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Abstract. Unsupervised domain adaptive person Re-IDentification
(ReID) is challenging because of the large domain gap between source
and target domains, as well as the lackage of labeled data on the tar-
get domain. This paper tackles this challenge through jointly enforcing
visual and temporal consistency in the combination of a local one-hot
classification and a global multi-class classification. The local one-hot
classification assigns images in a training batch with different person
IDs, then adopts a Self-Adaptive Classification (SAC) model to classify
them. The global multi-class classification is achieved by predicting labels
on the entire unlabeled training set with the Memory-based Temporal-
guided Cluster (MTC). MTC predicts multi-class labels by considering
both visual similarity and temporal consistency to ensure the quality of
label prediction. The two classification models are combined in a unified
framework, which effectively leverages the unlabeled data for discrimi-
native feature learning. Experimental results on three large-scale ReID
datasets demonstrate the superiority of proposed method in both unsu-
pervised and unsupervised domain adaptive ReID tasks. For example,
under unsupervised setting, our method outperforms recent unsuper-
vised domain adaptive methods, which leverage more labels for training.

Keywords: Domain adaption · Person re-identification · Convolution
neural networks

1 Introduction

Person Re-Identification (ReID) aims to identify a probe person in a camera net-
work by matching his/her images or video sequences and has many promising
applications like smart surveillance and criminal investigation. Recent years have
witnessed the significant progresses on supervised person ReID in discriminative
feature learning from labeled person images [14,17,23,27,32,38] and videos [11–
13]. However, supervised person ReID methods rely on a large amount of labeled
data which is expensive to annotate. Deep models trained on the source domain
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suffer substantial performance drop when transferred to a different target domain.
Those issues make it hard to deploy supervised ReID models in real applications.

To tackle this problem, researchers focus on unsupervised learning [5,29,39],
which could take advantage of abundant unlabeled data for training. Com-
pared with supervised learning, unsupervised learning relieves the requirement
for expensive data annotation, hence shows better potential to push person ReID
towards real applications. Recent works define unsupervised person ReID as a
transfer learning task, which leverages labeled data on other domains. Related
works can be summarized into two categories, e.g., (1) using Generative Adver-
sarial Network (GAN) to transfer the image style from labeled source domain to
unlabeled target domain while preserving identity labels for training [31,39,41],
or (2) pre-training a deep model on source domain, then clustering unlabeled
data in target domain to estimate pseudo labels for training [5,34]. The sec-
ond category has significantly boosted the performance of unsupervised person
ReID. However, there is still a considerable performance gap between supervised
and unsupervised person ReID. The reason may be because many persons share
similar appearance and the same person could exhibit different appearances,
leading to unreliable label estimation. Therefore, more effective ways to utilize
the unlabeled data should still be investigated.

This work targets to learn discriminative features for unlabeled target domain
through generating more reliable label predictions. Specifically, reliable labels
can be predicted from two aspects. First, since each training batch samples a
small number of images from the training set, it is likely that those images are
sampled from different persons. We thus could label each image with a distinct
person ID and separate them from each other with a classification model. Second,
it is not reliable to estimate labels on the entire training set with only visual
similarity. We thus consider both visual similarity and temporal consistency
for multi-class label prediction, which is hence utilized to optimize the inter and
intra class distances. Compared with previous methods, which only utilize visual
similarity to cluster unlabeled images [5,34], our method has potential to exhibit
better robustness to visual variance. Our temporal consistency is inferred based
on the video frame number, which can be easily acquired without requiring extra
annotations or manual alignments.

The above intuitions lead to two classification tasks for feature learning. The
local classification in each training batch is conducted by a Self-Adaptive Classifi-
cation (SAC) model. Specially, in each training batch, we generate a self-adaptive
classifier from image features and apply one-hot label to separate images from
each other. The feature optimization in the entire training set is formulated as a
multi-label classification task for global optimization. We propose the Memory-
based Temporal-Guided Cluster (MTC) to predict multi-class labels based on
both visual similarity and temporal consistency. In other words, two images are
assigned with the same label if they a) share large visual similarity and b) share
enough temporal consistency.

Inspired by [30], we compute the temporal consistency based on the distri-
bution of time interval between two cameras, i.e., interval of frame numbers of
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two images. For example, when we observe a person appears in camera i at time
t, according to the estimated distribution, he/she would have high possibility to
be recorded by camera j at time t+Δt, and has low possibility will be recorded
by another camera k. This cue would effectively filter hard negative samples
with similar visual appearance, as well as could be applied in ReID to reduce
the search space. To further ensure the accuracy of clustering result, MTC uti-
lizes image features stored in the memory bank. Memory bank is updated with
augmented features after each training iteration to improve feature robustness.

The two classification models are aggregated in a unified framework for
discriminative feature learning. Experiments on three large-scale person ReID
datasets show that, our method exhibits substantial superiority to existing unsu-
pervised and domain adaptive ReID methods. For example, we achieve rank1
accuracy of 79.5% on Market-1501 with unsupervised training, and achieve 86.8%
after unsupervised domain transfer, respectively.

