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Abstract. We introduce a differential visual similarity metric to train
deep neural networks for 3D reconstruction, aimed at improving recon-
struction quality. The metric compares two 3D shapes by measuring
distances between multi-view images differentiably rendered from the
shapes. Importantly, the image-space distance is also differentiable and
measures visual similarity , rather than pixel-wise distortion. Specifically,
the similarity is defined by mean-squared errors over HardNet features
computed from probabilistic keypoint maps of the compared images. Our
differential visual shape similarity metric can be easily plugged into var-
ious 3D reconstruction networks, replacing their distortion-based losses,
such as Chamfer or Earth Mover distances, so as to optimize the network
weights to produce reconstructions with better structural fidelity and
visual quality. We demonstrate this both objectively, using well-known
shape metrics for retrieval and classification tasks that are independent
from our new metric, and subjectively through a perceptual study.

Keywords: 3D Reconstruction · Visual similarity metric ·
Differentiablity

1 Introduction

Reconstructing 3D structures from 2D images is one of the most fundamen-
tal problems in computer vision. The problem is clearly ill-posed, hence most
reconstruction algorithms are expected to incur errors against the ground truth.
Commonly used error metrics are defined by shape distortions, such as Cham-
fer Distance (CD), Earth Mover Distance (EMD), Mean Square Error (MSE),
and Intersection over Union (IoU). Most deep neural networks developed for 3D
reconstruction [9–11,16,26,29,33] are trained by loss functions defined by one of
these shape distortion metrics. To serve as a network loss to enable back propa-
gation, the adopted metric needs to be differentiable. All of CD, EMD, and MSE
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Fig. 1. Single-view 3D reconstruction by AtlasNet [10], Matryoshka Network [23], and
Pixel2Mesh [29], trained with different losses. Left of each pair: trained by shape dis-
tortion in CD, IoU, and a combination of CD and normal consistency (NC). Right of
each pair: using DR-KFS, our differentiable visual similarity metric, as train loss leads
to results of higher visual fidelity in terms of shape structures and surface quality.

are differentiable. While the original IoU is not, there have been recent attempts
to make it differentiable [16,35] (Fig. 1).

What is commonabout thesewell-adopteddistortionmetrics is that they are all
designed to measure geometric distances between aligned 3D shapes, in the object
space—they do not account for how the shapes are viewed by human observers,
i.e., they are not “visual”. Many recent works [7,9,19,22,23,27] have shown rela-
tive insensitivity of these object-space distortion metrics to structural errors such
as missing parts and topological noise, and visual artifacts such as self intersec-
tions and poor surface quality. For example, thickening and elongating/shortening
all four legs of a chair may result in a larger CD than removing one of the legs
entirely, yet the latter alteration, a structural change, is more visually apparent;
see Fig. 2. As a result, while some reconstructed 3D shapes do exhibit better visual
quality, ratings based on distortion measures such as CD, EMD, MSE, or IoU may
not reflect that superiority. This is not entirely surprising—a recent work by Blau
and Michaeli [3] even suggests a trade-off between perceptual and distortion mea-
sures, albeit for image restoration.

Our key observation is that in contrast to shape distortion, measures of visual
similarity are less sensitive to misalignment and slight shape distortion, but
more sensitive to structural errors and visual quality. In computer graphics,
the best known visual similarity metric is the light field descriptor (LFD) [6].
LFDs are computed for silhouette images of 3D shapes rendered from multiple
viewpoints sampled around the shapes. Both a contour-based (Fourier descrip-
tor) and a region-based (Zernike moment) image-space descriptor are employed,
where rotational alignment is resolved via a discrete exhaustive search. How-
ever, due to the discrete rasterization during rendering and the use of truncated
Fourier descriptors, LFD is non-differentiable. Some works in computer vision
have also utilized multi-view, projective losses to train reconstruction networks,
e.g., Perspective Transformer Net (PTN) [33], Neural Mesh Render [13], and
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Fig. 2. A trade-off between shape distortion measures, e.g., CD and IoU, and a visual
similarity metric such as LFD. Top: changing the shapes of the legs of a chair, e.g.,
by thickening and elongating (blue) or shortening (green), leads to larger shape dis-
tortions (reflected by larger CDs) compared to removing one leg (orange). The leg
removal appears to make more of a visual impact due to a structure alteration and it is
captured by a larger LFD (orange bars). Note that the bars show CDs/LFDs between
the changed chair and the original, shown in pink in the boxes. Bottom: bending the
legs (blue) or the back (green) leads to larger shape distortion, as reflected by smaller
IoU, compared to leg removal. Again, the latter is captured by a larger LFD. (Color
figure online)

