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Abstract. Modern methods mainly regard lane detection as a problem
of pixel-wise segmentation, which is struggling to address the problem
of challenging scenarios and speed. Inspired by human perception, the
recognition of lanes under severe occlusion and extreme lighting condi-
tions is mainly based on contextual and global information. Motivated
by this observation, we propose a novel, simple, yet effective formulation
aiming at extremely fast speed and challenging scenarios. Specifically,
we treat the process of lane detection as a row-based selecting problem
using global features. With the help of row-based selecting, our formu-
lation could significantly reduce the computational cost. Using a large
receptive field on global features, we could also handle the challenging
scenarios. Moreover, based on the formulation, we also propose a struc-
tural loss to explicitly model the structure of lanes. Extensive experi-
ments on two lane detection benchmark datasets show that our method
could achieve the state-of-the-art performance in terms of both speed
and accuracy. A light weight version could even achieve 300+ frames per
second with the same resolution, which is at least 4x faster than previous
state-of-the-art methods. Our code is available at https://github.com/
cfzd/Ultra-Fast-Lane-Detection.

Keywords: Lane detection · Fast formulation · Structural loss ·
Anchor

1 Introduction

With a long research history in computer vision, lane detection is a fundamental
problem and has a wide range of applications [8] (e.g., ADAS and autonomous
driving). For lane detection, there are two kinds of mainstream methods, which
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are traditional image processing methods [1,2,28] and deep segmentation meth-
ods [11,21,22]. Recently, deep segmentation methods have made great success
in this field because of great representation and learning ability. There are still
some important and challenging problems to be addressed.

As a fundamental component of autonomous driving, the lane detection algo-
rithm is heavily executed. This requires an extremely low computational cost
of lane detection. Besides, present autonomous driving solutions are commonly
equipped with multiple camera inputs, which typically demand lower computa-
tional cost for every camera input. In this way, a faster pipeline is essential to
lane detection. For this purpose, SAD [9] is proposed to solve this problem by
self-distilling. Due to the dense prediction property of SAD, which is based on
segmentation, the method is computationally expensive.

Another problem of lane detection is called no-visual-clue, as shown in Fig. 1.
Challenging scenarios with severe occlusion and extreme lighting conditions cor-
respond to another key problem of lane detection. In this case, the lane detec-
tion urgently needs higher-level semantic analysis of lanes. Deep segmentation
methods naturally have stronger semantic representation ability than conven-
tional image processing methods, and become mainstream. Furthermore, SCNN
[22] addresses this problem by proposing a message passing mechanism between
adjacent pixels, which significantly improves the performance of deep segmenta-
tion methods. Due to the dense pixel-wise communication, this kind of message
passing requires a even more computational cost.

Also, there exists a phenomenon that the lanes are represented as segmented
binary features rather than lines or curves. Although deep segmentation methods
dominate the lane detection fields, this kind of representation makes it difficult
to explicitly utilize the prior information like rigidity and smoothness of lanes.

Fig. 1. Illustration of difficulties in lane detection. Most of challenging scenarios are
severely occluded or distorted with various lighting conditions, resulting in little or no
visual clues of lanes can be used for lane detection.
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With the above motivations, we propose a novel lane detection formulation
aiming at extremely fast speed and solving the no-visual-clue problem. Mean-
while, based on the proposed formulation, we present a structural loss to explic-
itly utilize prior information of lanes. Specifically, our formulation is proposed to
select locations of lanes at predefined rows of the image using global
features instead of segmenting every pixel of lanes based on a local receptive
field, which significantly reduces the computational cost. The illustration of loca-
tion selecting is shown in Fig. 2.

Fig. 2. Illustration of selecting on the left and right lane. In the right part, the selecting
of a row is shown in detail. Row anchors are the predefined row locations, and our
formulation is defined as horizontally selecting on each of row anchor. On the right of
the image, a background gridding cell is introduced to indicate no lane in this row.

For the no-visual-clue problem, our method could also achieve good perfor-
mance because our formulation is conducting the procedure of selecting in rows
based on global features. With the aid of global features, our method has a recep-
tive field of the whole image. Compared with segmentation based on a limited
receptive field, visual clues and messages from different locations can be learned
and utilized. In this way, our new formulation could solve the speed and the no-
visual-clue problems simultaneously. Moreover, based on our formulation, lanes
are represented as selected locations on different rows instead of the segmenta-
tion map. Hence, we can directly utilize the properties of lanes like rigidity and
smoothness by optimizing the relations of selected locations, i.e., the structural
loss. The contribution of this work can be summarized in three parts:

– We propose a novel, simple, yet effective formulation of lane detection aiming
at extremely fast speed and solving the no-visual-clue problem. Compared
with deep segmentation methods, our method is selecting locations of lanes
instead of segmenting every pixel and works on the different dimensions, which
is ultra fast. Besides, our method uses global features to predict, which has
a larger receptive field than the segmentation formulation. In this way, the
no-visual-clue problem can also be addressed.