Our promising performance is achieved with the following novel components.
1) The SAC model efficiently performs feature optimization in each local train-
ing batch by assigning images with different labels. 2) The MTC method per-
forms feature optimization in the global training set by predicting labels with
visual similarity and temporal consistency. 3) Our temporal consistency does
not require any extra annotations or manual alignments, and could be utilized
in both model training and ReID similarity computation. To the best of our
knowledge, this is an early unsupervised person ReID work utilizing temporal
consistency for label prediction and model training.

2 Related Work

This work is closely related to unsupervised domain adaptation and unsuper-
vised domain adaptive person ReID. This section briefly summarizes those two
categories of works.

Unsupervised Domain Adaptation (UDA) has been extensively studied in
image classification. The aim of UDA is to align the domain distribution between
source and target domains. A common solution of UDA is to define and minimize
the domain discrepancy between source and target domain. Gretton et al. [9]
project data samples into a reproducing kernel Hilbert space and compute the
difference of sample means to reduce the Maximum Mean Discrepancy (MMD).
Sun et al. [28] propose to learn a transformation to align the mean and covariance
between two domains in the feature space. Pan et al. [24] propose to align each
class in source and target domain through Prototypical Networks. Adversarial
learning is also widely used to minimize domain shift. Ganin et al. [6] propose a
Gradient Reversal Layer (GRL) to confuse the feature learning model and make
it can’t distinguish the features from source and target domains. DRCN [7] takes
a similar approach but also performs multi-task learning to reconstruct target
domain images. Different from domain adaption in person ReID, traditional
UDA mostly assumes that the source domain and target domain share same
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classes. However, in person ReID, different domain commonly deals with different
persons, thus have different classes.

Unsupervised Domain Adaptive Person ReID: Early methods design hand
craft features for person ReID [8,20]. Those methods can be directly adapted to
unlabeled dataset, but show unsatisfactory performance. Recent works propose
to train deep models on labeled source domain and then transfer to unlabeled
target domain. Yu et al. [34] use the labeled source dataset as a reference to learn
soft labels. Fu et al. [5] cluster the global and local features to estimate pseudo
labels, respectively. Generative Adversarial Network (GAN) is also applied to
bridge the gap across cameras or domains. Wei et al. [31] transfer images from the
source domain to target domain while reserving the identity labels for training.
Zhong et al. [40] apply CycleGAN [42] to generate images under different camera
styles for data augmentation. Zhong et al. [39] introduce the memory bank [33]
to minimize the gap between source and target domains.

Most existing methods only consider visual similarity for feature learning
on unlabeled data, thus are easily influenced by the large visual variation and
domain bias. Different from those works, we consider visual similarity and tem-
poral consistency for feature learning. Compared with existing unsupervised
domain adaptive person ReID methods, our method exhibits stronger robustness
and better performance. As shown in our experiments, our approach outperforms
recent ReID methods under both unsupervised and unsupervised domain adap-
tive settings. To the best of our knowledge, this is an early attempt to jointly con-
sider visual similarity and temporal consistency in unsupervised domain adaptive
person ReID. Another person ReID work [30] also uses temporal cues. Different
with our work, it focuses on supervised training and only uses temporal cues in
the ReID stage for re-ranking.

3 Proposed Method

3.1 Formulation

For any query person image q, the person ReID model is expected to produce a
feature vector to retrieve the image g containing the same person from a gallery
set. In other words, the ReID model should guarantee q share more similar fea-
ture with g than with other images. Therefore, learning a discriminative feature
extractor is critical for person ReID.

In unsupervised domain adaptive person ReID, we have an unlabeled target
domain T = {ti}NT

i=1 containing NT person images. Additionally, a labeled source
domain S = {si, yi}NS

i=1 containing NS labeled person images is provided as an
auxiliary training set, where yi is the identity label associated with the person
image si. The goal of domain adaptive person ReID is to learn a discriminative
feature extractor f(·) for T , using both S and T .

The training of f(·) can be conducted by minimizing the training loss on
both source and target domains. With person ID labels, the training on S can
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be considered as a classification task by minimizing the cross-entropy loss, i.e.,

Lsrc = − 1
NS

NS∑

i=1

log P(yi|si), (1)

where P(yi|si) is the predicted probability of sample si belonging to class yi.
This supervised learning ensures the performance of f(·) on source domain.

To gain discriminative power of f(·) to the target domain, we further com-
pute training loss with predicted labels on T . First, because each training batch
samples nT , nT � NT images from T , it is likely that nT images are sampled
from different persons. We thus simply label each image ti in the mini-batch with
a distinct person ID label, i.e., an one-hot vector li with li[j] = 1 only if i = j.
A Self-Adaptive Classification (SAC) model is adopted to separate images of
different persons in the training batch. The objective of SAC can be formulated
as minimizing the classification loss, i.e.,

Llocal =
1

nT

nT∑

i=1

L(V × f(ti), li), (2)

where nT denotes the number of images in a training batch. f(·) produces a d-
dim feature vector. V stores nT d-dim vectors as the classifier. V ×f(ti) computes
the classification score, and L(·) computes the loss by comparing classification
scores and one-hot labels. Details of classifier V will be given in Sect. 3.2.