SoftRas [16]. However, the projective- or image-space distances employed by
these methods are still based on pixel-wise distortion, rather than similarity.

In this paper, we advocate the use of differentiable visual shape similarity
metrics to train deep neural networks (DNNs) for 3D reconstruction. We intro-
duce such a metric which compares two 3D shapes by measuring visual, image-
space similarity between multi-view images rendered from the shapes, similar to
LFD. However, one key difference is that the rendering process is differentiable,
by employing a simplified soft rasterization [16]. In addition, we develop a dif-
ferentiable similarity distance in the image space based on MSE defined over
probabilistic keypoint maps of the compared images, rather than on RGB values.
Furthermore, the MSE is defined over HardNet [20] features, rather than on the
original keypoint maps. This choice is motivated in part by the finding in [3] that
the perception-distortion trade-off appears less severe for distance between VGG
features. Putting all these together, we arrive at a differentiable visual similarity
metric, which we call DR-KFS to capture the use of Differentiable Rendering,
Keypoint maps, and Feature-space image Similarity distances. DR-KFS better
matches visual evaluation by humans, compared to object-space metrics.

To the best of our knowledge, existing 3D reconstruction networks all employ
distortion-based reconstruction losses, either in the object or image spaces see
Tables 1 and 2 for a summary. Our differential visual similarity metric can be
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Table 1. Object-space training losses and evaluation metrics for state-of-the-art 3D
reconstruction networks. CD and EMD are widely adopted in point-based networks,
while MSE, cross-entropy, and differentially implemented IoU are more popular in
voxel-based reconstruction. Implicit decoders all use per-point reconstruction loss.

Method Representation Training loss Evaluation metrics

AtlasNet [10] Points + mesh CD CD

PointOutNet [9] Points CD, EMD CD, EMD

OGN [26] Octree cross-entropy/MSE CD, EMD

HSP [11] Voxel cross-entropy/MSE CD, IoU

Pixel2Mesh [29] Points + mesh CD, surface normal CD, EMD

Matryoshka Net [23] Voxel shape layer IoU, cos-similarity IoU

IM-Net [7] Implicit field Per-point status CD, MSE, IoU, LFD

DISN [32] Implicit field Per-point status CD, F-score, IoU

Table 2. Multi-view training losses and evaluation metrics for state-of-the-art 3D
reconstruction networks. All the image-space errors are based on pixel-wise distortion
such as MSE, IoU, or L1 Norm. All the evaluations are based on IoU.

Method 2D observation Training loss Evaluation

PTN [33] Silhouettes Pixel-wised MSE IoU

NMR [13] Silhouettes Pixel-wised MSE IoU

Soltani et al. [1] Depth Maps and Silhouettes L1 norm IoU

SoftRas [16] RGBA images IoU IoU

easily plugged into these networks, replacing the distortion losses so as to opti-
mize the network weights to produce reconstruction results with better struc-
tural fidelity and visual quality. We demonstrate this both objectively, using
well-known visual shape metrics for retrieval and classification tasks that are
independent from DR-KFS, and subjectively through a user study.

Specifically, the 3D reconstruction networks tested for adaptation to DR-
KFS training include OGN, AtlasNet [10], and Matryoshka Networks [23],
which were picked as representative networks by Tatarchenko et al. [27] in
their recent systematic study of single-view 3D reconstruction. We also consider
Pixel2Mesh [29], NMR [13], SoftRas [16] and 3D-R2N2 [8]. The visual shape
metrics we employ for evaluation include Shape Google [4], Multiview CNN or
MVCNN [25], normal consistency or NC [19], F-score [23,27], as well as LFD.
It is worth noting that the last three metrics have all been adopted by recent
works on 3D reconstruction [7,19,23,27] to complement the distortion metrics.

