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Abstract. Learning representations that clearly distinguish between
normal and abnormal data is key to the success of anomaly detec-
tion. Most of existing anomaly detection algorithms use activation rep-
resentations from forward propagation while not exploiting gradients
from backpropagation to characterize data. Gradients capture model
updates required to represent data. Anomalies require more drastic
model updates to fully represent them compared to normal data. Hence,
we propose the utilization of backpropagated gradients as representations
to characterize model behavior on anomalies and, consequently, detect
such anomalies. We show that the proposed method using gradient-based
representations achieves state-of-the-art anomaly detection performance
in benchmark image recognition datasets. Also, we highlight the compu-
tational efficiency and the simplicity of the proposed method in compar-
ison with other state-of-the-art methods relying on adversarial networks
or autoregressive models, which require at least 27 times more model
parameters than the proposed method.

Keywords: Gradient-based representations · Anomaly detection ·
Novelty detection · Image recognition

1 Introduction

Recent advancements in deep learning enable algorithms to achieve state-of-
the-art performance in diverse applications such as image classification, image
segmentation, and object detection. However, the performance of such learning
algorithms still suffers when abnormal data is given to the algorithms. Abnormal
data encompasses data whose classes or attributes differ from training samples.
Recent studies have revealed the vulnerability of deep neural networks against
abnormal data [32,42]. This becomes particularly problematic when trained
models are deployed in critical real-world scenarios. The neural networks can
make wrong prediction for anomalies with high confidence and lead to vital
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Fig. 1. Activation and gradient-based representation for anomaly detection. While
activation characterizes how much of input correspond to learned information, gradients
focus on model updates required by the input.

consequences. Therefore, understanding and detecting abnormal data are signif-
icantly important research topics.

Representation from neural networks plays a key role in anomaly detection.
The representation is expected to clearly differentiate normal data from abnor-
mal data. To achieve the separation, most of existing anomaly detection algo-
rithms deploy a representation obtained in a form of activation. The activation-
based representation is constrained during training. During inference, deviation
of activation from the constrained representation is formulated as an anomaly
score. In Fig. 1, we demonstrate an example of a widely used activation-based
representation from an autoencoder. Assume that the autoencoder is trained
with digit ‘0’ and learns to accurately reconstruct curved edges. When an abnor-
mal image, digit ‘5’, is given to the network, the top and bottom curved edges are
correctly reconstructed but the relatively complicated structure of straight edges
in the middle cannot be reconstructed. Reconstruction error measures the differ-
ence between the target and the reconstructed image and it can be used to detect
anomalies [1,41]. The reconstructed image, which is the activation-based repre-
sentation from the autoencoder, characterizes what the network knows about
input. Thus, abnormality is characterized by measuring how much of the input
does not correspond to the learned information of the network.

In this paper, we propose using gradient-based representations to detect
anomalies by characterizing model updates caused by data. Gradients are gener-
ated through backpropagation to train neural networks by minimizing designed
loss functions [28]. During training, the gradients with respect to the weights
provide directional information to update the neural network and learn knowl-
edge that it has not learned. The gradients from normal data do not guide a
significant change of the current weight. However, the gradients from abnor-
mal data guide more drastic updates on the network to fully represent data.
In the example given in Fig. 1, the autoencoder needs larger updates to accu-
rately reconstruct the abnormal image, digit ‘5’, than the normal image, digit
‘0’. Therefore, the gradients can be utilized as representations to characterize
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abnormality of data. We propose to detect anomalies by measuring how much
model update is required by the input compared to normal data.

The gradient-based representations have several advantages compared to the
activation-based representations, particularly for anomaly detection. First of all,
the gradient-based representations provide abnormality characterization at dif-
ferent levels of data abstraction. The deviation of the activation-based represen-
tations from the constraint, often formulated as a loss (L), is measured from
the output of specific layers. On the other hand, the gradients with respect to
the weights ( ∂L

∂W ) can be obtained from any layer through backpropagation.
This enables the algorithm to capture fine-grained abnormality both in low-level
characteristics such as edge or color and high-level class semantics. In addition,
the gradient-based representations provide directional information to character-
ize anomalies. The loss in the activation-based representation often measures
the distance between representations of normal and abnormal data. However,
by utilizing a loss defined in the gradient-based representations, we can use vec-
tors to analyze direction in which the representation of abnormal data deviates
from that of normal data. Considering that the gradients are obtained in par-
allel with the activation, the directional information of the gradients provides
complementary features for anomaly detection along with the activation.

The gradients as representations have not been actively explored for anomaly
detection. The gradients have been utilized in diverse applications such as adver-
sarial attack generation and visualization [8,40]. However, to the best of our
knowledge, this paper is the first attempt to explore the representation capability
of backpropagated gradients for anomalies. We provide a theoretical explanation
for using gradient-based representations to detect anomalies based on the theory
of information geometry, particularly using Fisher kernel principal [10]. In addi-
tion, through comprehensive experiments with activation-based representations,
we validate the effectiveness of gradient-based representations in abnormal class
and condition detection, which aims at detecting data from unseen classes and
abnormal conditions. We show that the proposed anomaly detection algorithm
using the gradient-based representations achieves state-of-the-art performance.
The main contributions of this paper are three folds:

i) We propose utilizing backpropagated gradients as representations to charac-
terize anomalies.

ii) We validate the representation capability of gradients for anomaly detection
in comparison with activation through comprehensive baseline experiments.

iii) We propose an anomaly detection algorithm using gradient-based repre-
sentations and show that it outperforms state-of-the-art algorithms using
activation-based representations.