Besides the local optimization in each training batch, we further predict
labels on the entire T and perform a global optimization. Since each person
may have multiple images in T , we propose the Memory-based Temporal-guide
Cluster (MTC) to predict a multi-class label for each image. For an image ti,
MTC predicts its multi-class label mi, where mi[j] = 1 only if ti and tj are
regarded as containing the same person.

Predicted label mi allows for a multi-label classification on T . We introduce a
memory bank K ∈ RNT ×d to store NT image features as a NT -class classifier [39].
The multi-label classification loss is computed by classifying image feature f(ti)
with the memory bank K, then comparing the classification scores with multi-
class label mi. The multi-label classification loss on T can be represented as

Lglobal =
1

NT

NT∑

i=1

L(K × f(ti),mi), (3)

where K×f(ti) produces the classification score. The memory bank K is updated
after each training iteration as

K[i]t = (1 − α)K[i]t−1 + α f(ti), (4)

where the superscript t denotes the training epoch, α is the updating rate.
Detailed of MTC and mi computation will be presented in Sect. 3.3.
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Fig. 1. Overview of the proposed framework for unsupervised domain adaptive ReID
model training. Lsrc is computed on the source domain. SAC computes Llocal in each
training batch. MTC computes Lglobal on the entire target domain. SAC and MTC
predict one-hot label and multi-class label for each image, respectively. Without Lsrc,
our framework works as unsupervised training.

By combining the above losses computed on S and T , the overall training
loss of our method can be formulated as,

L = Lsrc + w1Llocal + w2Lglobal, (5)

where w1 and w2 are loss weights.
The accuracy of predicted labels, i.e., l and m is critical for the training on

T . The accuracy of l can be guaranteed by setting batch size nT � NT , and
using careful sampling strategies. To ensure the accuracy of m, MTC considers
both visual similarity and temporal consistency for label prediction.

We illustrate our training framework in Fig. 1, where Llocal can be efficiently
computed within each training batch by classifying a few images. Lglobal is a more
powerful supervision by considering the entire training set T . The combination of
Llocal and Lglobal utilizes both temporal and visual consistency among unlabeled
data and guarantees strong robustness of the learned feature extractor f(·). The
following parts proceed to introduces the computation of Llocal in SAC, and
Llocal in MTC, respectively.

3.2 Self-adaptive Classification

SAC classifies unlabeled data in each training batch. As shown in Eq. (2), the
key of SAC is the classifier V. For a batch consisting of nT images, the classifier
V is defined as a nT × d sized tensor, where the i-th d-dim vector represents the
classifiers for the i-th image. To enhance its robustness, V is calculated based on
features of original images and their augmented duplicates.
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Specifically, for an image ti in training batch, we generate k images t
(j)
i (j =

1, 2, ..., k) with image argumentation. This enlarges the training batch to nT ×
(k + 1) images belonging to nT categories. The classifier V is computed as,

V = [v1, v2, ...vnT
] ∈ RnT ×d, vi =

1
k + 1

(f(ti) +
k∑

j=1

f(t(j)i )), (6)

where vi is the averaged feature of ti and its augmented images. It can be inferred
that, the robustness of V enhances as f(·) gains more discriminative power. We
thus call V as a self-adapted classifier.

Data augmentation is critical to ensure the robustness of V to visual varia-
tions. We consider each camera as a style domain and adopt CycleGAN [42] to
train camera style transfer models [40]. For each image under a specific camera,
we totally generate C − 1 images with different styles, where C is the camera
number in the target domain. We set k < C − 1. Therefore, each training batch
randomly selects k augmented images for training.

Based on classifier V and the one-hot label l, the Llocal of SAC can be for-
mulated as the cross-entropy loss, i.e.,

Llocal = − 1
nT × (k + 1)

nT∑

i=1

(log(P(i|ti) +
k∑

j=1

log(P(i|t(j)i )), (7)

where P(i|ti) is the probability of image ti being classified to label i, i.e.,

P(i|ti) =
exp(vT

i · f(ti)/β1)∑nT

n=1 exp(vT
n · f(ti)/β1)

(8)

where β1 is a temperature factor to balance the feature distribution.
Llocal can be efficiently computed on nT images. Minimizing Llocal enlarges

the feature distance of images in the same training batch, meanwhile decreases
the feature distance of augmented images in the same category. It thus boosts
the discriminative power of f(·) on T .

3.3 Memory-Based Temporal-Guided Cluster

MTC predicts the multi-class label mi for image ti through clustering images
in T , i.e., images inside the same cluster are assigned with the same label. The
clustering is conducted based on the pair-wise similarity considering both visual
similarity and temporal consistency of two images.