2 Related Work

DNNs for 3D Reconstruction. One of the earlier DNNs for 3D reconstruction is
3D-R2N2 [8], which proposes the use of Recurrent Neural Networks (RNNs) to
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reconstruct a voxelized shape from a single-view image. Another notable work,
PointOutNet [9], produces multiple reconstruction candidates for a single-view
input image and demonstrates an improvement in the reconstruction quality over
3D-R2N2. OGN [26] generates volumetric 3D outputs in a compute-and-memory
efficient manner by using an octree representation. AtlasNet [10] uses a collection
of parametric surface elements to represent a 3D shape and to naturally infer
a surface representation of the shape. Pixel2Mesh [29] produces 3D triangle
meshes from a single image using Graph Convolution Networks (GCN) [14].
Matryoshka Network [23] introduces a novel and efficient 2D encoding scheme
for 3D geometry, posing 3D reconstruction as a 2D prediction problem, while
also speeding up the process.

Recent works on generative shape modeling using implicit functions have
achieved state-of-the-art visual quality. IM-NET [7] and OccNet [19] repre-
sent 3D surfaces implicitly in the form of continuous binary decision functions.
DeepSDF [12] learns a continuous Signed Distance Function (SDF) representa-
tion for a 3D shape. DISN [32] combines implicit SDF descriptors with the local
input image features to generate 3D shape surfaces. Despite the good visual
quality of the implicit-based generated surfaces, they often obtain lower scores
on shape distortion metrics, such as CD.

Object-Space Metrics for 3D Reconstruction. Table 3 lists state-of-the-art 3D
reconstruction DNNs trained using object-space losses, along with the shape
metrics they employed. In principle, a network that is trained on a particular
loss, e.g., CD, should be expected to perform better on that metric during test-
ing, than methods that were not trained with the metric. Most methods that
we are aware of train their networks using object-space distortion metrics. CD
and EMD, and to a lesser degree, IoU, are the dominant measures applied for
evaluating reconstruction quality. It is interesting to observe that some of the
most recent methods, including IM-Net [7], OccNet [19], and Matryoshka Net-
work [23], have opted to evaluate their methods using alternative measures such
as LFD, Normal Consistency (NC), and F-score. Not surprisingly, each of these
works pointed out the shortcomings of object-space distortion metrics in captur-
ing visual similarity, which motivated their use of other alternatives. In terms of
visual quality of the 3D reconstruction, the current state-of-the-art results are
obtained by methods based on learning implicit fields [7,12,19,32].

Visual Shape Similarity Measures. For shape retrieval and classification, many
visual shape similarity measures have been proposed. LFD [6] performs visual
shape similarity by extracting local features from one-hundred orthogonal pro-
jections of each 3D model. ShapeGoogle [4] constructs compact and informative
shape descriptor using a bag-of-visual- features. MVCNN [25] combines infor-
mation from multiple views of a 3D shape into a single and compact shape
descriptor with the help of CNNs. F-score [27] performs visual shape similarity
explicitly by calculating the distance between object surfaces using a harmonic
mean of precision and recall scores. And finally, normal consistency (NC) [19,29]
measures how well any 3D reconstruction can capture higher order information
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by calculating a mean absolute dot product of face-normals of the given 3D
models, represented as meshes. However, LFD, ShapeGoogle, F-score are not
differentiable, and NC can only capture higher-order information.

Image-Space Similarity. Most common quantitative measures of image similar-
ities include pixel-wise MSE and IoU. However, such measures are not designed
to compare visual similarity between objects captured in the images, e.g., they
are sensitive to misalignment. Hand-crafted image descriptors such as SIFT [17],
SURF [2], and ORB [24] can be used to perform image retrieval to visually cor-
respond closest image matches, but they are discrete and non-differentiable. On
the other hand, the use of powerful image descriptors obtained from CNNs has
been shown to make the image retrieval pipeline differentiable [18,21,25,34],
allowing an end-to-end neural network approach for measuring image similarity.
Generic image similarity has to account for rotation, translation, and occlusion
of identical entities in the two images. Our aim is to develop a differentiable and
visual image-similarity metric for rendered images of aligned 3D shapes.