– Based on the proposed formulation, we present a structural loss which explic-
itly utilizes prior information of lanes. To the best of our knowledge, this
is the first attempt at optimizing such information explicitly in deep lane
detection methods.
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– The proposed method achieves the state-of-the-art performance in terms of
both accuracy and speed on the challenging CULane dataset. A light weight
version of our method could even achieve 300+ FPS with a comparable perfor-
mance with the same resolution, which is at least 4 times faster than previous
state-of-the-art methods.

2 Related Work

Traditional Methods. Traditional approaches usually solve the lane detec-
tion problem based on visual information. The main idea of these methods is
to take advantage of visual clues through image processing like the HSI color
model [25] and edge extraction algorithms [27,29]. When the visual informa-
tion is not strong enough, tracking is another popular post-processing solution
[13,28]. Besides tracking, Markov and conditional random fields [16] are also used
as post-processing methods. With the development of machine learning, some
methods [6,15,20] that adopt algorithms like template matching and support
vector machines are proposed.

Deep Learning Models. With the development of deep learning, some meth-
ods [11,12] based on deep neural networks show the superiority in lane detection.
These methods usually use the same formulation by treating the problem as a
semantic segmentation task. For instance, VPGNet [17] proposes a multi-task
network guided by vanishing points for lane and road marking detection. To
use visual information more efficiently, SCNN [22] utilizes a special convolution
operation in the segmentation module. It aggregates information from different
dimensions via processing sliced features and adding them together one by one,
which is similar to the recurrent neural networks. Some works try to explore light
weight methods for real-time applications. Self-attention distillation (SAD) [9]
is one of them. It applies an attention distillation mechanism, in which high and
low layers’ attentions are treated as teachers and students, respectively.

Besides the mainstream segmentation formulation, other formulations like
Sequential prediction and clustering are also proposed. In [18], a long short-
term memory (LSTM) network is adopted to deal with the long line structure
of lanes. With the same principle, Fast-Draw [24] predicts the direction of lanes
at each lane point, and draws them out sequentially. In [10], the problem of lane
detection is regarded as clustering binary segments. The method proposed in
[30] also uses a clustering approach to detect lanes. Different from the 2D view
of previous works, a lane detection method in 3D formulation [4] is proposed to
solve the problem of non-flatten ground.

3 Method

In this section, we describe the details of our method, including the new for-
mulation and lane structural losses. Besides, a feature aggregation method for
high-level semantics and low-level visual information is also depicted.
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3.1 New Formulation for Lane Detection

As described in the introduction section, fast speed and the no-visual-clue prob-
lems are important for lane detection. Hence, how to effectively handle these
problems is key to good performance. In this section, we show the derivation
of our formulation by tackling the speed and the no-visual-clue problem. For a
better illustration, Table 1 shows some notations used hereinafter.

Table 1. Notation.

Variable Type Definition

H Scalar Height of image

W Scalar Width of image

h Scalar Number of row anchors

w Scalar Number of gridding cells

C Scalar Number of lanes

X Tensor The global features of image

f Function The classifier for selecting lane locations

P ∈ RC×h×(w+1) Tensor Group prediction

T ∈ RC×h×(w+1) Tensor Group target

Prob ∈ RC×h×w Tensor Probability of each location

Loc ∈ RC×h Matrix Locations of lanes

Definition of Our Formulation. In order to cope with the problems above,
we propose to formulate lane detection to a row-based selecting method
based on global image features. In other words, our method is selecting the
correct locations of lanes on each predefined row using the global features. In our
formulation, lanes are represented as a series of horizontal locations at predefined
rows, i.e., row anchors. In order to represent locations, the first step is gridding.
On each row anchor, the location is divided into many cells. In this way, the
detection of lanes can be described as selecting certain cells over predefined row
anchors, as shown in Fig. 3(a).