2 Related Works

2.1 Anomaly Detection

Most of the existing anomaly detection algorithms are focused on learning con-
strained activation-based representations during training. Several works propose
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to directly learn hyperplane or hypersphere in hidden representation space to
detect anomalies. One-Class support vector machine (OC-SVM) learns a max-
imum margin hyperplane which separates data from the origin in the feature
space [33]. Abnormal data is expected to lie on the other side of normal data
and separated by the hyperplane. The authors in [37] extend the idea of OC-
SVM and propose to learn a smallest hypersphere that encloses the most of
training data in the feature space. In [26], a deep neural network is trained to
constrain the activation-based representations of data into the minimum volume
of hypersphere. For a given test sample, an anomaly score is defined by the
distance between the sample and the center of hypersphere.

An autoencoder has been a dominant learning framework for anomaly detec-
tion. The autoencoder generates two well-constrained representations, which are
latent representation and reconstructed image representation. Based on these
constrained representations, latent loss or reconstruction error have been widely
used as anomaly scores. In [30,41], the authors argue that anomalies cannot be
accurately projected in the latent space and are poorly reconstructed. Therefore,
they propose to use the reconstruction error to detect anomalies. The authors
in [42] fit Gaussian mixture models (GMM) to reconstruction error features and
latent variables and estimate the likelihood of inputs to detect anomalies. In [1],
the authors develop an autoregressive density estimation model to learn the
probability distribution of the latent representation. The likelihood of the latent
representation and the reconstruction error are used to detect abnormal data.

Adversarial training is also actively explored to differentiate the representa-
tion of abnormal data. In general, a generator learns to generate realistic data
similar to training data and a discriminator is trained to discriminate whether
the data is generated from the generator (fake) or from training data (real) [7].
The discriminator learns a decision boundary around training data and is uti-
lized as an abnormality detector during testing. In [29], the authors adversarilally
train a discriminator with an autoencoder to classify reconstructed images from
original images and distorted images. The discriminator is utilized as an anomaly
detector during testing. In [32], the mapping from a query image to a latent vari-
able in a generative adversarial network (GAN) [7] is estimated. The loss which
measures visual similarity and feature matching for the mapping is utilized as
an anomaly score. The authors in [24] use an adversarial autoencoder [18] to
learn the parameterized manifold in the latent space and estimate probability
distributions for anomaly detection.

Aforementioned works exclusively focus on distinguishing between normal
and abnormal data in the activation-based representations. In particular, most
of the algorithms use adversarial networks or likelihood estimation networks to
further constrain activation-based representations. These networks often require
a large amount of training parameters and computations. We show that a
directional constraint imposed on the gradient-based representations enables to
achieve the state-of-the-art anomaly detection performance using only a back-
bone autoencoder with significantly less number of model parameters.
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2.2 Backpropagated Gradients

The backpropagated gradients have been utilized in diverse applications includ-
ing but not limited to visualization, adversarial attacks, and image classifica-
tion. The backpropagated gradients have been widely used for the visualization
of deep networks. In [36,40], information that networks have learned for a spe-
cific target class is mapped back to the pixel space through the backpropagation
and visualized. The authors in [34] utilize the gradients with respect to the
activation to weight the activation and visualize the reasoning for prediction
that neural networks have made. An adversarial attack is another application
of gradients. In [8,14], the authors show that adversarial attacks can be gen-
erated by adding an imperceptibly small vector which is the signum of input
gradients. Several works have incorporated gradients with respect to the input
in a form of regularization during the training of neural networks to improve
the robustness [5,25,35]. Although existing works have shown that the gradients
with respect to the input or the activation can be useful for diverse applica-
tions, the gradients with respect to the weights of neural networks have not
been actively explored aside from its role in training deep networks.

A few works have explored the gradients with respect to the model param-
eters as features for data. The authors in [23] propose to use Fisher kernels
which are based on the normalized gradient vectors of the generative model for
image categorization. The authors in [2,3] characterize information encoded in
the neural network and utilize Fisher information to represent tasks. In [15],
the gradients of the neural network are utilized to classify distorted images and
objectively estimate the quality of them. The gradients have been also studied as
a local liner approximation to a neural network [19]. Our approach differs from
other existing works in two main aspects. First, we generalize the Fisher kernel
principal using the backpropagated gradients from the neural networks. Since we
use the backpropagated gradients to estimate the Fisher score of normal data
distribution, the data does not need to be modeled by known probabilistic distri-
butions such as a GMM. Second, we use the gradients to represent information
that the networks have not learned. In particular, we provide our interpretation
of gradients which characterize abnormal information for the neural networks
and validate their effectiveness in anomaly detection.

3 Gradient-Based Representations

In this section, the intuition to using gradient-based representation for anomaly
detection is detailed. In particular, we present our interpretation of gradients
from a geometric and a theoretical perspective. Geometric interpretation of gra-
dients highlights the advantages of the gradients over activation from a data
manifold perspective. Also, theory of information geometry further supports the
characterization of anomalies using the gradients.
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3.1 Geometric Interpretation of Gradients

We use an autoencoder, which is an unsupervised representation learning frame-
work to explain the geometric interpretation of gradients. An autoencoder con-
sists of an encoder, fθ, and a decoder, gφ. From an input image, x, a latent
variable, z, is generated as z = fθ(x) and a reconstructed image is obtained by
feeding the latent variable into the decoder, gφ(fθ(x)). The training is performed
by minimizing a loss function, J(x; θ, φ), defined as follows:

J(x; θ, φ) = L(x, gφ(fθ(x))) + Ω(z; θ, φ), (1)

where L is a reconstruction error, which measures the dissimilarity between the
input and the reconstructed image and Ω is a regularization term for the latent
variable.

