈ RN(i)∗q∗h store the surrounding historical
information across agents, our model could learn spatio-temporal dependencies
in a single operation. Here N(i) denotes the number of neighbors of the agent i
(include oneself). In the SCM, we compute the pair-wise relations of elements in
the queues from neighbours. The refined queues can be viewed as a weighted sum
from the neighbors’ queues. Non-local block [28] is chosen for relation inference
since it not only captures distant relations but also keeps the shape of input. The
refinement of the hidden feature queue Qi

ht+1
=

[
hi

t−q+1, · · · , hi
t

]
is computed as:
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hi
t−l = hi

t−l ⊕ 1
Zi

t−l

N(i)∑

j=1

R(hi
t−l, h

j
t−l),G(hj

t−l), l ∈ {0, · · · , q − 1} (2)

R(hi
t−l, h

j
t−l) = (Wθh

i
t−l)

T(Wφhj
t−l), G(hj

t−l) = WGhj
t−l, (3)

where R(hi
t−l, h

j
t−l) is a scalar that reflects the relationships between the feature

hi
t−l and hj

t−l. And the component G(hj
t−l) refers to the transformed represen-

tation of the neighbor agent j at frame t − l. N(i) denotes the neighbors of
agent i. Zi

t−l =
∑N(i)

j=1 R(hi
t−l, h

j
t−l) is a normalization factor. The parameters of

function R(·, ·) and G(·) are shared among agents. The cell queues stay invariant
since we focus on motion interactions rather than memory at this step.

3.4 Semantic Guidance from Scene Context

Scene information is a valuable static context that provides the semantic of
layout around the agents. In practice, we extract the semantic maps from resized
256 × 256 scene images I via pre-trained PSPNet [34,36] off-line. After that,
we send the semantic maps to convolutional layers (Conv) and then combine
them with the observed trajectories via a fully-connected (FC) layer. The latent
variable z is obtained with reparameterization trick on the mean μ and variance
σ as follows:

[μ, σ] = FC(Conv(I) ⊕
N(i)∑

i

M i
t1:tobs

), z ∼ N (μ, σ), (4)

where ⊕ denotes element-wise addition. The latent variable z enables multi-
modal predictions by going into the LSTM decoder with the last hidden features
hobs during observation. During the forecasting phase, the predicted motions
M̂ i

tobs:tobs+pred
are sequentially generated in the decoder.

3.5 Model Training

In order to encourage the coherence of temporal-neighboring features, we utilize
a regularization loss Lc inspired by [23], which is defined as follows:

Lc =
{

1 − cos(hi
t1 , h

i
t2), |t1 − t2| < q

max(0, cos(hi
t1 , h

i
t2) − margin), otherwise

(5)

where cos is cosine similarity and margin is a hyperparameter. The pair-wise
features (hi

t1 , h
i
t2) are randomly sampled in a batch. Lc maximizes the similarity

of features within a queue length (where frames are likely to strongly correlated
with each other), while penalizing the similarity of features over a queue length
(where frames are likely to belong to different motion patterns). The total loss
function combines the regularization term Lc and the variety loss (the second
term) followed by [5] as:

Loss = λLc + min
m

∥
∥
∥M i

tobs:tobs+pred
− M̂

i(m)
tobs:tobs+pred

∥
∥
∥
2
, (6)
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where λ is a trade-off parameter. The variety loss computes the L2 distance
between the best of m predictions and the ground truth, which encourages to
cover the space of outputs that conform to the past trajectory.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our method on three datasets (ETH [17], UCY [13], SDD [19]).
ETH contains two subsets named ETH and HOTEL. UCY consists of three
subsets, called UNIV, ZARA1 and ZARA2. Totally, there are 1,536 trajectories
of pedestrian in the crowd collected in 5 scenes. We observe for 3.2 s (8 frames)
and the predict the motions the next 4.8 s (12 frames) for every pedestrian
simultaneously. For the data split and evaluation, we follow the leave-one-out
method in [5]. SDD dataset has large volume with complex scenes. It contains
60 bird-eye-view videos with corresponding trajectories that involves multiple
kinds of agents (pedestrian, bicyclist, .etc.). The observation duration is 3.2 s
and the prediction duration ranged from 1 s to 4 s. We divide the dataset into
16,000 video clips and follow a 5-fold cross-validation setup.