Suppose the maximum number of lanes is C, the number of row anchors is
h and the number of gridding cells is w. Suppose X is the global image feature
and f ij is the classifier used for selecting the lane location on the i-th lane, j-th
row anchor. Then the prediction of lanes can be written as:

Pi,j,: = f ij(X), s.t. i ∈ [1, C], j ∈ [1, h], (1)

in which Pi,j,: is the (w + 1)-dimensional vector represents the probability of
selecting (w+1) gridding cells for the i-th lane, j-th row anchor. Suppose Ti,j,: is
the one-hot label of correct locations. Then, the optimization of our formulation
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corresponds to:

Lcls =
C∑

i=1

h∑

j=1

LCE(Pi,j,:, Ti,j,:), (2)

in which LCE is the cross entropy loss. We use an extra dimension to indicate the
absence of lane, so our formulation is composed of (w + 1)-dimensional instead
of w-dimensional classifications.

From Eq. 1 we can see that our method predicts the probability distribution
of all locations on each row anchor based on global features. As a result, the
correct location can be selected based on the probability distribution.

Fig. 3. Illustration of our formulation and segmentation. Our formulation is selecting
locations (grids) on rows, while segmentation is classifying every pixel. The dimensions
used for classifying are also different, which is marked in red. Besides, our formulation
uses global features as input, which has larger receptive field than segmentation. (Color
figure online)

How the Formulation Achieves Fast Speed. The differences between our
formulation and segmentation are shown in Fig. 3. It can be seen that our for-
mulation is much simpler than the commonly used segmentation. Suppose the
image size is H × W . In general, the number of predefined row anchors and
gridding size are far less than the size of an image, that is to say, h � H and
w � W . In this way, the original segmentation formulation needs to conduct
H × W classifications that are (C + 1)-dimensional, while our formulation only
needs to solve C ×h classification problems that are (w+1)-dimensional. In this
way, the scale of computation can be reduced considerably because the compu-
tational cost of our formulation is C ×h×(w+1) while the one for segmentation
is H × W × (C + 1). For example, using the common settings of the CULane
dataset [22], the ideal computational cost of our method is 1.7×104 calculations
and the one for segmentation is 1.15 × 106 calculations. The computational cost
is significantly reduced and our formulation could achieve extremely fast speed.

How the Formulation Handles the No-Visual-Clue Problem. In order to
handle the no-visual-clue problem, utilizing information from other locations is
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important because no-visual-clue means no information at the target location.
For example, a lane is occluded by a car, but we could still locate the lane
by information from other lanes, road shape, and even car direction. In this
way, utilizing information from other locations is key to solve the no-visual-clue
problem, as shown in Fig. 1.

From the perspective of the receptive field, our formulation has a receptive
field of the whole image, which is much bigger than segmentation methods.
The context information and messages from other locations of the image can be
utilized to address the no-visual-clue problem. From the perspective of learning,
prior information like shape and direction of lanes can also be learned using
structural loss based on our formulation, as shown in Sect. 3.2. In this way, the
no-visual-clue problem can be handled in our formulation.

Another significant benefit is that this kind of formulation models lane loca-
tion in a row-based fashion, which gives us the opportunity to establish the
relations between different rows explicitly. The original semantic gap, which is
caused by low-level pixel-wise modeling and high-level long line structure of lane,
can be bridged.

3.2 Lane Structural Loss

Besides the classification loss, we further propose two loss functions which aim at
modeling location relations of lane points. In this way, the learning of structural
information can be encouraged.

The first one is derived from the fact that lanes are continuous, that is to
say, the lane points in adjacent row anchors should be close to each other. In our
formulation, the location of the lane is represented by a classification vector. So
the continuous property is realized by constraining the distribution of classifica-
tion vectors over adjacent row anchors. In this way, the similarity loss function
can be:

Lsim =
C∑

i=1

h−1∑

j=1

‖Pi,j,: − Pi,j+1,:‖1 , (3)

in which Pi,j,: is the prediction on the j-th row anchor and ‖·‖1 represents L1

norm.
Another structural loss function focuses on the shape of lanes. Generally

speaking, most of the lanes are straight. Even for the curve lane, the majority of
it is still straight due to the perspective effect. In this work, we use the second-
order difference equation to constrain the shape of the lane, which is zero for the
straight case.

To consider the shape, the location of the lane on each row anchor needs to
be calculated. The intuitive idea is to obtain locations from the classification
prediction by finding the maximum response peak. For any lane index i and row
anchor index j, the location Loci,j can be represented as:

Loci,j = argmax
k

Pi,j,k , s.t. k ∈ [1, w] (4)
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in which k is an integer representing the location index. It should be noted that
we do not count in the background gridding cell and the location index k only
ranges from 1 to w, instead of w + 1.