Multi-view/Projective Approaches to 3D Reconstruction. Prior works rely on
either a differentiable renderer or multi-view projections of 3D shapes and per-
form supervised learning on the obtained images rather than in the 3D object
space, e.g., PTN [33]. Table 2 lists notable recent works along these lines and
the losses and metrics they employed for training and evaluation. Specifically,
NMR [13], which outperformed PTN, reconstructs a 3D mesh from a single image
with silhouette-image supervision. Other works such as MarrNet [31] and Soltani
et al. [1] use 2.5D sketch images and rendered silhouette images, respectively, for
learning single-view 3D reconstruction. Most recently, SoftRas [16] reconstructs
a 3D shape using shaded images, i.e., view-renderings of the input RGB image
with a light source. Importantly, SoftRas converts the discrete raster operation
to a probabilistic soft raster one, directly solving the indifferentiable raster oper-
ation of the traditional renderer present in [13,33]. However, in all these works,
the image-space errors are still measured by distortion losses such as pixel-wise
MSE or IoU, which do not capture shape similarity. In contrast, our metric,
DR-KFS, is designed to capture visual similarity of the captured shapes. The
renderer used in DR-KFS is a simplified version of SoftRas [16], which is more
efficient than CNN-based methods for object rendering.

3 Differential Visual Shape Similarity Metric

Visual shape similarity metrics, such as LFD [6], rely on projections or renderings
of multi-view images of 3D models from a set of view angles. We follow this theme
of render-and-match-images to compare the visual similarity between two 3D
shapes while make the framework differentiable so that it can be easily plugged
into any 3D reconstruction DNN; see Fig. 4 for an overall pipeline.

Given two 3D models, one reconstructed using an existing approach such as
AtlasNet [10], Matryoshka Network [23], Pixel2Mesh [29], or OGN [26], and the
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Fig. 3. Overall framework for obtaining DR-KFS descriptors using continuous patch
features. The first step is the differentiable renderer, a Soft Rasterizer, which renders
multi-view images. This renderer, coupled with the process of continuous patch feature
extraction over the point-of-interest (PoI) maps, makes our framework differentiable.

other being the corresponding ground truth (GT) model, we first align them and
render the models from twenty-five viewing angles, using the Soft Rasterizer [16]
renderer, which is differentiable. For each view-image, a Point of Interest (PoI)
map is obtained using a keypoint detection network. Visual similarity of the 3D
models is determined using DR-KFS feature matching (see Fig. 4) obtained by
extracting local features from PoI maps.

3.1 Differentiable Renderer

To measure 3D shape similarity using LFD, projected images from many angles
are required. Due to hardware constraints in training our DNNs, we only use
25 viewpoints, sampled on a semi-sphere as an approximation to the ideal case.
To achieve differentiability in the rendering process, we replace rasterization
and z-buffering operations used in conventional rendering pipelines with soft
rasterization and probabilistic map aggregation [16]. No color information is
used in DR-KFS renderer as many reconstruction networks are incompatible
with texture projections on the reconstructed model surfaces. A fixed position
light source is aptly placed to provide information about shape surface quality
when rendering the view-images. We make use of the rendered view-images to
determine the similarity of given 3D models, as explained below.

Our visual similarity metric is based on matching rendered view-images by
extracting discriminative local features over Point of Interest (PoI) maps, using
Convolutional Neural Networks (CNNs).