Fig. 2. Geometric interpretation of gradients. Fig. 3. Gradient con-
straint on the manifold.

We visualize the geometric interpretation of backpropagated gradients in
Fig. 2. The autoencoder is trained to accurately reconstruct training images and
the reconstructed training images form a manifold. We assume that the struc-
ture of the manifold is a linear plane as shown in the figure for the simplicity
of explanation. During testing, any given input to the autoencoder is projected
onto the reconstructed image manifold through the projection, gφ(fθ(·)). Ide-
ally, perfect reconstruction is achieved when the reconstructed image manifold
includes the input image. Assume that abnormal data distribution is outside
of the reconstructed image manifold. When an abnormal image, xout, sampled
from the distribution is input to the autoencoder, it will be reconstructed as x̂out

through the projection, gφ(fθ(xout)). Since the abnormal image has not been uti-
lized for training, it will be poorly reconstructed. The distance between xout and
x̂out is formulated as the reconstruction error and characterizes the abnormality
of the data as shown in the left side of Fig. 2. The gradients with respect to the
weights, ∂L

∂θ , ∂L
∂φ , can be calculated through the backpropagation of the recon-

struction error. These gradients represent required changes in the reconstructed
image manifold to incorporate the abnormal image and reconstruct it accurately
as shown in the right side of Fig. 2. In other words, these gradients character-
ize orthogonal variations of the abnormal data distribution with respect to the
reconstructed image manifold.
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The interpretation of gradients from the data manifold perspective highlights
the advantages of gradients in anomaly detection. In activation-based represen-
tations, the abnormality is characterized by distance information measured using
a designed loss function. On the other hand, the gradients provide directional
information, which indicates the movement of manifold in which data representa-
tions reside. This movement characterizes, in particular, in which direction the
abnormal data distribution deviates from the representations of normal data.
Furthermore, the gradients obtained from different layers provide a comprehen-
sive perspective to represent anomalies with respect to the current representa-
tions of normal data. Therefore, the directional information from gradients can
be utilized as complementary information to the distance information from the
activation.

3.2 Theoretical Interpretation of Gradients

We derive theoretical explanation for gradient-based representations from infor-
mation geometry, particularly using the Fisher kernel. Based on the Fisher ker-
nel, we show that the gradient-based representations characterize model updates
from query data and differentiate normal from abnormal data. We utilize the
same setup of an autoencoder described in Sect. 3.1 but consider the encoder
and the decoder as probability distributions [6]. Given the latent variable,
z, the decoder models input distribution through a conditional distribution,
Pφ(x|z). The autoencoder is trained to minimize the negative log-likelihood,
− log Pφ(x|z). When x is a real value and Pφ(x|z) is assumed to be a Gaussian
distribution, the decoder estimates the mean of the Gaussian. Also, the mini-
mization of the negative log-likelihood corresponds to using a mean squared error
as the reconstruction error. When x is a binary value, the decoder is assumed
to be a Bernoulli distribution. The negative log-likelihood is formulated as a
binary cross entropy loss. Considering the decoder as the conditional probability
enables to interpret gradients using the Fisher kernel.

The Fisher kernel defines a metric between samples using the gradients
of generative probability distribution [10]. Let X be a set of samples and
P (X|θ) is a probability density function of the samples parameterized by
θ = [θ1, θ2, ..., θN ]T ∈ R

N . This probability distribution models a Riemannian
manifold with a local metric defined by Fisher information matrix, F ∈ R

N×N ,
as follows:

F = E
x∈X

[UX
θ UX

θ

T
] where UX

θ = ∇θ log P (X|θ). (2)

UX
θ is called the Fisher score which describes the contribution of the parameters

in modeling the data distribution. In [10], the authors propose the Fisher kernel
to measure the difference between two samples based on the Fisher score. The
Fisher kernel, KFK , is defined as

KFK(Xi,Xj) = Uθ
Xi

T
F−1U

Xj

θ , (3)



Backpropagated Gradient Representations for Anomaly Detection 213

where Xi and Xj are two data samples. The Fisher kernels enable to extract
discriminant features from the generative model and they have been actively
used in diverse applications such as image categorization, image classification,
and action recognition [21,23,31].

We use the Fisher kernel estimated from the autoencoder for anomaly detec-
tion. The distribution of the decoder is parameterized by the weights, φ, and
the Fisher score from the decoder is defined as UX

φ,z = ∇φ log P (X|φ, z). Also,
since the distribution is learned to be generalizable to the test data, we can use
the Fisher kernel to measure the distance between training data and normal test
data, and between training data and abnormal test data. The Fisher kernel for
normal data (inliers), Kin

FK , and abnormal data (outliers), Kout
FK , are derived as

follows, respectively:

Kin
FK(Xtr,Xte,in) = Uφ

Xtr
T
F−1U

Xte,in

φ,z (4)

Kout
FK(Xtr,Xte,out) = Uφ

Xtr
T
F−1U

Xte,out

φ,z , (5)

where Xtr,Xte,in,Xte,out are training data, normal test data, and abnormal test
data, respectively. For ideal anomaly detection, Kout