However, the argmax function is not differentiable and can not be used with
further constraints. Besides, in the classification formulation, classes have no
apparent order and are hard to set up relations between different row anchors.
To solve this problem, we propose to use the expectation of predictions as an
approximation of location. We use the softmax function to get the probability
of different locations:

Probi,j,: = softmax(Pi,j,1:w), (5)

in which Pi,j,1:w is a w-dimensional vector and Probi,j,: represents the probability
at each location. For the same reason as Eq. 4, background gridding cell is not
included and the calculation only ranges from 1 to w. Then, the expectation of
locations can be written as:

Loci,j =
w∑

k=1

k · Probi,j,k (6)

in which Probi,j,k is the probability of the i-th lane, the j-th row anchor, and the
k-th location. The benefits of this localization method are twofold. The first one
is that the expectation function is differentiable. The other is that this operation
recovers the continuous location with the discrete random variable.

According to Eq. 6, the second-order difference constraint can be written as:

Lshp =
C∑

i=1

h−2∑

j=1

‖(Loci,j − Loci,j+1)

− (Loci,j+1 − Loci,j+2)‖1,
(7)

in which Loci,j is the location on the i-th lane, the j-th row anchor. The reason
why we use the second-order difference instead of the first-order difference is that
the first-order difference is not zero in most cases. So the network needs extra
parameters to learn the distribution of the first-order difference of lane location.
Moreover, the constraint of the second-order difference is relatively weaker than
that of the first-order difference, thus resulting in less influence when the lane is
not straight. Finally, the overall structural loss can be:

Lstr = Lsim + λLshp, (8)

in which λ is the loss coefficient.

3.3 Feature Aggregation

In Sect. 3.2, the loss design mainly focuses on the intra-relations of lanes. In
this section, we propose an auxiliary feature aggregation method that performs
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Fig. 4. Overall architecture. The auxiliary branch is shown in the upper part, which
is only valid when training. The feature extractor is shown in the blue box. The
classification-based prediction and auxiliary segmentation task are illustrated in the
green and orange boxes, respectively. (Color figure online)

on the global context and local features. An auxiliary segmentation task utilizing
multi-scale features is proposed to model local features. It should be noted that
our method only uses the auxiliary segmentation task in the training phase, and
it would be removed in the testing phase. We use cross entropy as our auxiliary
segmentation loss. In this way, the overall loss of our method can be written as:

Ltotal = Lcls + αLstr + βLseg, (9)

in which Lseg is the segmentation loss, α and β are loss coefficients. The overall
architecture can be seen in Fig. 4.

4 Experiments

In this section, we demonstrate the effectiveness of our method with extensive
experiments. The following sections mainly focus on three aspects: 1) Experi-
mental settings. 2) Ablation studies. 3) Results on two lane detection datasets.

4.1 Experimental Setting

Datasets.To evaluate our method, we conduct experiments on two widely used
benchmark datasets: TuSimple [26] and CULane [22] datasets. TuSimple dataset
is collected with stable lighting conditions in highways. CULane dataset consists
of nine different scenarios. The detailed information can be seen in Table 2.

Evaluation metrics. For TuSimple dataset, the main evaluation metric is accu-
racy. The accuracy is calculated by:

accuracy =

∑
clip Cclip∑
clip Sclip

, (10)
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in which Cclip and Sclip are the number of correct predictions and ground truth.
For CULane, each lane is treated as a 30-pixel-width line. The intersection-

over-union (IoU) is computed between ground truth and predictions. F1-measure
is taken as the evaluation metric and formulated as follows:

F1 − measure =
2 × Precision × Recall

Precision + Recall
, (11)

where Precision = TP
TP+FP , Recall = TP

TP+FN , TP is the true positive, FP is
the false positive, and FN is the false negative.

Table 2. Datasets description

Dataset #Frame Train Validation Test Resolution #Lane Environment

TuSimple 6,408 3,268 358 2,782 1280× 720 ≤5 Highway

CULane 133,235 88,880 9,675 34,680 1640× 590 ≤4 Urban and highway

Implementation Details. For both datasets, we use the row anchors that are
defined by the dataset. Specifically, the row anchors of Tusimple range from 160
to 710 with a step of 10. The counterpart of CULane ranges from 260 to 530.
The number of gridding cells is set to 100 on the Tusimple dataset and 150 on
the CULane dataset. The corresponding ablation study on the Tusimple dataset
can be seen in Sect. 4.2.