PoI Map. A PoI map is a probabilistic map that gives a score for every pixel
being a keypoint. It is generated by a CNN-based keypoint detection network
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Fig. 4. An end-to-end pipeline of our visual, differentiable shape-similarity metric
framework for single view 3D reconstruction. Feature descriptors from Fig. 3 are used
to calculate the overall loss, which is backpropagated to the 3D reconstruction network
(which reconstructs a 3D model, shown on the left) via the associated DR-KFS module,
improving the reconstruction quality.

corresponding to every view-image. To this end, we borrow the LIFT detec-
tor introduced in [34], which uses piece-wise linear activation functions [28] in
convolution layers to get a PoI map for an input image. It is formulated as:

PoImap = fNet(I) =
N∑

n

δn
M

max
m

(Wmn � I + bmn) (1)

where fNet(I) is a non-linear function of the rendered view-image I, using a neu-
ral network Net, which is nothing but a CNN-based keypoint detector. N,M
are hyperparameters controlling the complexity of the piece-wise linear activa-
tion function. δ is +1 if n is odd, and −1 otherwise. The parameters of the
network Net to be learned are the convolution filter weights Wmn and biases
bmn, and � denotes the convolution operation. A detailed description of LIFT
based keypoint detection can be found in [34].

Continuous Patch Features. After generating PoI maps for each of the rendered
images, local patch features are extracted from them using a sliding window of
size 32 × 32 with a stride of 16, resulting in 225 (15 × 15) patches per image
I. These patches span the entire image and there exists an overlap between
adjacent patches which provides continuity over the feature space.

Note that in existing image retrieval works, such as in [28,34], detected
keypoints are projected back onto the original image and image features are
extracted locally around these keypoints. Image retrieval is performed by match-
ing these keypoint-based local features. This is a discrete process over the image
space. As a result, this approach of matching images based on discrete key-
points, if employed, introduces non-differentiability into the latter parts. Unlike
such methods, we avail continuous local patch features from the PoI maps by
employing a sliding window technique spanning the entire map. Our framework
is inspired by the recent work of [3] which shows that local patch features help
alleviate the problem of “human perception vs image distortion” trade-off.

A sliding window on a PoI map, followed by the HardNet[20] feature extrac-
tor outputs a 128-D feature descriptor per patch (see Fig. 3). The HardNet [20]
module we use is pretrained on UBC PhotoTour [30]. We coin these features as
the DR-KFS feature descriptors. The continuous patch features, coupled with
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the early-stage render (Soft Rasterizer) allow our pipeline to be entirely differ-
entiable, demonstrated further by our end-to-end learning framework in Fig. 4.

Localized Feature Matching. After extracting the DR-KFS feature descriptors for
the two 3D models, we perform localized two-way feature matching. For every
patch Precon centered at (x, y) in the PoI maps corresponding to the recon-
structed model, we consider a set of neighboring patches in the GT PoI maps,
centered at (x ± σ, y ± σ), and find a patch that yields the minimum MSE over
the patch features. We then perform a weighted addition of all such minimal loss
values to get a similarity score as given in Eq. 2.

Simrecon =
∑

wi|Preconi
− Pgtk | (2)

where wi = average(Preconi
). Pgtk is the kth patch in the PoI map corresponding

to the GT model which has the least patch-feature MSE for Preconi
. It should

be noted that the search for the best match from the PoI patches of the ground
truth model for a PoI patch of the reconstructed model is limited to PoI patches
from the same viewpoint. The reconstructed features would not all converge to
a single GT feature since our search is localized: search for a matching patch
is done within a local neighborhood. However, the matching is many-to-one in
general, which is by design. For example, due to scale discrepancies between the
reconstructed and the GT models, e.g., a chair with long back vs. one with a
short back, several patches of one model (e.g., on the long back) may be best
matched with a single sampled patch on the other model (e.g., the short back).

We essentially repeat the above procedure for the PoI maps corresponding
to the GT model and get a similarity score SimGT . Our final training loss is
the sum of Simrecon and SimGT , which is backpropagated through the DR-KFS
feature descriptor module associated with the reconstructed 3D model (Fig. 4).

4 Results and Evaluation

We assess the impact of our differentiable visual similarity metric, DR-KFS, both
qualitatively and quantitatively, on state-of-the-art single-view 3D reconstruc-
tion networks. A gallery of qualitative comparison on results generated when
such networks are trained using DR-KFS is shown in Fig. 7.