FK should be larger than Kin
FK

to clearly differentiate normal and abnormal data. The difference between Kin
FK

and Kout
FK is characterized by the Fisher scores U

Xte,in

φ,z and U
Xte,out

φ,z . Therefore,
the Fisher scores from query data are discriminant features for detecting anoma-
lies. We propose to estimate the Fisher scores using the backpropagated gradients
with respect to the weights of the decoder. Since the autoencoder is trained to
minimize the negative log-likelihood loss, L = − log Pφ(x|z), the backpropagated
gradients, ∂L

∂φ , obtained from normal and abnormal data estimate U
Xte,in

φ,z and

U
Xte,out

φ,z when the autoencoder is trained with a sufficiently large amount of data
to model the data distribution. Therefore, we can interpret the gradient-based
representations as discriminant representations obtained from the conditional
probabilistic modeling of data for anomaly detection.

We visualize the gradients with respect to the weights of the decoder obtained
by backpropagating the reconstruction error, L, from normal data, xin,1, xin,2,
and abnormal data, xout,1, in Fig. 3. These gradients estimate the Fisher scores
for inliers and outliers, which need to be clearly separated for anomaly detection.
Given the definition of the Fisher scores, the gradients from normal data should
contribute less to the change of the manifold compared to those from abnormal
data. Therefore, the gradients from normal data should reside in the tangent
space of the manifold but abnormal data results in the gradients orthogonal to
the tangent space. We achieve this separation in gradient-based representations
through directional constraint described in the following section.
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4 Method: Gradient Constraint

The separation between inliers and outliers in the representation space is often
achieved by modeling the normality of data. The deviation from the normality
model captures the abnormality. The normality is often modeled through con-
straints imposed during training. The constraint allows normal data to be easily
constrained but makes abnormal data deviates. For example, the autoencoders
constrain the output to be similar to the input and the reconstruction error
measures the deviation. A variational autoencoder (VAE) [12] and an adversarial
autoencoder (AAE) often constrain the latent representation to follow the Gaus-
sian distribution and the deviation from the Gaussian distribution characterizes
anomalies. In the gradient-based representations, we also impose a constraint
during training to model the normality of data and further differentiate U

Xte,in

φ,z

from U
Xte,out

φ,z defined in Sect. 3.2.
We propose to train an autoencoder with a directional gradient constraint

to model the normality. In particular, based on the interpretation of gradients
from the Fisher kernel perspective, we enforce the alignment between gradients.
This constraint makes the gradients from normal data aligned with each other
and result in small changes to the manifold. On the other hand, the gradients
from abnormal data will not be aligned with others and guide abrupt changes
to the manifold. We utilize a gradient loss, Lgrad, as a regularization term in the
entire loss function, J . We calculate the cosine similarity between the gradients
of a certain layer i in the decoder at the kth iteration of training, ∂L

∂φi

k
, and the

average of the training gradients of the same layer i obtained until the (k − 1)th

iteration, ∂J
∂φi

k−1

avg
. The gradient loss at the kth iteration of training is obtained

by averaging the cosine similarity over all the layers in the decoder as follows:

Lgrad = −E
i

[
cosSIM

(
∂J
∂φi

k−1

avg

,
∂L
∂φi

k
)]

,
∂J
∂φi

k−1

avg

=
1

(k − 1)

k−1∑
t=1

∂J
∂φi

t

, (6)

where J is defined as J = L + Ω + αLgrad. The first and the second terms are
the reconstruction error and the latent loss, respectively and they are defined by
different types of autoencoders. α is a weight for the gradient loss. We set suffi-
ciently small α value to ensure that gradients actively explore the optimal weights
until the reconstruction error and the latent loss become small enough. Based
on the interpretation of the gradients described in Sect. 3.2, we only constrain
the gradients of the decoder layers and the encoder layers remain unconstrained.

During training, L is first calculated from the forward propagation. Through
the backpropagation, ∂L

∂φi

k
is obtained without updating the weights. Based on

the obtained gradient, the entire loss J is calculated and finally the weights are
updated using backpropagated gradients from the loss J . An anomaly score is
defined by the combination of the reconstruction error and the gradient loss as
L + βLgrad. Although we use α to weight the gradient loss during training, we
found that the gradient loss is often more effective than the reconstruction error
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for anomaly detection. To better balance the two losses, we use β = 4α for all
the experiments and show that the weighted combination of two losses improve
the performance. The proposed anomaly detection algorithm using Gradient
Constraint is called GradCon.

5 Experiments

5.1 Experimental Setup

We conduct anomaly detection experiments to both qualitatively and quantita-
tively evaluate the performance of the gradient-based representations. In partic-
ular, we perform abnormal class detection and abnormal condition detection
using the gradient constraint and compare GradCon with other state-of-the-
art activation-based anomaly detection algorithms. In abnormal class detection,
images from one class of a dataset are considered as inliers and used for the train-
ing. Images from other classes are considered as outliers. In abnormal condition
detection, images without any effect are utilized as inliers and images captured
under challenging conditions such as distortions or environmental effects are
considered as outliers. Both inliers and outliers are given to the network during
testing. The anomaly detection algorithms are expected to correctly classify data
of which class and condition differ from those of the training data.