Commonly used Euclidean-based metrics like ADE and FDE neglect the
temporal correlation of motion patterns. An illustration example is shown in
Fig. 3(b). In order to supplement this loophole, we introduce a new metric that
requires no assumptions about the temporal distribution of trajectories, Tempo-
ral Correlation Coefficient (TCC). The TCC is defined as:

TCC =
1
2
(TCCx + TCCy). (7)

TCCx =
1
N

N∑

i

Cov(x̂i, xi)
√

D(x̂i)D(xi)
, TCCy =

1
N

N∑

i

Cov(ŷi, yi)
√

D(ŷi)D(yi)
, (8)

where the ground truth trajectory for the agent i is M i = (xi, yi). The corre-
sponding predictions are denoted as M̂ i = (x̂i, ŷi). From the equations above,
we can observe that TCC ranges from [−1, 1]. A high TCC implies the predic-
tions capture the time-varying motion patterns greatly, whereas a negative TCC
denotes a weak capture of temporal correlation.

For the evaluation, the metric ADE (Average Distance Error) denotes the
average L2 distance between the predictions and ground truth, and the metric
FDE (Final Distance Error) reflects the L2 distance between the predictions and
ground truth in the final frame. The TCC (Temporal Correlation Coefficient) is
used to evaluation the temporal correlation of motion pattern in predictions.

4.2 Implementation Details

We preprocess the input motion state as the relative position. The size of hidden
feature and the dimension of latent variable are set as 32 and 16 respectively.
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Table 1. Quantitative comparisons on the ETH and UCY datasets. ADE/FDE are
reported as in meters. All the models observe for 3.2 s and predict for the next 4.8 s.

Methods ETH HOTEL UNIV ZARA1 ZARA2 Avg.

Linear 0.91/1.97 0.42/0.81 0.70/1.33 0.58/1.23 0.64/1.21 0.65/1.31

LSTM 1.16/2.20 0.48/0.86 0.57/1.20 0.47/0.99 0.39/0.82 0.61/1.21

S-LSTM 0.84/1.85 0.45/0.86 0.55/1.14 0.35/0.76 0.36/0.77 0.51/1.08

SGAN 0.77/1.41 0.44/0.88 0.75/1.50 0.35/0.69 0.36/0.73 0.53/1.04

Sophie 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

MATF 1.01/1.75 0.43/0.80 0.44/0.91 0.26/0.45 0.26/0.57 0.48/0.90

STGAT 0.76/1.61 0.32/0.56 0.52/1.10 0.34/0.74 0.31/0.71 0.45/0.94

OursIC 0.70/1.35 0.30/0.52 0.52/1.09 0.37/0.76 0.30/0.63 0.44/0.87

OursIC-SC 0.70/1.36 0.27/0.48 0.51/1.08 0.35/0.74 0.28/0.61 0.42/0.85

Ours (full) 0.66/1.21 0.27/0.46 0.50/1.07 0.33/0.68 0.28/0.60 0.41/0.80

Rel. gain +13.15% +15.63% +3.85% +2.94% +9.68% +9.05%

The convolutional part for scene is three-layer with kernel size as 10, 10, 1. The
subsequent FC layer is a 16 × 16 transformation with sigmoid activation. The
queue length is set as 4, 2, 3 for the ETH dataset, ZARA datasets and otherwise
datasets respectively. For the loss function, the λ and margin for the regularizer
Lc are 0.1 and 0.5 respectively. The m in the variety loss is set as 20. The batch
size is 64 and the learning rate is 0.001 with Adam optimizer.

4.3 Standard Evaluations

We choose two basic methods linear models and LSTM [6], and several repre-
sentative state-of-the-art methods for comparison. S-LSTM [1] and SGAN [5]
are the famous deterministic method and stochastic method that combine deep
learning with spatial-only interaction respectively. The most recent approaches
like Sophie [21], MATF [35] and STGAT [7] incorporate information from either
static scenes or spatio-temporal dependencies. To verify the effectiveness of Indi-
vidual Context Module and Social-aware Context Module, we adopt two variant
of our methods, OursIC and OursIC-SC. In accord with [5,7,21,35], the latent vari-
ables employed in the variants OursIC and OursIC-SC are sampled from N (0, 1),
and the results are reported by sampling 20 times to choose the best prediction.
“Rel. gain” shows the relative ADE gain of our full model (marked in italic)
compared with the latest method STGAT (marked in bold).

