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Abstract. It has been a primary concern in recent studies of vision and
language tasks to design an effective attention mechanism dealing with
interactions between the two modalities. The Transformer has recently
been extended and applied to several bi-modal tasks, yielding promis-
ing results. For visual dialog, it becomes necessary to consider interac-
tions between three or more inputs, i.e., an image, a question, and a
dialog history, or even its individual dialog components. In this paper,
we present a neural architecture named Light-weight Transformer for
Many Inputs (LTMI) that can efficiently deal with all the interactions
between multiple such inputs in visual dialog. It has a block structure
similar to the Transformer and employs the same design of attention
computation, whereas it has only a small number of parameters, yet has
sufficient representational power for the purpose. Assuming a standard
setting of visual dialog, a layer built upon the proposed attention block
has less than one-tenth of parameters as compared with its counterpart, a
natural Transformer extension. The experimental results on the VisDial
datasets validate the effectiveness of the proposed approach, showing
improvements of the best NDCG score on the VisDial v1.0 dataset from
57.59 to 60.92 with a single model, from 64.47 to 66.53 with ensemble
models, and even to 74.88 with additional finetuning.
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1 Introduction

Recently, an increasing amount of attention has been paid to problems lying at the
intersection of the vision and language domains. Many pilot tasks in this intersect-
ing region have been designed and introduced to the research community, together
with datasets. Visual dialog has been developed aiming at a higher level of vision-
language interactions [7], as compared with VQA (visual question answering)
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[2] and VCR (visual commonsense reasoning). It extends VQA to multiple rounds;
given an image and a history of question-answer pairs about the image, an agent
is required to answer a new question. For example, to answer the question ‘What
color are they?’, the agent needs to understand the context from a dialog history
to know what ‘they’ refers to and look at the relevant image region to find out a
color.

In recent studies of vision-language tasks, a primary concern has been
to design an attention mechanism that can effectively deal with interactions
between the two modalities. In the case of visual dialog, it becomes further
necessary to consider interactions between an image, a question, and a dialog
history or additionally multiple question-answer pairs in the history. Thus, the
key to success will be how to deal with such interactions between three and more
entities. Following a recent study [36], we will use the term utility to represent
each of these input entities for clarity, since the term modality is inconvenient to
distinguish between the question and the dialog history.

Existing studies have considered attention from one utility to another based on
different hypotheses, such as “question → history → image” path in [18,28], and
“question → image → history → question” path in [12,43], etc. These methods
cannot take all the interactions between utilities into account, although themissing
interactions could be crucial. Motivated by this, a recent study tries to capture
all the possible interactions by using a factor graph [36]. However, building the
factor graph is computationally inefficient, which seemingly hinders the method
from unleashing the full potential of modeling all the interactions, especially when
the dialog history grows long.

The Transformer [41] has become a standard neural architecture for various
tasks in the field of natural language processing, especially since the huge suc-
cess of its pretrained model, BERT [11]. Its basic mechanism has recently been
extended to the bi-modal problems of vision and language, yielding promising
results [6,13,26,27,47]. Then, it appears to be natural to extend it further to deal
with many-to-many utility interactions. However, it is not easy due to several
reasons. As its basic structure is designed to be deal with self-attention, even in
the simplest case of bi-modality, letting X and Y be the two utilities, there are
four patterns of attention, X → Y , Y → X, X → X, and Y → Y ; we need an
independent Transformer block for each of these four. When extending this to
deal with many-to-many utility interactions, the number of the blocks and thus
of their total parameters increases proportionally with the square of the number
of utilities, making it computationally expensive. Moreover, it is not apparent
how to aggregate the results from all the interactions.

To cope with this, we propose a neural architecture named Light-weight
Transformer for Many Inputs (LTMI) that can deal with all the interactions
between many utilities. While it has a block structure similar to the Trans-
former and shares the core design of attention computation, it differs in the
following two aspects. One is the difference in the implementation of multi-
head attention. Multi-head attention in the Transformer projects the input
feature space linearly to multiple lower-dimensional spaces, enabling to handle
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multiple attention maps, where the linear mappings are represented with learn-
able parameters. In the proposed model, we instead split the input feature space
to subspaces mechanically according to its indexes, removing all the learnable
parameters from the attention computation.