Datasets. We utilize four benchmark datasets, which are CIFAR-10 [13],
MNIST [16], fashion MNIST (fMNIST) [39], and CURE-TSR [38] to evaluate
the performance of the proposed algorithm. We use CIFAR-10, MNIST, fMNIST
for abnormal class detection and CURE-TSR for abnormal condition detection.
CIFAR-10 dataset consists of 60,000 color images with 10 classes. MNIST dataset
contains 70,000 handwritten digit images from 0 to 9 and fMNIST dataset also
has 10 classes of fashion products and there are 7,000 images per class. CURE-
TSR dataset has 637, 560 color traffic sign images which consist of 14 traffic
sign types under 5 levels of 12 different challenging conditions. For CIFAR-10,
CURE-TSR, and MNIST, we follow the protocol described in [22] to create splits.
To be specific, we utilize the original training and the test split of each dataset
for training and testing. 10% of training images are held out for validation. For
fMNIST, we follow the protocol described in [24]. The dataset is split into 5
folds and 60% of each class is used for training, 20% is used for validation, the
remaining 20% is used for testing. In the experiments with CIFAR-10, MNIST,
and fMNIST, we use images from one class as inliers for training. During testing,
inlier images and the same number of oulier images randomly sampled from other
classes are utilized. For CURE-TSR, challenge-free images are utilized as inliers
for training. During testing, challenge-free images are utilized as inliers and the
same images with challenging conditions are utilized as outliers. We particularly
use 5 challenge levels with 8 challenging conditions which are Decolorization,
Lens blur, Dirty lens, Exposure, Gaussian blur, Rain, Snow, and Haze. All
the results are obtained using area under receiver operation characteristic curve
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(AUROC) and we also report F1 score in fMNIST dataset for the fair comparison
with the state-of-the-art method [24].

Implementation Details. We train a convolutional autoencoder (CAE) for
GradCon. The encoder and the decoder consist of 4 convolutional layers and the
dimension of the latent variable is 3×3×64. The number of convolutional filters
for each layer in the encoder is 32, 32, 64, 64 and the kernel size is 4 × 4 for all
the layers. The architecture of the decoder is symmetric to the encoder. Adam
optimizer [11] with the learning rate of 0.001 is used for training. We use mean
square error as the reconstruction error and do not use any latent loss for the
CAE (Ω = 0). α = 0.03 is used to weight the gradient loss.

5.2 Baseline Comparison

We compare the performance of the gradient-based representations in charac-
terizing abnormal data with the activation-based representations. Furthermore,
we show that the gradient-based representations can complement the activation-
based representations and improve the performance of anomaly detection. We
train four different autoencoders, which are CAE, CAE with the gradient con-
straint (CAE + Grad), VAE, VAE with the gradient constraint (VAE + Grad)
for the baseline experiments. VAEs are trained using binary cross entropy as
the reconstruction error and Kullback Leibler (KL) divergence as the latent loss.
Implementation details for VAEs are same as those for the CAE described in
Sect. 5.1. We train the autoencoders using images from each class of CIFAR-10.
Two losses defined by the activation-based representations, which are the recon-
struction error (Recon) and the latent loss (Latent), and the gradient loss (Grad)
defined by the gradient-based representations are separately used as anomaly
scores for detection. AUROC results are reported in Table 1 and the highest
AUROC for each class is highlighted in bold.

Effectiveness of the Gradient Constraint (CAE vs. CAE+Grad). We
first compare the performance of CAE and CAE + Grad to analyze the effec-
tiveness of the gradient-based representation with constraint. The reconstruction
error from CAE and CAE + Grad achieves comparable average AUROC scores.
The gradient loss from CAE + Grad achieves the best performance with an
average AUROC of 0.661. This shows that the gradient constraint marginally
sacrifices the performance from the activation-based representation and achieve
the superior performance from the gradient-based representation.

Performance Sacrifice from the Latent Constraint (CAE vs. VAE).
We evaluate the effect of the latent constraint by comparing CAE and VAE.
The latent loss of VAE achieves the improved performance compared to the
reconstruction error of CAE by an average AUROC of 0.019. However, the per-
formance of the reconstruction error from VAE is lower than that from CAE
by 0.038. This shows that the latent constraint sacrifices the performance from
another activation-based representation which is the reconstructed image. Since
both latent representation and reconstructed image are obtained from forward
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Table 1. Baseline anomaly detection results on CIFAR-10. The reconstruction error
(Recon) and the latent loss (Latent) are obtained from the activation-based repre-
sentations and the gradient loss (Grad) is obtained from the gradient-based repre-
sentations.Baseline anomaly detection results on CIFAR-10. The reconstruction error
(Recon) and the latent loss (Latent) are obtained from the activation-based representa-
tions and the gradient loss (Grad) is obtained from the gradient-based representations.

Model Loss Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average

CAE Recon 0.682 0.353 0.638 0.587 0.669 0.613 0.495 0.498 0.711 0.390 0.564

CAE + Grad Recon 0.659 0.356 0.640 0.555 0.695 0.554 0.549 0.478 0.695 0.357 0.554

Grad 0.752 0.619 0.622 0.580 0.705 0.591 0.683 0.576 0.774 0.709 0.661

VAE Recon 0.553 0.608 0.437 0.546 0.393 0.531 0.489 0.515 0.552 0.631 0.526

Latent 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583

VAE + Grad Recon 0.556 0.606 0.438 0.548 0.392 0.543 0.496 0.518 0.552 0.631 0.528

Latent 0.586 0.396 0.618 0.476 0.719 0.474 0.698 0.537 0.586 0.413 0.550

Grad 0.736 0.625 0.591 0.596 0.707 0.570 0.740 0.543 0.738 0.629 0.647

Fig. 4. Baseline anomaly detection results on CURE-TSR.

propagation, the constraint imposed in the latent space affects the reconstruc-
tion performance. Therefore, using a combination of multiple activation-based
representations faces limitations in improving the performance.