Visual similarity can be directly computed using the feature extractor f(·)
or the features stored in the memory bank K. Using f(·) requires to extract fea-
tures for each image in T , which introduces extra time consumption. Meanwhile,
the features in K can be enhanced by different image argumentation strategies,
making them more robust. We hence use features in K to compute the visual
similarity between two images ti and tj , i.e.,

vs(ti, tj) = cosine(K[i],K[j]), (9)
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Fig. 2. Illustration of person ReID results on DukeMTMC-reID dataset. Each example
shows the top-5 retrieved images by visual similarity (first tow) and joint similarity
computed in Eq. (12) (second row). The true match is annotated by the green bounding
box and false match is annotated by the red bounding box. (Color figure online)

where vs(·) computes the visual similarity with cosine distance.
Temporal consistency is independent to visual features and is related to the

camera id and frame id of each person image. Suppose we have two images ti
from camera a and tj from camera b with frame IDs fidi and fidj , respectively.
The temporal consistency between ti and tj can be computed as,

ts(ti, tj) = H(a,b)(fidi − fidj), (10)

where H(a,b)(·) is a function for camera pair (a, b). It estimates the temporal
consistency based on frame id interval of ti and tj , which reflects the time interval
when they are recorded by cameras a and b.

H(a,b)(·) can be estimated based on a histogram H̄(a,b)(int), which shows the
probability of appearing identical person at camera a and b for frame id interval
int. H̄(a,b)(int) can be easily computed on datasets with person ID labels. To
estimate it on unlabeled T , we first cluster images in T with visual similarity in
Eq. (9) to acquire pseudo person ID labels. Suppose n(a,b) is the total number of
image pairs containing identical person in camera a and b. The value of int-th
bin in histogram, i.e., H̄(a,b)(int) is computed as,

H̄(a,b)(int) = nint
(a,b)/n(a,b), (11)

where nint
(a,b) is the number of image pairs containing identical person in camera

a and b with frame id intervals int.
For a dataset with C cameras, C(C − 1)/2 histograms will be computed. We

finally use Gaussian function to smooth the histogram and take the smoothed
histogram as H(a,b)(·) for temporal consistency computation.
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Our final pair-wise similarity is computed based on vs(·) and ts(·). Because
those two similarities have different value ranges, we first normalize them, then
perform the fusion. This leads to the joint similarity function J(·), i.e.,

J(ti, tj) = 1/(1 + λ0e
−γ0 vs(ti,tj)) × 1/(1 + λ1e

−γ1 ts(ti,tj)), (12)

where λ0 and λ1 are smoothing factors, γ0 and γ1 are shrinking factors.
Equation (12) computes more reliable similarities between images than either

Eq. (9) or Eq. (10). J(·) can also be used in person ReID for query-gallery
similarity computation. Figure 2 compares some ReID results achieved by visual
similarity and joint similarity, respectively. It can be observed that, the joint
similarity is more discriminative than the visual similarity.

We hence cluster images in target domain T based on J(·) and assign the
multi-class label for each image. For an image ti, its multi-class label mi[j] = 1
only if ti and tj are in the same cluster. Based on m, the Lglobal on T can be
computed as,

Lglobal = − 1
NT

NT∑

i=1

NT∑

j=1

mi[j] × log P̄(j|ti)/|mi|1, (13)

where | · |1 computes the L-1 norm. P̄(j|ti) denotes the probability of image ti
being classified to the j-th class in multi-label classification, i.e.,

P̄(j|ti) =
exp(K[j]T · f(ti)/β2)∑NT

n=1 exp(K[n]T · f(ti)/β2)
, (14)

where β2 is the temperature factor. The following section proceeds to discuss
the effects of parameters and conduct comparisons with recent works.

4 Experiment

4.1 Dataset

We evaluate our methods on three widely used person ReID datasets, e.g., Mar-
ket1501 [36], DukeMTMC-ReID [26,37], and MSMT17 [31], respectively.

Market1501 consists of 32,668 images of 1,501 identities under 6 cameras.
The dataset is divided into training and test sets, which contains 12,936 images
of 751 identities and 19,732 images of 750 identities, respectively.

DukeMTMC-ReID is composed of 1,812 identities and 36,411 images
under 8 cameras. 16,522 images of 702 pedestrians are used for training. The
other identities and images are included in the testing set.

MSMT17 is currently the largest image person ReID dataset. MSMT17
contains 126,441 images of 4,101 identities under 15 cameras. The training set
of MSMT17 contains 32,621 bounding boxes of 1,041 identities, and the testing
set contains 93,820 bounding boxes of 3,060 identities.

We follow the standard settings in previous works [5,39] for training in
domain adaptive person ReID and unsupervised person ReID, respectively. Per-
formance is evaluated by the Cumulative Matching Characteristic (CMC) and
mean Average Precision (mAP). We use JVTC to denote our method.
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Table 1. Evaluation of individual components of JVTC.

Dataset DukeMTMC → Market1501 Market1501 → DukeMTMC

Method mAP r1 r5 r10 r20 mAP r1 r5 r10 r20

Supervised 69.7 86.3 94.3 96.5 97.6 61.0 80.2 89.1 91.9 94.2

Direct transfer 18.2 42.1 60.7 67.9 74.8 16.6 31.8 48.4 55.0 61.7

Baseline 46.6 77.4 89.5 93.0 95.1 43.6 66.1 77.7 81.7 84.8

SAC 41.8 64.5 76.0 79.6 92.3 37.5 59.4 74.1 78.3 81.4

MTC 56.4 79.8 91.0 93.9 95.9 51.1 71.3 81.1 84.3 86.3

JVTC 61.1 83.8 93.0 95.2 96.9 56.2 75.0 85.1 88.2 90.4

JVTC+ 67.2 86.8 95.2 97.1 98.1 66.5 80.4 89.9 92.2 93.7

4.2 Implementation Details

We adopt ResNet50 [10] as the backbone and add a 512-dim embedding layer
for feature extraction. We initialize the backbone with the model pre-trained
on ImageNet [2]. All models are trained and finetuned with PyTorch. Stochastic
Gradient Descent (SGD) is used to optimize our model. Input images are resized
to 256 × 128. The mean value is subtracted from each (B, G, and R) channel.
The batch size is set as 128 for both source and target domains. Each training
batch in the target domain contains 32 original images and each image has 3
augmented duplicates, i.e., we set k = 3.