In the optimizing process, images are resized to 288 × 800 following [22]. We
use Adam [14] to train our model with cosine decay learning rate strategy [19]
initialized with 4e−4. Loss coefficients λ, α and β in Eq. 8 and 9 are all set to 1.
The batch size is set to 32, and the total number of training epochs is set 100
for TuSimple dataset and 50 for CULane dataset. All models are trained and
tested with pytorch [23] and nvidia GTX 1080Ti GPU.

Data Augmentation. Due to the inherent structure of lanes, a classification-
based network could easily over-fit the training set and show poor performance
on the validation set. To prevent this phenomenon and gain generalization ability,
we use an augmentation method composed of rotation, vertical and horizontal
shift. Besides, to preserve the lane structure, the lane is extended or cropped till
the boundary of the image. The results of augmentation can be seen in Fig. 5.

4.2 Ablation Study

In this section, we verify our method with several ablation studies. The experi-
ments are all conducted with the same settings as Sect. 4.1.

Effects of Number of Gridding Cells. As described in Sect. 3.1, we use
gridding and selecting to establish the relations between structural information in
lanes and classification-based formulation. We use different numbers of gridding
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(a) Original anaotation (b) Augmentated result

Fig. 5. Demonstration of augmentation. The lane on the right image is extended to
maintain the lane structure, which is marked with red ellipse. (Color figure online)

Fig. 6. Performance under different numbers of gridding cells. Evaluation accuracy is
the metric of Tusimple, and classification accuracy is the standard accuracy.

cells to demonstrate the effects on our method. We divide the image using 25,
50, 100 and 200 cells in columns. The results can be seen in Fig. 6.

With the increase of the number of gridding cells, we can see that both top1,
top2 and top3 classification accuracy drops gradually. It is because more grid-
ding cells require finer-grained and harder classification. However, the evaluation
accuracy is not strictly monotonic. Although a smaller number of gridding cells
means higher classification accuracy, the localization error would be larger, since
the gridding cell is too large to represent precise location. In this work, we choose
100 as our number of gridding cells on the Tusimple Dataset.

Effectiveness of Localization Methods. Since our method formulates the
lane detection as a group classification problem, one natural question is what
are the differences between classification and regression. To test in an regression
manner, we replace the classification head with a similar regression head. We use
four experimental settings, which are respectively REG, REG Norm, CLS and
CLS Exp. CLS means the classification method, while REG means the regression
method. CLS Exp is the classification method with Eq. 6. The REG Norm setting
is a variant of REG, which normalizes the learning target within [0, 1].

The results are shown in Table 3. We can see that classification with the
expectation could gain better performance than the standard method. This result
also proves the analysis in Eq. 6 that the expectation based localization is more
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Table 3. Comparison between classification and regression on the Tusimple dataset.
REG and REG Norm are regression methods. The ground truth of REG Norm is
normalized. CLS is classification method and CLS Exp is the one with Eq. 6.

Type REG REG Norm CLS CLS Exp

Accuracy 71.59 67.24 95.77 95.87

precise than argmax operation. Meanwhile, classification-based methods could
consistently outperform the regression-based methods.

Effectiveness of the Proposed Modules. To verify the effectiveness of the
proposed modules, we conduct both qualitative and quantitative experiments.

First, we show the quantitative results of our modules. As shown in Table 4,
the experiments of different module combinations are carried out.

Table 4. Experiments of the proposed modules on Tusimple benchmark with Resnet-34
backbone. Baseline stands for conventional segmentation formulation.

Baseline New formulation Structural loss Feature aggregation Accuracy

� 92.84

� 95.64 (+2.80)

� � 95.96 (+3.12)

� � 95.98 (+3.14)

� � � 96.06 (+3.22)

From Table 4, we can see that the new formulation gains significant per-
formance improvement compared with segmentation formulation. Besides, both
lane structural loss and feature aggregation could enhance the performance.

Second, we illustrate the effectiveness of lane similarity loss in Eq. 3. The
results are shown in Fig. 7. We can see that similarity loss makes the classification
prediction smoother and thus gains better performance.

4.3 Results

In this section, we show the results on the Tusimple and the CULane datasets.
In these experiments, Resnet-18 and Resnet-34 [7] are used as backbone models.