Complementary Features from the Gradient Constraint (VAE vs. VAE
+ Grad). Comparison between VAE and VAE + Grad shows the effectiveness
of using the gradient constraint with the activation constraint. The gradient
loss in VAE + Grad achieves the second best average AUROC and outperforms
the latent loss in the VAE by 0.064. The performance from the reconstruction
error is comparable between VAE and VAE + Grad. The average AUROC of
the latent loss from VAE + Grad is marginally sacrificed by 0.033 compared to
that from VAE. In both CAE + Grad and VAE + Grad, the performance gain
from the gradient loss is always greater than the sacrifice in other activation-
based representations. This is contrary to the CAE and VAE comparison where
the performance gain is smaller than the sacrifice from the reconstruction error.
Since gradients are obtained in parallel with the activation, constraining gradi-
ents less affects the anomaly detection performance from the activation-based
representations. Thus, the gradient-based representations can provide comple-
mentary features to the activation-based representations for anomaly detection.
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Fig. 5. Histogram analysis on activation losses
and gradient loss in MNIST.

Table 2. Anomaly detection results
from the gradients of each layer in the
decoder.

Layer 1st 2nd 3rd 4th All

CIFAR-10 0.648 0.649 0.628 0.605 0.661

CURE-TSR DL 0.688 0.640 0.649 0.681 0.708

EX 0.859 0.811 0.781 0.833 0.891

SN 0.677 0.612 0.628 0.693 0.702

Abnormal Condition Detection. We further analyze the discriminant capa-
bility of the gradient-based representations for diverse challenging conditions
and levels. We compare the performance of CAE and CAE + Grad using the
reconstruction error (Recon) and the gradient loss (Grad). Samples with chal-
lenging conditions and the AUROC performance are visualized in Fig. 4. For all
challenging conditions and levels, CAE + Grad achieves the best performance. In
particular, except for snow level 1–3, the gradient loss achieves the best perfor-
mance and for snow level 1–3, the reconstruction error of CAE + Grad achieves
the best performance. In terms of the average AUROC over challenge levels, the
gradient loss of CAE + Grad outperforms the reconstruction error of CAE by
the largest margin of 0.612 in rain and the smallest margin of 0.089 in snow.
These test conditions encompass acquisition imperfection, processing artifact,
and environmental challenging conditions. The superior performance of the gra-
dient loss shows that the gradient-based representation effectively characterizes
diverse types and levels of unseen challenging conditions.

Decomposition of the Gradient Loss. We decompose the gradient loss and
analyze the contribution of gradients from each layer on anomaly detection.
Instead of the gradient loss obtained by averaging the cosine similarity over all
the layers as (6), we use the cosine similarity from each layer as an anomaly
score. The average AUROC results obtained by the gradients from the first to
the fourth layer of the decoder are reported in Table 2. Also, results obtained by
averaging the cosine similarity over all layers are reported. We use CIFAR-10 and
Dirty Lens (DL), Exposure (EX), Snow (SN) challenge types of CURE-TSR.
In CIFAR-10, inlier class and outlier classes share most of low-level features
such as edges or colors. Also, semantic information mostly differentiate classes.
Since the layers close to the latent space focus more on high-level characteristics
of data, the gradient loss from the first and the second layer show the largest
contribution on anomaly detection. In CURE-TSR, challenging conditions alter
low-level characteristics of images such as edges or colors. Therefore, the last
layer of the decoder also contributes more than middle layers for abnormal con-
dition detection. This shows that gradients extracted from different layers char-
acterize abnormality at different levels of data abstraction. In both datasets,
results obtained by combining all the layers (All) show the best performance.
Given that losses defined by activation-based representations can be calculated
only from the output of specific layers, using gradients from all the layers enable
to capture abnormality in both low-level and high-level characteristics of data.
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Table 3. Anomaly detection AUROC results on CIFAR-10.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Average

OCSVM [33] 0.630 0.440 0.649 0.487 0.735 0.500 0.725 0.533 0.649 0.508 0.586

KDE [4] 0.658 0.520 0.657 0.497 0.727 0.496 0.758 0.564 0.680 0.540 0.610

DAE [9] 0.411 0.478 0.616 0.562 0.728 0.513 0.688 0.497 0.487 0.378 0.536

VAE [12] 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.583

PixelCNN [20] 0.788 0.428 0.617 0.574 0.511 0.571 0.422 0.454 0.715 0.426 0.551

LSA [1] 0.735 0.580 0.690 0.542 0.761 0.546 0.751 0.535 0.717 0.548 0.641

AnoGAN [32] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.618

DSVDD [27] 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.648

OCGAN [22] 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554 0.657

GradCon 0.760 0.598 0.648 0.586 0.733 0.603 0.684 0.567 0.784 0.678 0.664

Table 4. Anomaly detection AUROC results on MNIST.