The temperature factor β1 is set as 0.1 and β2 is set as 0.05. The smoothing
factors and shrinking factors λ0, λ1, γ0 and γ1 in Eq. (12) are set as 1, 2, 5 and 5,
respectively. The initial learning rate is set as 0.01, and is reduced by ten times
after 40 epoches. The multi-class label m are updated every 5 epochs based on
visual similarity initially, and the joint similarity is introduced at 30-th epoch.
Only local loss Llocal is applied at the initial epoch. The Lglobal is applied at the
10-th epoch. The training is finished after 100 epoches. The memory updating
rate α starts from 0 and grows linearly to 1. The loss weights w1 and w2 are set
as 1 and 0.2, respectively. DBSCAN [4] is applied for clustering.

4.3 Ablation Study

Evaluation of Individual Components: This section investigates the effec-
tiveness of each component in our framework, e.g., the SAC and MTC. We sum-
marize the experimental results in Table 1. In the table, “Supervised” denotes
training deep models with labeled data on the target domain, and testing on
the testing set. “Direct transfer” denotes directly using the model trained on
source domain for testing. “Baseline” uses memory bank for multi-label classi-
fication, but predicts multi-class label only based on visual similarity. “SAC”
is implemented based on “Direct transfer” by applying SAC model for one-hot
classification. “MTC” utilizes both visual similarity and temporal consistency
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Fig. 3. Influences of temperature factors β1 and β2 in (a), and loss weights w1, w2 in
(b). Experiments are conducted on Market1501 and DukeMTMC-reID.

for multi-class label prediction. “JVTC” combines SAC and MTC. “JVTC+”
denotes using the joint similarity for person ReID.

Table 1 shows that, supervised learning on the target domain achieves promis-
ing performance. However, directly transferring the supervised model to different
domains leads to substantial performance drop, e.g., the rank1 accuracy drops
to 44.2% on Market1501 and 48.4% on DukeMTMC-reID after direct transfer.
The performance drop is mainly caused by the domain bias between datasets.

It is also clear that, SAC consistently outperforms direct transfer by large
margins. For instance, SAC improves the rank1 accuracy from 42.1% to 64.5%
and 31.8% to 59.4% on Market-1501 and DukeMTMC-reID, respectively. This
shows that, although SAC is efficient to compute, it effectively boosts the ReID
performance on target domain. Compared with the baseline, MTC uses joint
similarity for label prediction. Table 1 shows that, MTC performs better than
the baseline, e.g., outperforms baseline by 9.8% and 5.2% in mAP on Market1501
and DukeMTMC-reID, respectively. This performance gain clearly indicates the
robustness of our joint similarity.

After combining SAC and MTC, JVTC achieves more substantial perfor-
mance gains on two datasets. For instance, JVTC achieves mAP of 61.1% on
Market1501, much better than the 46.6% of baseline. “JVTC+” further uses
joint similarity to compute the query-gallery similarity. It achieves the best per-
formance, and outperforms the supervised training on target domain. We hence
could conclude that, each component in our method is important for performance
boost, and their combination achieves the best performance.

Hyper-parameter Analysis: This section investigates some important hyper-
parameters in our method, including the temperature factors β1, β2, and the
loss weights w1 and w2, respectively. To make the evaluation possible, each
experiment varies the value of one hyper-parameter while keeping others fixed.
All experiments are conducted with unsupervised domain adaptive ReID setting
on both Market-1501 and DukeMTMC-reID.

Figure (3)(a) shows the effects of temperature factors β1 and β2 in Eq. (8)
and Eq. (14). We can see that, a small temperature factor usually leads to better
ReID performance. This is because that smaller temperature factor leads to
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Table 2. Comparison with unsupervised, domain adaptive, and semi-supervised ReID
methods on Market1501 and DukeMTMC-reID.