4.1 Quantitative Evaluation

We consider existing single-view 3D reconstruction networks, including 3D-R2N2
[8], OGN [26], AtlasNet [10], Matryoshka Network [23], Pixel2Mesh [29], NMR
[13] and SoftRas [16] to quantify both (object-space) shape distortion (CD and
IoU) and the visual quality of the reconstructed models. The networks are trained
either using their original losses or our metric DR-KFS. For visual quality mea-
sures, we choose representative tools including Shape Google, Normal Consis-
tency, F-score, LFD, and MVCNN.
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Table 3. Quantitative comparison for single-view 3D reconstruction networks when
trained using their original distortion-based losses vs. DR-KFS, our differentiable visual
similarity metric. Tested DNNs include AtlasNet25 [10] (Atlas25), Matryoshka Net [23]
(MN), Pixel2Mesh [29] (P2M), Octree Generating Network [26] (OGN), 3D-R2N2 [8],
and shape generation using NMR [13] and SoftRas [16]. Evaluation is done on both
object-space (CD and IoU) and visual similarity metrics: SG = Shape Google, FS = F
score, NC = Normal Consistency, LFD = Light Field Descriptor, MVCNN = multi-view
CNN. Numbers reported represent average performance over four object categories.

Networks Training strategies Evaluation metrics

CD IoU SG FS NC LFD MVCNN DR-KFS

Atlas25 [10] Original 6.53 53.38 3.17 63.17 0.792 4338 0.532 0.288

DR-KFS 7.11 54.41 2.26 65.48 0.790 3796 0.522 0.213

MN [23] Original 2.86 65.33 4.32 74.22 0.825 3866 0.637 0.300

DR-KFS 2.91 66.08 2.08 65.30 0.829 3675 0.660 0.265

P2M [29] Original 6.61 54.08 6.08 58.15 0.761 4508 0.648 0.463

DR-KFS 6.98 54.32 3.84 60.23 0.754 4212 0.662 0.332

OGN [26] Original 6.13 57.01 9.94 56.36 0.695 4436 0.752 0.522

DR-KFS 6.08 56.83 8.73 55.09 0.702 4237 0.661 0.461

3D-R2N2 [8] Original 7.42 53.98 9.75 48.09 0.621 4692 0.841 0.539

DR-KFS 7.56 52.74 9.13 51.58 0.681 4416 0.713 0.441

Shape NMR[13] 11.95 48.90 8.13 51.72 0.522 7716 0.842 0.560

Generator SoftRas[16] 9.75 54.53 7.11 57.08 0.685 5385 0.631 0.471

[13,16] DR-KFS 8.06 55.24 5.48 62.02 0.634 4125 0.741 0.395

IM-Net[7] Original 7.02 66.01 1.38 69.43 0.740 3806 0.511 0.203

Note that the shape generator used in SoftRas [16] and NMR [13] are
identical. We integrate DR-KFS training loss into this shape generator. Our
method works well with mesh inputs. However, for voxel-based methods such as
OGN/MN, we adopted a differentiable marching cubes layer (DMCL) proposed
in [15] to convert voxels to meshes.

Dataset. All the tested networks are trained and evaluated on the large-scale
3D CAD model dataset, ShapeNet [5]. We use four shape categories to train and
test all the networks: airplane (4,045 models), car (3,533), chair (6,778), and
lamp (2,318), with an 80-20 train-test split. Input data is prepared accordingly
as consumed by each one of the aforementioned networks.

Comparison Results. Table 3 shows the comparison results, where the numbers
report average performance over all four object categories. In theory, DR-KFS
can be employed for training IM-NET. Due to the limitation of our current of
GPU memory, we only report the IM-NET numbers here for reference.

Our first observation is that when a network is trained using the new met-
ric DR-KFS, it always performed better in DR-KFS, compared with the origi-
nal network. Second, when trained using DR-KFS, some of the networks even
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outperformed their counterparts trained with the original (object-space) losses,
when the results are evaluated using CD and IoU—this is the case 4 out of 10 or
40% of the time. In particular, Matryoshka was trained using IoU, but training
with DR-KFS outperformed the original network when evaluated on IoU. Next,
perhaps most importantly, we see that in majority of the cases (24 out of 30 or
80% of the time), replacing the original object-space losses using DR-KFS, the
networks improved their performance in terms of visual shape similarity metrics.