As presented in the Table 1 and 2, linear method and LSTM suffer from
bad performance since they are too shallow to consider the surrounding con-
text. Compared with the variant OursIC with the state-of-the-methods, OursIC
has already shown advantages across different datasets. It indicates us that the
explicit temporal dependencies extraction among multiple frames is valuable to
enhance the performance. OursIC-SC makes some improvement with social-aware
features refinement. The performance gap between OursIC-SC and our full model
empirically shows that the guidance of static scene context is useful for multi-
modal predictions.
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Table 2. Quantitative comparisons on the SDD dataset. ADE/FDE are reported in
pixel coordinates at 1/5 resolution followed [12]. All the models observe the agents 3.2 s
and then make predictions in the next 1∼4 s.

Methods 1.0 s 2.0 s 3.0 s 4.0 s Avg.

Linear 1.52/2.90 2.10/4.32 3.01/6.23 3.10/6.33 2.43/4.95

LSTM 1.38/2.05 2.04/3.48 3.02/5.91 3.07/5.96 2.38/4.35

S-LSTM 1.33/2.02 2.00/3.46 3.03/5.86 3.05/5.91 2.35/4.31

SGAN 1.37/2.26 2.50/4.95 2.82/5.54 2.85/5.78 2.39/4.63

STGAT 1.19/1.68 1.69/2.90 2.70/5.22 2.83/5.37 2.10/3.79

OursIC 1.10/1.66 1.70/2.90 2.55/5.02 2.65/5.13 2.00/3.68

OursIC-SC 1.09/1.65 1.68/2.87 2.52/4.96 2.61/5.08 1.98/3.64

Ours (full) 1.08/1.63 1.64/2.83 2.48/4.91 2.57/5.02 1.94/3.60

Rel. gain +10.19% +2.96% +8.14% +9.19% +7.62%

Fig. 4. (a): Memory cell visualization for LSTM and our method. Although the mem-
ory capacity decreases over time for both models (light blue → dark blue for LSTM,
dark red → light red for ours), most of the cells in ours remain positive, which implies
that they keep track of the evolving motion patterns from the historical context. (b):
Comparison of TCC among state-of-the-art methods and ours. Our method enjoy high
TCC, which indicates an effective capture of temporal correlation. (Color figure online)

5 Discussion

5.1 Memory Cell Visualization

As illustrated in Fig. 4(a), we compare the memory capacity of LSTM and our
method via cell activation. Red denotes a positive cell state, and blue denotes
a negative one. The most of cells in vanilla LSTM are negative. In contrast,
our model keeps track of the context throughout the prediction. Although the
memory capacity of our model recedes over time (from dark red to light red), it
still stays active. These results inspire us that the frame-by-frame observation
used by LSTM is prone to get short sight. Instead, explicit modeling on the
dependencies in multiple frames improves the captures of long-term motion.
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Table 3. Comparisons of non-linear trajectories on the ETH and UCY datasets.
ADE/FDE are reported as in meters. “Ours” denotes the proposed full model.

Methods ETH HOTEL UNIV ZARA1 ZARA2 Avg.

Linear 1.01/2.21 0.50/0.96 0.80/1.56 0.62/1.33 0.99/1.95 0.78/1.60

LSTM 1.08/2.28 0.57/1.02 0.65/1.37 0.49/1.04 0.60/1.30 0.68/1.40

S-LSTM 0.92/2.01 0.48/0.92 0.61/1.29 0.38/0.79 0.50/1.06 0.58/1.21

SGAN 0.86/1.54 0.52/1.03 0.81/1.61 0.39/0.76 0.49/0.97 0.61/1.18

STGAT 0.86/1.67 0.39/0.71 0.60/1.33 0.39/0.85 0.50/1.14 0.55/1.14

Ours (q = 2) 0.73/1.37 0.34/0.63 0.61/1.29 0.36/0.76 0.48/1.04 0.50/1.02

Ours (q = 3) 0.71/1.35 0.33/0.58 0.60/1.28 0.38/0.81 0.49/1.09 0.50/1.01

Ours (q = 4) 0.70/1.29 0.34/0.60 0.60/1.31 0.39/0.83 0.49/1.09 0.50/1.02

5.2 The Capture of Motion Pattern

Figure 4(b) summarizes the quantitative results of the TCC for different meth-
ods in the SDD dataset. By learning the spatio-temporal context of dynamic
agents, Our method outperforms the state-of-the-art methods (SLSTM, SGAN,
STGAT), especially on the long-term predictions (4 s). TCC declines consis-
tently for different methods as the prediction duration goes on. It is reasonable
since the temporal correlation of longer trajectory is harder to be learned.