Dataset Market1501 DukeMTMC

Method Source mAP r1 r5 r10 r20 Source mAP r1 r5 r10 r20

Supervised Market 69.7 86.3 94.3 96.5 97.6 Duke 61.0 80.2 89.1 91.9 94.2

Direct transfer Duke 18.2 42.1 60.7 67.9 74.8 Market 16.6 31.8 48.4 55.0 61.7

LOMO [20] None 8.0 27.2 41.6 49.1 – None 4.8 12.3 21.3 26.6 –

BOW [36] None 14.8 35.8 52.4 60.3 – None 8.3 17.1 28.8 34.9 –

BUC [21] None 38.3 66.2 79.6 84.5 – None 27.5 47.4 62.6 68.4 –

DBC [3] None 41.3 69.2 83.0 87.8 – None 30.0 51.5 64.6 70.1 –

JVTC None 41.8 72.9 84.2 88.7 92.0 None 42.2 67.6 78.0 81.6 84.5

JVTC+ None 47.5 79.5 89.2 91.9 94.0 None 50.7 74.6 82.9 85.3 87.2

PTGAN [31] Duke – 38.6 – 66.1 – Market – 27.4 – 50.7 –

CamStyle [41] Duke 27.4 58.8 78.2 84.3 88.8 Market 25.1 48.4 62.5 68.9 74.4

T-Fusion [22] CUHK01 – 60.8 74.4 79.3 – – – – – – –

ARN [19] Duke 39.4 70.3 80.4 86.3 93.6 Market 33.4 60.2 73.9 79.5 82.5

MAR [34] MSMT17 40.0 67.7 81.9 87.3 – MSMT17 48.0 67.1 79.8 84.2 –

ECN [39] Duke 43.0 75.1 87.6 91.6 – Market 40.4 63.3 75.8 80.4 –

PDA-Net [18] Duke 47.6 75.2 86.3 90.2 – Market 45.1 63.2 77.0 82.5 –

PAST [35] Duke 54.6 78.4 – – – Market 54.3 72.4 – – –

CAL-CCE [25] Duke 49.6 73.7 – – – Market 45.6 64.0 – – –

CR-GAN [1] Duke 54.0 77.7 89.7 92.7 – Market 48.6 68.9 80.2 84.7 –

SSG [5] Duke 58.3 80.0 90.0 92.4 – Market 53.4 73.0 80.6 83.2 –

TAUDL [15] Tracklet 41.2 63.7 – – – Tracklet 43.5 61.7 – – –

UTAL [16] Tracklet 46.2 69.2 – – – Tracklet 43.5 62.3 – – –

SSG+ [5] Duke 62.5 81.4 91.6 93.8 – Market 56.7 74.2 83.5 86.7 –

SSG++ [5] Duke 68.7 86.2 94.6 96.5 – Market 60.3 76.0 85.8 89.3 –

JVTC Duke 61.1 83.8 93.0 95.2 96.9 Market 56.2 75.0 85.1 88.2 90.4

JVTC+ Duke 67.2 86.8 95.2 97.1 98.1 Market 66.5 80.4 89.9 92.2 93.7

a smaller entropy in the classification score, which is commonly beneficial for
classification loss computation. However, too small temperature factor makes
the training hard to converge. According to Fig. 3(a), we set β1 = 0.1, β2 = 0.05.

Figure 3(b) shows effects of loss weight w1 and w2 in network training. We
vary the loss weight w1 and w2 from 0 to 5. w1(w2) = 0 means we don’t consider
the corresponding loss during training. It is clear that, a positive loss weight
is beneficial for the ReID performance on both datasets. As we increase the
loss weights, the ReID performance starts to increase. The best performance is
achieved with w1 = 1 and w2 = 0.2 on two datasets. Further increasing the loss
weights substantially drops the ReID performance. This is because increasing
w1 and w2 decreases the weight of Lsrc, which is still important. Based on this
observation, we set w1 = 1 and w2 = 0.2 in following experiments.
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4.4 Comparison with State-of-the-Art Methods

This section compares our method against state-of-the-art unsupervised, unsu-
pervised domain adaptive, and semi-supervised methods on three datasets. Com-
parisons on Market1501 and DukeMTMC-reID are summarized in Table 2. Com-
parisons on MSMT17 are summarized in Table 3. In those tables, “Source” refers
to the labeled source dataset, which is used for training in unsupervised domain
adaptive ReID. “None” denotes unsupervised ReID.

Comparison on Market1501 and DukeMTMC-reID: We first compare
our method with unsupervised learning methods. Compared methods include
hand-crafted features LOMO [20] and BOW [36], and deep learning methods
DBC [3] and BUC [21]. It can be observed from Table 2 that, hand-crafted
features LOMO and BOW show unsatisfactory performance, even worse than
directly transfer. Using unlabeled training dataset for training, deep learning
based methods outperform hand-crafted features. BUC and DBC first treat each
image as a single cluster, then merge clusters to seek pseudo labels for training.
Our method outperforms them by large margins, e.g., our rank1 accuracy on
Market1501 achieves 72.9% vs. their 66.2% and 69.2%, respectively. The rea-
sons could be because our method considers both visual similarity and temporal
consistency to predict labels. Moreover, our method further computes classifi-
cation loss in each training batch with SAC. By further considering temporal
consistency during testing, JVTC+ gets further performance promotions on both
datasets, even outperforms several unsupervised domain adaptive methods.