4.2 Qualitative Evaluation

To understand the visual quality of the reconstructed 3D models trained using
DR-KFS as the network loss, we conduct two perceptual studies (PS) on Amazon
Mechanical Turk (AMT), as described below.

PS-1. In this study, we present 50 questions, each containing a single-view image
and a pair of reconstructed models, one using the original loss and one using
DR-KFS. Each model is rendered along two views, with one of the views aligned
to the input image. We use the reconstructed models from AtlasNet [10] and
Matryoshka Net [23]. Models are selected at random from the entire recon-
structed set. Turkers are presented with 50 questions in a random order, with
randomized orderings of the reconstructed models as well as their view-images.

PS-2. We essentially repeat PS1, but instead of selecting the models from the
entire reconstructed set, we select them randomly from the top-20% of the recon-
structed set, filtered based on the scores obtained using three visual similarity
measures: LFD, ShapeGoogle and MvCNN.

Both PS1 and PS2 are forced-choice responses involving 80 different partici-
pants per study. For PS-1, DR-KFS metric received 71% of the total votes (4000)
and for PS-2, the percentage share shot up to 86.075%, indicating a positive trend
when high quality visual samples are considered for perceptual evaluation.

4.3 Design Analysis

Reconstruction using “Visual Similarity Loss vs. Image Distortion Loss”. In
Sect. 2, we enlisted a sampler of representative works that address the task
of single-view 3D reconstruction via image supervision. We argue that simply
using a multi-view pipeline is insufficient in producing visually coherent results.
To support this argument, we perform an experiment where we train the Shape
Generator used in SoftRas [16] (state-of-the-art work for 3D reconstruction)
using two different losses: (a) Image distortion loss (per-pixel MSE), and (b)
Image-similarity loss (DR-KFS framework). We combine this analysis with the
effect of visual-space representation described below.
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Reconstruction from “Silhouette vs. Shaded Images”. Silhouette images only
capture the boundary, without any surface information of the 3D shape. It is
straightforward to infer that the reconstructed 3D shapes using silhouette images
are likely to have bad surface quality (see Fig. 5), whereas using shaded images
yields better reconstruction. To understand the differences in the reconstruction
quality, we employ the shape generator used in SoftRas [16] for 3D reconstruction
from either silhouette images or shaded images, with and without integrating
DR-KFS pipeline.

The quantitative results for the effect of the two loss functions (visual sim-
ilarity vs. image distortion) are shown in Table 4. DR-KFS, which measures
image similarity (not distortion), wins over per-pixel MSE loss, when trained on
shaded images, measured using visual shape similarity metrics such as LFD and
Shape Google. Using per-pixel MSE loss on shaded images, however, is much
better than using DR-KFS on silhouette images, indicating that shaded images
are friendlier for the task of 3D reconstruction. This is also underscored visually
in Fig. 5. This supports our claim that for a method to be truly visual, it should
not only make use of multi-view image pipeline, but should also employ a loss
that captures visual similarity and not merely image distortion.

Input
Image

SG+DR-KFS
(Silhouette)

      SG+MSE
(Shaded image)

    SG+DR-KFS
(Shaded image)

Fig. 5. 3D reconstruction results when
the Shape Generator (SG) used in Sof-
tRas [16] is trained using silhouettes
vs. shaded images corresponding to an
input RGB image. See Table 4 for the
average similarity scores for the shapes
shown above.

Table 4. Training a simple Shape Generator
(SG) adopted in SoftRas [16] with both DR-
KFS and per-pixel MSE loss. DR-KFS, which
performs image feature matching, essentially
incorporates visual similarity, while per-pixel
MSE is merely an image distortion loss on the
image pixels. The reconstructed 3D models
are shown in Fig. 5.