The other difference from the Transformer is that LTMI is designed to receive
multiple utilities and compute all the interactions to one utility from all the
others including itself. This yields the same number of attended features as the
input utilities, which are then concatenated in the direction of the feature space
dimensions and then linearly projected back to the original feature space. We
treat the parameters of the last linear projection as only learnable parameters in
LTMI. This design makes it possible to retain sufficient representational power
with a much fewer number of parameters, as compared with a natural extension
of the Transformer block to many utilities. By using the same number of blocks in
parallel as the number of utilities, we can deal with all the interactions between
the utilities; see Fig. 2 for example. Assuming three utilities and the feature space
dimensionality of 512, a layer consisting of LTMI has 2.38M parameters, whereas
its counterpart based on naive Transformer extension has 28.4M parameters.

2 Related Work

2.1 Attention Mechanisms for Vision-Language Tasks

Attention mechanisms are currently indispensable to build neural architectures
for vision-language tasks, such as VQA [4,16,20,29,31,45,48,49] and visual
grounding [10,46,52], etc. Inspired by the recent success of the Transformer for
language tasks [11,41], several studies have proposed its extensions to bi-modal
vision-language tasks [6,13,26,27,40,47]. Specifically, for VQA, it is proposed
to use intra-modal and inter-modal attention blocks and stack them alternately
to fuse question and image features [13]; it is also proposed to use a cascade of
modular co-attention layers that compute the self-attention and guided-attention
of question and image features [47]. The method of pretraining a Transformer
model used in BERT [11] is employed along with Transformer extension to bi-
modal tasks for several vision-language tasks [6,26,27]. They first pretrain the
models on external datasets, such as COCO Captions [5] or Conceptual Captions
dataset [38], and then fine-tune them on several target tasks.

2.2 Visual Dialog

The task of visual dialog has recently been proposed by two groups of researchers
concurrently [7,9]. De Vries et al. introduced the GuessWhat?! dataset, which is
built upon goal-oriented dialogs held by two agents to identify unknown objects
in an image through a set of yes/no questions [9]. Das et al. released the VisDial
dataset, which is built upon dialogs consisting of pairs of a question and an
answer about an image that are provided in the form of natural language texts
[7]. Kottur et al. recently introduced CLEVR-Dialog as the diagnostic dataset
for visual dialog [23].
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Most of the existing approaches employ an encoder-decoder architecture [39].
They can be categorized into the following three groups by the design of the
encoder: i) fusion-based methods, e.g., LF [7] and HRE [7], which fuses the
inputs by their concatenation followed by the application of a feed-forward or
recurrent network, and Synergistic [14], which fuses the inputs at multiple stages;
ii) attention-based methods that compute attended features of the input image,
question, and history utilities, e.g., MN [7], CoAtt [43], HCIAE [28], Synergistic
[14], ReDAN [12], FGA [36], and CDF [19]; ReDAN compute the attention over
several reasoning steps, FGA models all the interactions over many utilities via
a factor graph; iii) methods that attempt to resolve visual co-reference, e.g.,
RvA [32] and CorefNMN [22], which use neural modules to form an attention
mechanism, DAN [18], which employs a network having two attention modules,
and AMEM [37], which utilizes a memory mechanism for attention. As for the
decoder, there are two designs: i) discriminative decoders that rank the candidate
answers using the cross-entropy loss [7] or the n-pair loss [28]; and ii) generative
decoders that yield an answer by using a MLE loss [7], weighted likelihood
estimation [50], or a combination with adversarial learning [28,43], which trains
a discriminator on both positive and negative answers, then transferring it to
the generator with auxiliary adversarial learning.

Other approaches include GNN [51], which models relations in a dialog by
an unknown graph structure; the employment of reinforcement learning [3,8];
and HACAN [44] which adopts policy gradient to learn the impact of history
by intentionally imposing the wrong answer into dialog history. In [30,42], pre-
trained vision-language models are adopted, which consist of many Transformer
blocks with hundreds of millions parameters, leading to some performance gain.
Qi et al. [34] present model-agnostic principles for visual dialog to maximize
performance.

3 Efficient Attention Mechanism for Many Utilities

3.1 Attention Mechanism of Transformer

As mentioned earlier, the Transformer has been applied to several bi-modal
vision-language tasks, yielding promising results. The Transformer computes and
uses attention from three types of inputs, Q (query), K (key), and V (value).
Its computation is given by

A(Q,K, V ) = softmax
(
QK�
√
d

)
V, (1)

where Q, K, and V are all collection of features, each of which is represented by
a d-dimensional vector. To be specific, Q = [q1, . . . , qM ]� ∈ R

M×d is a collection
of M features; similarly, K and V are each a collection of N features, i.e.,
K,V ∈ R

N×d. In Eq. (1), V is attended with the weights computed from the
similarity between Q and K.