We further compare our method with unsupervised domain adaptive meth-
ods including PTGAN [31], CamStyle [41], T-Fusion [22], ARN [19], MAR [34],
ECN [39], PDA-Net [18], PAST [35], CAL-CCE [25], CR-GAN [1] and SSG [5],
and semi-supervised methods including TAUDL [15], UTAL [16], SSG+ [5],
and SSG++ [5]. Under the unsupervised domain adaptive training setting, our
method achieves the best performance on both Market1501 and DukeMTMC-
reID in Table 2. For example, our method achieves 83.8% rank1 accuracy on
Market1501 and gets 75.0% rank1 accuracy on DukeMTMC-reID. T-Fusion [22]
also use temporal cues for unsupervised ReID, but achieves unsatisfactory per-
formance, e.g., 60.8% rank1 accuracy on Market1501 dataset. The reason may
because that T-Fusion directly multiplies the visual and temporal probabilities,
while our method fuses the visual and temporal similarities through more rea-
sonable smooth fusion to boost the robustness. Our method also consistently
outperforms the recent SSG [5] on those two datasets. SSG clusters multiple
visual features and needs to train 2100 epoches before convergence. Differently,
our method only uses global feature and could be well-trained in 100 epoches.
We hence could conclude that, our method is also more efficient than SSG. By
further considering temporal consistency during testing, JVTC+ outperforms
semi-supervised method SSG++ [5] and supervised training on target domain.

Comparison on MSMT17: MSMT17 is more challenging than Market1501
and DukeMTMC-reID because of more complex lighting and scene variations.
Some works have reported performance on MSMT17, including unsupervised
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Table 3. Comparison with unsupervised and domain adaptive methods on MSMT17.

Method Source mAP r1 r5 r10 r20

Supervised MSMT17 35.9 63.3 77.7 82.4 85.9

JVTC None 15.1 39.0 50.9 56.8 61.9

JVTC+ None 17.3 43.1 53.8 59.4 64.7

PTGAN [31] Market1501 2.9 10.2 24.4 –

ECN [39] 8.5 25.3 36.3 42.1 –

SSG [5] 13.2 31.6 49.6 – –

SSG++ [5] 16.6 37.6 57.2 – –

JVTC 19.0 42.1 53.4 58.9 64.3

JVTC+ 25.1 48.6 65.3 68.2 75.2

PTGAN [31] DukeMTMC 3.3 11.8 27.4 – –

ECN [39] 10.2 30.2 41.5 46.8 –

SSG [5] 13.3 32.2 51.2 – –

SSG++ [5] 18.3 41.6 62.2 – –

JVTC 20.3 45.4 58.4 64.3 69.7

JVTC+ 27.5 52.9 70.5 75.9 81.2

domain adaptive methods PTGAN [31], ECN [39] and SSG [5], and semi-
supervised method SSG++ [5], respectively. The comparison on MSMT17 are
summarized in Table 3. As shown in the table, our method outperforms exist-
ing methods by large margins. For example, our method achieves 45.4% rank1
accuracy when using DukeMTMC-reID as the source dataset, which outperforms
the unsupervised domain adaptive method SSG [5] and semi-supervised method
SSG++ [5] by 13.2% and 3.8%, respectively. We further achieves 52.9% rank1
accuracy after applying the joint similarity during ReID. This outperforms the
semi-supervised method SSG++ [5] by 11.3%. The above experiments on three
datasets demonstrate the promising performance of our JVTC.

5 Conclusion

This paper tackles unsupervised domain adaptive person ReID through jointly
enforcing visual and temporal consistency in the combination of local one-hot
classification and global multi-class classification. Those two classification tasks
are implemented by SAC and MTC, respectively. SAC assigns images in the
training batch with distinct person ID labels, then adopts a self-adaptive classier
to classify them. MTC predicts multi-class labels by considering both visual sim-
ilarity and temporal consistency to ensure the quality of label prediction. The
two classification models are combined in a unified framework for discrimina-
tive feature learning on target domain. Experimental results on three datasets
demonstrate the superiority of the proposed method over state-of-the-art unsu-
pervised and domain adaptive ReID methods.



JVTC for Unsupervised Domain Adaptive Person ReID 497

Acknowledgments. This work is supported in part by Peng Cheng Laboratory,
The National Key Research and Development Program of China under Grant No.
2018YFE0118400, in part by Beijing Natural Science Foundation under Grant No.
JQ18012, in part by Natural Science Foundation of China under Grant No. 61936011,
61620106009, 61425025, 61572050, 91538111.

References

1. Chen, Y., Zhu, X., Gong, S.: Instance-guided context rendering for cross-domain
person re-identification. In: ICCV (2019)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR (2009)

3. Ding, G., Khan, S., Yin, Q., Tang, Z.: Dispersion based clustering for unsupervised
person re-identification. In: BMVC (2019)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: Density-based spatial clustering of
applications with noise. In: KDD (1996)

5. Fu, Y., Wei, Y., Wang, G., Zhou, Y., Shi, H., Huang, T.S.: Self-similarity group-
ing: a simple unsupervised cross domain adaptation approach for person re-
identification. In: ICCV (2019)

6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
arXiv preprint arXiv:1409.7495 (2014)

7. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-
classification networks for unsupervised domain adaptation. In: Leibe, B., Matas,
J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 36

8. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble
of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008.
LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88682-2 21

9. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.J.: A kernel
method for the two-sample-problem. In: NeurIPS (2007)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

11. Li, J., Wang, J., Tian, Q., Gao, W., Zhang, S.: Global-local temporal representa-
tions for video person re-identification. In: ICCV (2019)