For the Tusimple dataset, seven methods are used for comparison, including
Res18-Seg [3], Res34-Seg [3], LaneNet [21], EL-GAN [5], SCNN [22] and SAD
[9]. Both Tusimple evaluation accuracy and runtime are compared in this exper-
iment. The runtime of our method is recorded with the average time for 100
runs. The results are shown in Table 5.
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(a) W/O similarity loss (b) W/ similarity loss

Fig. 7. Qualitative comparison of similarity loss. The predicted distributions of group
classification of the same lane are shown. Figure (a) shows the visualization of distribu-
tion without similarity loss, while Fig. (b) shows the counterpart with similarity loss.

From Table 5, we can see that our method achieves comparable performance
with state-of-the-art methods while our method could run extremely fast. Com-
pared with SCNN, our method could infer 41.7 times faster. Even compared with
the second-fastest network SAD, our method is still more than 2 times faster.

Table 5. Comparison with other methods on TuSimple test set.

Method Accuracy Runtime (ms) Multiple

Res18-Seg [3] 92.69 25.3 5.3x

Res34-Seg [3] 92.84 50.5 2.6x

LaneNet [21] 96.38 19.0 7.0x

EL-GAN [5] 96.39 >100 <1.3x

SCNN [22] 96.53 133.5 1.0x

SAD [9] 96.64 13.4 10.0x

Res34-Ours 96.06 5.9 22.6x

Res18-Ours 95.87 3.2 41.7x

For the CULane dataset, four methods, including Seg [3], SCNN [22], Fast-
Draw [24] and SAD [9], are used for comparison. F1-measure and runtime are
compared. The results can be seen in Table 6.

It is observed in Table 6 that our method achieves the best performance in
terms of both accuracy and speed. It proves the effectiveness of the proposed for-
mulation and structural loss on these challenging scenarios because our method
could utilize global and structural information to address the no-visual-clue and
speed problem. The fastest model of our formulation achieves 322.5 FPS with a
resolution of 288× 800, which is the same as other compared methods.

The visualizations of our method on the Tusimple and CULane datasets are
shown in Fig. 8. We can see our method performs well under various conditions.
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Table 6. Comparison of F1-measure and runtime on CULane testing set with IoU
threshold= 0.5. For crossroad, only false positives are shown. The less, the better.

Category R50-Seg [3] SCNN [22] FD-50 [24] R34-SAD SAD [9] Res18-Ours Res34-Ours

Normal 87.4 90.6 85.9 89.9 90.1 87.7 90.7

Crowded 64.1 69.7 63.6 68.5 68.8 66.0 70.2

Night 60.6 66.1 57.8 64.6 66.0 62.1 66.7

No-line 38.1 43.4 40.6 42.2 41.6 40.2 44.4

Shadow 60.7 66.9 59.9 67.7 65.9 62.8 69.3

Arrow 79.0 84.1 79.4 83.8 84.0 81.0 85.7

Dazzlelight 54.1 58.5 57.0 59.9 60.2 58.4 59.5

Curve 59.8 64.4 65.2 66.0 65.7 57.9 69.5

Crossroad 2505 1990 7013 1960 1998 1743 2037

Total 66.7 71.6 - 70.7 70.8 68.4 72.3

Runtime (ms) - 133.5 - 50.5 13.4 3.1 5.7

Multiple - 1.0x - 2.6x 10.0x 43.0x 23.4x

FPS - 7.5 - 19.8 74.6 322.5 175.4

Image with annotation Prediction Label

Fig. 8. Visualization results. The first two rows are results on the Tusimple dataset
and the rest rows are on the CULane dataset. From left to right, the results are image,
prediction and label. In the image, predictions are marked in blue and ground truth
are marked in red. Because our method only predicts on the predefined row anchors,
the scales of images and labels in the vertical direction are not identical. (Color figure
online)
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5 Conclusion

In this paper, we have proposed a novel formulation with structural loss and
achieves remarkable speed and accuracy. The proposed formulation regards lane
detection as a problem of row-based selecting using global features. In this way,
the problem of speed and no-visual-clue can be addressed. Besides, structural
loss used for explicitly modeling of lane prior information is also proposed. The
effectiveness of our formulation and structural loss are well justified with both
qualitative and quantitative experiments. Especially, our model using Resnet-
34 backbone could achieve state-of-the-art accuracy and speed. A light weight
Resnet-18 version of our method could even achieve 322.5 FPS with a comparable
performance at the same resolution.
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