The above computation is usually multi-plexed in the way called multi-head
attention. It enables to use a number of attention distributions in parallel, aiming
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Fig. 1. (a) Source-to-target attention for bi-modal problems implemented by the stan-
dard Transformer block; the source Y is attended by weights computed from the sim-
ilarity between the target X and Y . (b) The proposed block that can deal with many
utilities; the source features {Y1, . . . , YU−1} are attended by weights computed between
them and the target X. Shaded boxes have learnable weights

at an increase in representational power. The outputs of H ‘heads’ are concate-
nated, followed by linear transformation with learnable weights WO ∈ R

d×d as

AM(Q,K, V ) =
[
head1, · · · ,headH

]
WO. (2)

Each head is computed as follows:

headh = A(QWQ
h ,KWK

h , V WV
h ), h = 1, . . . , H, (3)

where WQ
h , WK

h , WV
h ∈ R

d×dH each are learnable weights inducing a linear
projection from the feature space of d-dimensions to a lower space of dH(= d/H)-
dimensions. Thus, one attentional block AM(Q,K, V ) has the following learnable
weights:

(WQ
1 ,WK

1 ,WV
1 ), · · · , (WQ

H ,WK
H ,WV

H ) and WO. (4)

3.2 Application to Bi-modal Tasks

While Q, K, and V in NLP tasks are of the same modality (i.e., language),
the above mechanism has been extended to bi-modality and applied to vision-
language tasks in recent studies [6,13,26,27,40,47]. They follow the original
idea of the Transformer, considering attention from source features Y to target
features X as

AY (X) = AM(X,Y, Y ). (5)

In MCAN [47], language feature is treated as the source and visual feature is
as the target. In [26] and others [6,13,27,40], co-attention, i.e., attention in the
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both directions, is considered. Self-attention, i.e., the attention from features to
themselves, is given as a special case by

AX(X) = AM(X,X,X). (6)

In the above studies, the Transformer block with the source-to-target attention
and that with the self-attention are independently treated and are stacked, e.g.,
alternately or sequentially.

3.3 Light-Weight Transformer for Many Inputs

Now suppose we wish to extend the above attention mechanism to a greater
number of utilities1; we denote the number by U . If we consider every possible
source-target pairs, there are U(U − 1) cases in total, as there are U targets, for
each of which U − 1 sources exist. Then we need to consider attention computa-
tion AY (X) over U −1 sources Y ’s for each target X. Thus, the straightforward
extension of the above attention mechanism to U utilities needs U(U − 1) times
the number of parameters listed in Eq. (4). If we stack the blocks, the total
number of parameters further increases proportionally.

To cope with this, we remove all the weights from Eq. (5). To be specific, for
each head h(= 1, . . . , H), we choose and freeze (WQ

h ,WK
h ,WV

h ) as

WQ
h = WK

h = WV
h = [OdH

, · · · , OdH︸ ︷︷ ︸
(h−1)dH

, IdH
, OdH

, · · · , OdH︸ ︷︷ ︸
(H−h)dH

]�, (7)

where OdH
is a dH×dH zero matrix and IdH

is a dH×dH identity matrix. In short,
the subspace for each head is determined to be one of H subspaces obtained by
splitting the d-dimensional feature space with its axis indexes. Besides, we set
WO = I, which is the linear mapping applied to the concatenation of the heads’
outputs. Let ĀY (X) denote this simplified attention mechanism.

Now let the utilities be denoted by {X,Y1, . . . , YU−1}, where X ∈ R
M×d is

the chosen target and others Yi ∈ R
Ni×d are the sources. Then, we compute

all the source-to-target attention as ĀY1(X), · · · , ĀYU−1(X). In the standard
Transformer block (or rigorously its natural extensions to bi-modal problems),
the attended features are simply added to the target as X + AY (X), followed
by normalization and subsequent computations. To recover some of the loss in
representational power due to the simplification yielding ĀY (X), we propose
a different approach to aggregate ĀY1(X), · · · , ĀYU−1(X) and X. Specifically,
we concatenate all the source-to-target attention plus the self-attention ĀX(X)
from X to X as

Xconcat = [ĀX(X), ĀY1(X), · · · , ĀYU−1(X)], (8)

1 As we stated in Introduction, we use the term utility here to mean a collection of
features.
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where Xconcat ∈ R
M×Ud. We then apply linear transformation to it given by

W ∈ R
Ud×d and b ∈ R

d with a single fully-connected layer, followed by the
addition of the original X and layer normalization as

X̃ = LayerNorm(ReLU(XconcatW + 1M · b�) + X), (9)

where 1M is M -vector with all ones. With this method, we aim at recovery of
representational power as well as the effective aggregation of information from
all the utilities.