12. Li, J., Zhang, S., Huang, T.: Multi-scale 3D convolution network for video based
person re-identification. In: AAAI (2019)

13. Li, J., Zhang, S., Huang, T.: Multi-scale temporal cues learning for video person
re-identification. IEEE Trans. Image Process. 29, 4461–4473 (2020)

14. Li, J., Zhang, S., Tian, Q., Wang, M., Gao, W.: Pose-guided representation learning
for person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

15. Li, M., Zhu, X., Gong, S.: Unsupervised person re-identification by deep learning
tracklet association. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11208, pp. 772–788. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01225-0 45

16. Li, M., Zhu, X., Gong, S.: Unsupervised tracklet person re-identification. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 1770–1778 (2019)

17. Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-
identification. In: CVPR (2018)

http://arxiv.org/abs/1409.7495
https://doi.org/10.1007/978-3-319-46493-0_36
https://doi.org/10.1007/978-3-540-88682-2_21
https://doi.org/10.1007/978-3-540-88682-2_21
https://doi.org/10.1007/978-3-030-01225-0_45
https://doi.org/10.1007/978-3-030-01225-0_45


498 J. Li and S. Zhang

18. Li, Y.J., Lin, C.S., Lin, Y.B., Wang, Y.C.F.: Cross-dataset person re-
identification via unsupervised pose disentanglement and adaptation. arXiv
preprint arXiv:1909.09675 (2019)

19. Li, Y.J., Yang, F.E., Liu, Y.C., Yeh, Y.Y., Du, X., Frank Wang, Y.C.: Adaptation
and re-identification network: an unsupervised deep transfer learning approach to
person re-identification. In: CVPR Workshops (2018)

20. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occur-
rence representation and metric learning. In: CVPR (2015)

21. Lin, Y., Dong, X., Zheng, L., Yan, Y., Yang, Y.: A bottom-up clustering approach
to unsupervised person re-identification. In: AAAI (2019)

22. Lv, J., Chen, W., Li, Q., Yang, C.: Unsupervised cross-dataset person re-
identification by transfer learning of spatial-temporal patterns. In: CVPR (2018)

23. Mao, S., Zhang, S., Yang, M.: Resolution-invariant person re-identification. In:
IJCAI (2019)

24. Pan, Y., Yao, T., Li, Y., Wang, Y., Ngo, C.W., Mei, T.: Transferrable prototypical
networks for unsupervised domain adaptation. In: CVPR (2019)

25. Qi, L., Wang, L., Huo, J., Zhou, L., Shi, Y., Gao, Y.: A novel unsupervised camera-
aware domain adaptation framework for person re-identification. arXiv preprint
arXiv:1904.03425 (2019)

26. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures
and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.)
ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48881-3 2

27. Su, C., Li, J., Zhang, S., Xing, J., Gao, W., Tian, Q.: Pose-driven deep convolu-
tional model for person re-identification. In: ICCV (2017)

28. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In:
AAAI (2016)

29. Wang, D., Zhang, S.: Unsupervised person re-identification via multi-label classi-
fication. In: CVPR (2020)

30. Wang, G., Lai, J., Huang, P., Xie, X.: Spatial-temporal person re-identification.
In: AAAI (2019)

31. Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap
for person re-identification. In: CVPR (2018)

32. Wei, L., Zhang, S., Yao, H., Gao, W., Tian, Q.: Glad: Global-local-alignment
descriptor for pedestrian retrieval. In: ACM MM (2017)

33. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-
parametric instance discrimination. In: CVPR (2018)

34. Yu, H.X., Zheng, W.S., Wu, A., Guo, X., Gong, S., Lai, J.H.: Unsupervised person
re-identification by soft multilabel learning. In: CVPR (2019)

35. Zhang, X., Cao, J., Shen, C., You, M.: Self-training with progressive augmentation
for unsupervised cross-domain person re-identification. In: ICCV (2019)

36. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-
identification: a benchmark. In: ICCV (2015)

37. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the
person re-identification baseline in vitro. In: ICCV (2017)

38. Zhong, Y., Wang, X., Zhang, S.: Robust partial matching for person search in the
wild. In: CVPR (2020)

39. Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: exemplar mem-
ory for domain adaptive person re-identification. In: CVPR (2019)

40. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for
person re-identification. In: CVPR (2018)

http://arxiv.org/abs/1909.09675
http://arxiv.org/abs/1904.03425
https://doi.org/10.1007/978-3-319-48881-3_2
https://doi.org/10.1007/978-3-319-48881-3_2


JVTC for Unsupervised Domain Adaptive Person ReID 499

41. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: CamStyle: a novel data aug-
mentation method for person re-identification. IEEE Trans. Image Process. 28(3),
1176–1190 (2018)

42. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: ICCV (2017)


	Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive Person Re-identification
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Formulation
	3.2 Self-adaptive Classification
	3.3 Memory-Based Temporal-Guided Cluster

	4 Experiment
	4.1 Dataset
	4.2 Implementation Details
	4.3 Ablation Study
	4.4 Comparison with State-of-the-Art Methods

	5 Conclusion
	References