0 1 2 3 4 5 6 7 8 9 Average

OCSVM [33] 0.988 0.999 0.902 0.950 0.955 0.968 0.978 0.965 0.853 0.955 0.951

KDE [4] 0.885 0.996 0.710 0.693 0.844 0.776 0.861 0.884 0.669 0.825 0.814

DAE [9] 0.894 0.999 0.792 0.851 0.888 0.819 0.944 0.922 0.740 0.917 0.877

VAE [12] 0.997 0.999 0.936 0.959 0.973 0.964 0.993 0.976 0.923 0.976 0.970

PixelCNN [20] 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.618

LSA [1] 0.993 0.999 0.959 0.966 0.956 0.964 0.994 0.980 0.953 0.981 0.975

AnoGAN [32] 0.966 0.992 0.850 0.887 0.894 0.883 0.947 0.935 0.849 0.924 0.913

DSVDD [27] 0.980 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.948

OCGAN [22] 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981 0.975

GradCon 0.995 0.999 0.952 0.973 0.969 0.977 0.994 0.979 0.919 0.973 0.973

5.3 Comparison with State-of-The-Art Algorithms

We evaluate the performance of GradCon which uses the combination of the
reconstruction error and the gradient loss as an anomaly score. We compare
GradCon with other benchmarking and state-of-the-art algorithms. The AUROC
results on CIFAR-10 and MNIST are reported in Table 3 and Table 4, respec-
tively. Top two AUROC scores for each class are highlighted in bold. GradCon
achieves the best average AUROC performance in CIFAR-10 while achieving the
second best performance in MNIST by the gap of 0.002. In Fig. 5, we visualize
the histogram of the reconstruction error, the latent loss, and the gradient loss
for inliers and outliers to further analyze the state-of-the-art performance of the
proposed method. We calculate each loss for all the inliers and the outliers in
MNIST. Also, we provide the percentage of overlap calculated by dividing the
number of samples in the overlapped region of the histograms by the total num-
ber of samples. Ideally, measured errors on each representation should separate
the histograms of inliers and outliers as much as possible for effective anomaly
detection. The gradient loss achieves the least number of samples overlapped
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Table 5. Anomaly detection results on fMNIST.

% of outlier 10 20 30 40 50

F1 GPND 0.968 0.945 0.917 0.891 0.864

Grad 0.964 0.939 0.917 0.899 0.870

GradCon 0.967 0.945 0.924 0.905 0.871

AUC GPND 0.928 0.932 0.933 0.933 0.933

Grad 0.931 0.925 0.926 0.928 0.926

GradCon 0.938 0.933 0.935 0.936 0.934

Table 6. Number of model param-
eters.

Method # of parameters

AnoGAN 6,338,176

GPND 6,766,243

LSA 13,690,160

GradCon 230,721

which explains the state-of-the art performance achieved by GradCon. We also
evaluate the performance of GradCon in comparison with another state-of-the-
art algorithm denoted as GPND [24] in fMNIST. In this fMNIST experiment,
we change the ratio of outliers in the test set from 10% to 50% and evaluate the
performance in terms of AUROC and F1 score. We report the results from the
gradient loss (Grad) and GradCon in Table 5. GradCon outperforms GPND in
all outlier ratios in terms of AUROC. Except for the 10% of outlier ratio, Grad-
Con achieves higher F1 scores than GPND. The results of the gradient loss and
GradCon show that the combination of the gradient loss and the reconstruction
error improves the performance for all the outlier ratios in terms of AUROC and
F1 score.

Computational Efficiency of GradCon. GradCon requires significantly less
computational resources compared to other state-of-the-art algorithms. To show
the computational efficiency of GradCon, we measure the average inference time
per image using a machine with two GTX Titan X GPUs and compare compu-
tation time. While the average inference time per image for GPND on fMNIST
is 5.72 ms, GradCon takes only 3.08 ms which is around 1.9 time faster. Also,
we compare the number of model parameters for GradCon with that for the
state-of-the-art algorithms in Table 6. AnoGAN, GPND, and LSA are based
on a GAN [7], an AAD [18], and an autoregressive model [17], respectively
but GradCon is solely based on a CAE. Hence, the number of model parame-
ters for GradCon is approximately 27, 29, 59 times less than that for AnoGAN,
GPND, and LSA, respectively. Most of the state-of-the-art algorithms require
additional training of adversarial networks or probabilistic modeling on top of
the activation-based representations from the encoder and the decoder. Since
GradCon is only based on the reconstruction error and the gradient loss of the
CAE, it is computationally efficient even while achieving the state-of-the-art
performance.

6 Conclusion

We propose using a gradient-based representation for anomaly detection by char-
acterizing model behavior on anomalies. We introduce the geometric interpreta-
tion of gradients and derive an anomaly score based on the deviation of gradients
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from the directional constraint. From thorough baseline analysis, we show the
effectiveness of gradient-based representations for anomaly detection in compari-
son with the activation-based representations. Also, the proposed anomaly detec-
tion algorithm, GradCon, which is the combination of the reconstruction error
and the gradient loss achieves the state-of-the-art performance in benchmarking
image recognition datasets. In terms of the computational efficiency, GradCon
has significantly less number of model parameters and shows faster inference
time compared to other state-of-the-art anomaly detection algorithms. Given
that most of anomaly detection algorithms adopt adversarial training frame-
works or probabilistic modelings on activation-based representations, using more
sophisticated training frameworks on gradient-based representations remains for
future work.

A Appendix

In Sect. A.1, we compare the performance of GradCon with other benchmarking
and state-of-the-art algorithms on fMNIST. In Sect. A.2, we perform statistical
analysis and highlight the separation between inliers and outliers achieved by
using the gradient-based representations in CIFAR-10. In Sect. A.3, we analyze
different parameter settings for GradCon. Finally, we provide additional details
on CURE-TSR dataset in Sect. A.4.