5.3 Exploration on the Queue Length

An important setup in our model is the proposed queue that understand the
long-term motion. Hence, we study the effect of queue length on non-linear cases
which are usually treated as hard cases. As shown in the Table 3, linear model and
LSTM suffer from the unsatisfactory performance. Compared with the methods
S-LSTM, SGAN and STGAT, our model enjoys relatively lower error. With the
variation of queue length, our performance is robust and competitive against
state-of-the-art methods. The model with long queue length (q = 4) is the most
suitable for the ETH dataset, where most of the trajectories are highly non-
linear. Short queue length (q = 2) works better in the ZARA1 and ZARA2
datasets, where the trajectories are faintly non-linear. Compared with linear
trajectories, We speculate that the motion states of non-linear trajectory are
temporally correlated within a relatively long range, where long queues capture
long-term motions better than short queues.

5.4 Social Behaviors Understanding

In the scenario of real-world applications, it is imperative to handle the social
interactions in the multi-agent system. Therefore, we verify whether our method
well perceive the social behaviors in the crowd. As shown in the Fig. 5, we select
three common scenarios involve social behaviors, “Walk in parallel”, “Turing”
and “Face-to-Face”. From the comparison between the ground truth and various
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(a) Walk in parallel (b) Turning (c) Face-to-face

Fig. 5. Comparison among our model, SGAN and STGAT in different scenarios. These
visualizations show that 1): Our model is capable of generating convincing trajecto-
ries that are closer to the ground truth than other state-of-the-art methods. 2): The
social interactions across agents are well captured by our model. Our predictions avoid
collision during the whole forecasting period.

predictions, we could observe that the trajectories predicted by our method are
close with ground truth. Moreover, our predictions are reliable that no collisions
or large deviations appear during the whole forecasting period. It indicates that
our model predict multiple trajectories for each agent that cohere in time and
space with the other agents.

5.5 Analysis of Multimodal Predictions

In order to evaluate the quality of multimodal predictions, we visualize the
diverse trajectories predicted by our model. The top row in the Fig. 6 reports
the multimodal predictions for one agent of interest. Rather than using a prede-
fined Gaussian noise, the learnable latent variable z benefits from the semantic
cues of the static scene context. Our predictions (yellow lines) suggest plausible
trajectories that are close to the ground truth (red line), instead of producing
a wide spread of candidates randomly. For instance, in the scenario of “Cross-
road” and “Intersection”, it is possible for the target agent to turn left or right
at the endpoint of observation. Our model provides predictions that in line with
common sense. In the scenario of “Sideway” and “Corner”, the target agent has
limited choices for the future trajectories due to the constraint of scene layout.
In these kinds of scenarios, all our predictions are moving towards reasonable
directions. Hence, our model has good interpretability with the incorporation of
scene information.
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(a) Crossroad (b) Intersection (c) Sideway (d) Corner

Fig. 6. The visualization of the multimodal predictions in four scenes. Top row: we
plot multiple possible future trajectories for one agent of interest. Bottom row: we
visualize the distribution heatmap of destinations (location at the final frame) via kernel
density estimation. The predicted destinations and ground truth are shown as black
points and red point respectively. The distribution heatmap shows that our model not
only provides semantically meaningful predictions, but also enjoys low uncertainty.

In the bottom row, we investigate the uncertainty of predictions with distri-
bution heatmap. Here we estimate the distribution of the predicted destination
(black point) via kernel density estimation, and then apply the true destination
(red point) to this distribution. The brighter the location, the more possibility
that the point belongs to the distribution. Our visualization shows that the true
destination usually appear in the bright locations. It indicates our predictions
enjoy low uncertainty.

6 Conclusions

In this paper, we proposed a novel method DSCMP to highlight the three core
elements of contextual understanding, i.e. spatial interaction, temporal coher-
ence and scene layout, for multi-agent motion prediction. We designed a differen-
tiable queue mechanism embedded on LSTM to capture the spatial interactions
across agents and temporal coherence in long-term motion. And a learnable
latent variable was introduced to learn the semantics of scene layout. In order
to understand the uniqueness of DSCMP, we also proposed a metric Temporal
Correlation Coefficient (TCC) to evaluate the temporal correlation of predicted
motion. Extensive experiments on three benchmark datasets demonstrate the
effectiveness of our proposed method. For the future research on autonomous
applications, this work sheds a light on the modelling of spatio-temporal depen-
dencies in multiple frames and the semantic cues from scene layout.
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