LFD Shape Google

SG+DR-KFS

(Silhouette)

6989 8.98

SG+MSE

(Shaded Image)

5156 7.33

SG+DR-KFS

(Shaded Image)

4125 5.48
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Features Capturing Perceptual Differences. Given a four-legged chair with a bar
between adjacent pair of legs, humans can relate to it even after vertical shifts
of the bars. However, if all the bars are removed, one cannot uniquely associate
the new chair to the original one (see Fig. 6). Cognitively, the deletion opera-
tion is more visually apparent than the vertical positional shifts of the bars. It
is desired that feature descriptors encompassing a visual similarity framework
should be able to capture and reflect such perceptual differences. We investigate
this by calculating the image-space distances on four different features of an
image (rendered-view of a 3D shape): MSE on raw image pixels, MSE on LIFT
image features [34], MSE on PoI maps, and DR-KFS approach. The input image
and its corresponding PoI map are shown in Fig. 6. In our experiment, verti-
cal shifts of the bars are obtained by moving them five pixels up/down. From
Table 5, we observe that DR-KFS (differentiable approach) and LIFT features
(non-differentiable) are more sensitive towards the deletion operation compared
to others. Moreover, image matching using DR-KFS and LIFT based local image
features seem to be tolerant to small part shifts (2nd and 4th row in Table 5),
while per-pixel MSE on the image I and the POI maps are quite sensitive to
such relatively less perceptual changes than the deletion operation.

Reference Shift Up Shift Down Deletion

2D
Images

PoI
Maps

Fig. 6. Vertical positional shifts, and
deletion of the leg bars. Binary images
are shown on top and their corre-
sponding PoI maps are on the bottom.
Image similarity scores w.r.t the ref-
erence image for each operation using
different image-level features are tabu-
lated in Table 5.

Table 5. Image similarity scores for the
image-level operations shown in Fig. 6, using:
MSE loss on image pixels (I), image features
using LIFT descriptors [34], MSE loss on PoI
map pixels, and DR-KFS framework. Itali-
cized numbers (row-wise) indicate sensitivity
to the respective image-level operation.

Loss Shift up Shift down Deletion

MSE (I) 0.2961 0.3736 0.2007

MSE(LIFT feats) 0.1174 0.1231 0.1498

MSE (PoI Maps) 0.0137 0.0149 0.0138

DR-KFS 0.0143 0.0160 0.0256
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Fig. 7. A gallery of reconstructed 3D models obtained from AtlasNet (AN) [10],
Matryoshka Net (MN) [23], Pixel2Mesh (P2M) [29] and Shape Generator (SG) [16],
trained using the metrics as adopted in the respective works and by using our DR-KFS
metric. Given an input image, replacing the original training loss with our DR-KFS
loss results in an improvement in the visual quality of the reconstructed 3D models as
shown above, and also supported by the numbers in Table 3.
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5 Conclusion

We make a first step towards improving the visual quality of 3D reconstruc-
tion networks by making their training/reconstruction loss functions visual and
driven by shape similarity rather than distortion. Overall, the new differentiable
visual similarity metric we develop, DR-KFS, is shown to improve the recon-
struction quality for all the tested networks (AtlasNet, Matryoshka, Pixel2Mesh,
OGN, SoftRas, etc.), as judged by a variety of visual similarity measures (LFD,
MVCNN, Shape Google, etc.). This is clearly a positive trend to motivate fur-
ther investigation. However, the demonstrated advantage of DR-KFS is not yet
“across-the-board”. Our metric is still rather primitive as it does not utilize the
most advanced and up-to-date tools that are available for multi-view rendering,
feature extraction and learning, or image-space/perceptual assessment.

In general, the question of what the best 3D reconstruction is should depend
on the application. For example, if the goal is to recognize or classify the shape,
then visual similarity is more important. As well, functional understanding of
an acquired shape hinges on accurate recovery of shape structures, which would
support the use of visual similarity. On the other hand, if the reconstructed 3D
shape is to reflect accurate physical measures, then object-space metrics should
play a more prominent role.

One of the most obvious limitations of any visual similarity DR-KFS
included, is that it is oblivious to errors that are hidden from the viewers due to
occlusion. Such errors are not visible on the projected images, but they can be
captured by object-space shape distances. One possibility to explore is to com-
bine differentiable object- and image-space shape metrics as the training loss,
e.g., as a weighted sum which would preserve the differentiability. This could be
a good strategy to address the distortion-perception trade-off [3], but leaves the
question of how to choose the weight.
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