A.1 Additional Results on fMNIST

We compared the performance of GradCon with other benchmarking and state-
of-the-art algorithms using CIFAR-10 and MNIST in Table 3 and 4. In Table 5
of the paper, we mainly focused on rigorous comparison between GradCon and
GPND which shows the second best performacne in terms of the average AUROC
on fMNIST. In this section, we report the average AUROC performance of Grad-
Con in comparison with that of additional benchmarking and state-of-the-art
algorithms using fMNIST in Table 7. The same experimental setup for fMNIST
described in Sect. 5.1 is utilized and the test set contains the same number of
inliers and outliers. GradCon outperforms all the compared algorithms including
GPND. Given that ALOCC, OCGAN, and GPND are all based on adversar-
ial training to further constrain the activation-based representations, GradCon
achieves the best performance in fMNIST only based on a CAE and requires
significantly less computations.

Table 7. Average AUROC result of GradCon compared with benchmarking and state-
of-the-art anomaly detection algorithms on fMNIST.

Method ALOCC DR [29] ALOCC D [29] DCAE [30] OCGAN [22] GPND [24] GradCon

AUROC 0.753 0.601 0.908 0.924 0.933 0.934
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Fig. 6. Histogram analysis on activation losses and gradient loss in CIFAR-10. For
each class, we calculate the activation losses and the gradient loss from inliers and
outliers. The losses from all 10 classes are visualized using histograms. The percentage
of overlap is calculated by dividing the number of samples in the overlapped region of
the histograms by the total number of samples.

A.2 Histogram Analysis on CIFAR-10

We presented histogram analysis using gray scale digit images in MNIST to
explain the state-of-the-art performance achieved by GradCon in Fig. 5. In this
section, we perform the same histogram analysis using color images of general
objects in CIFAR-10 to further highlight the separation between inliers and
outliers achieved by the gradient-based representations. We obtain histograms
for CIFAR-10 through the same procedures that are used to generate histograms
for MNIST visualized in Fig. 5. In Fig. 6, we visualize the histograms of the
reconstruction error, the latent loss, and the gradient loss in CIFAR-10. Also, we
provide the percentage of overlap between histograms from inliers and outliers.
The measured error on each representation is expected to differentiate inliers
from outliers and achieve as small as possible overlap between histograms. The
gradient loss shows the smallest overlap compared to other two losses defined
in activation-based representations. This statistical analysis also supports the
superior performance of GradCon compared to other reconstruction error or
latent loss-based algorithms reported in Table 3.

Comparison between histograms from MNIST visualized in Fig. 5 and those
from CIFAR-10 shows that the gradient loss is more effective when data becomes
complicated and challenging for anomaly detection. In MNIST, simple low-level
features such as curved edges or straight edges can be class discriminant features
for anomaly detection. On the other hand, CIFAR-10 contains images with richer
structure and features than MNIST. Therefore, normal and abnormal data are
not easily separable and the overlap between histograms is significantly larger
in CIFAR-10 than MNIST. In CIFAR-10, the overlap of the gradient loss is
smaller than the second smallest overlap of the reconstruction error by 12.4%.
In MNIST, the overlap of the gradient loss is smaller than the second smallest
overlap by 5.7%. GradCon also outperforms other state-of-the-art methods by a
larger margin of AUROC in CIFAR-10 compared to MNIST. The overlap and
performance differences show that the contribution of the gradient loss becomes
more significant when data is complicated and challenging for anomaly detection.
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Fig. 7. Average AUROC results with different β parameters in CIFAR-10. α = 0.03
is utilized to train the CAE. The dotted line (average AUROC = 0.657) indicates the
performance of OCGAN which achieves the second best performance in CIFAR-10.

A.3 Parameter Setting for the Gradient Loss

We analyze the impact of different parameter settings on the performance of
GradCon. The final anomaly score of GradCon is given as L + βLgrad, where L
is the reconstruction error and Lgrad is the gradient loss. While we use α param-
eter to weight the gradient loss and constrain the gradients during training, we
observe that the gradient loss generally shows better performance as an anomaly
score than the reconstruction error. Hence, we use β = nα, where n is constant,
to weight the gradient loss more for the anomaly score. We evaluate the average
AUROC performance of GradCon with different β parameters using CIFAR-10
in Fig. 7. In particular, we change the scaling constant, n, to change β in the
x-axis of the plot. The performance of GradCon improves as we increase β in
the range of β = [0, 2α]. Also, GradCon consistently achieves state-of-the-art
performance across a wide range of β parameter settings when β ≥ 1.67α. To
be specific, GradCon always outperforms OCGAN which achieves the second
best average AUROC performance of 0.657 in CIFAR-10 when β ≥ 1.67α. This
analysis shows that GradCon achieves the best performance in CIFAR-10 across
a wide range of β.

A.4 Additional Details on CURE-TSR Dataset

We visualize traffic sign images with 8 different challenge types and 5 different
levels in Fig. 8. Level 5 images contain the most severe challenge effect and
level 1 images are least affected by the challenging conditions. Since level 1
images are perceptually most similar to the challenge-free image, it is more
challenging for anomaly detection algorithms to classify level 1 images as outliers.
The gradient loss from CAE + Grad outperforms the reconstruction error from
CAE in all level 1 challenge types. This result shows that the gradient loss
consistently outperforms the reconstruction error even when inliers and outliers
become relatively similar under mild challenging conditions.
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Fig. 8. A challenge-free stop sign and stop signs with 8 different challenge types and
5 different challenge levels. Challenging conditions become more severe as the level
becomes higher.
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