Fig. 2. (a) Simplified symbol of the proposed block shown in Fig. 1(b). (b) Its appli-
cation to Visual Dialog

3.4 Interactions Between All Utilities

We have designed a basic block (Fig. 1(b)) that deals with attention from many
sources to a single target. We wish to consider all possible interactions between
all the utilities, not a single utility being the only target. To do this, we use U
basic blocks to consider all the source-to-target attention. Using the basic block
as a building block, we show how an architecture is designed for visual dialog
having three utilities, visual features V , question features Q, and dialog history
features R, in Fig. 2(b).

4 Implementation Details for Visual Dialog

4.1 Problem Definition

The problem of Visual Dialog is stated as follows. An agent is given the image
of a scene and a dialog history containing T entities, which consists of a caption
and question-answer pairs at T − 1 rounds. Then, the agent is further given a
new question at round T along with 100 candidate answers for it and requested
to answer the question by choosing one or scoring each of the candidate answers.
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4.2 Representation of Utilities

We first extract features from an input image, a dialog history, and a new ques-
tion at round T to obtain their representations. For this, we follow the stan-
dard method employed in many recent studies. For the image utility, we use
the bottom-up mechanism [1], which extracts region-level image features using
the Faster-RCNN [35] pre-trained on the Visual Genome dataset [24]. For each
region (i.e., a bounding box = an object), we combine its CNN feature and
geometry to get a d-dimensional vector vi (i = 1, . . . ,K), where K is the prede-
fined number of regions. We then define V = [v1, v2, · · · , vK ]� ∈ R

K×d. For the
question utility, after embedding each word using an embedding layer initialized
by pretrained GloVe vectors, we use two-layer Bi-LSTM to transform them to
qi (i = 1, . . . , N), where N is the number of words in the question. We option-
ally use the positional embedding widely used in NLP studies. We examine its
effects in an ablation test. We then define Q = [q1, . . . , qN ]� ∈ R

N×d. For the
dialog history utility, we choose to represent it as a single utility here. Thus,
each of its entities represents the initial caption or the question-answer pair at
one round. As with the question utility, we use the same embedding layer and
a two-layer Bi-LSTM together with the positional embeddings for the order of
dialog rounds to encode them with a slight difference in formation of an entity
vector ri (i = 1, . . . , T ), where T is the number of Q&A plus the caption. We
then define R = [r1, . . . , rT ]� ∈ R

T×d. More details are provided in the supple-
mentary material.

Fig. 3. The entire network built upon the proposed LTMI for Visual Dialog

4.3 Overall Network Design

Figure 3 shows the entire network. It consists of an encoder and a decoder. The
encoder consists of L stacks of the proposed attention blocks; a single stack
has U blocks in parallel, as shown in Fig. 2(b). We set V0 = V , Q0 = Q, and
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R0 = R as the inputs of the first stack. After the l-th stack, the representations
of the image, question, and dialog history utilities are updated as Vl, Ql, and
Rl, respectively. In the experiments, we apply dropout with the rate of 0.1 to
the linear layer inside every block. There is a decoder(s) on top of the encoder.
We consider a discriminative decoder and a generative decoder, as in previous
studies. Their design is explained below.

4.4 Design of Decoders

Decoders receive the updated utility representations, VL, QL, and RL at their
inputs. We convert them independently into d-dimensional vectors cV , cQ, and
cR, respectively. This conversion is performed by a simple self-attention compu-
tation. We take cV as an example here. First, attention weights over the entities
of VL are computed by a two-layer network as

aV = softmax(ReLU(VLW1 + 1Kb�
1 )W2 + 1Kb2), (10)

where W1 ∈ R
d×d, W2 ∈ R

d×1, b1 ∈ R
d, b2 ∈ R

1, and 1K is K-vector with all
ones. Then, cV is given by

cV =
K∑
i=1

v�
L,iaV,i, (11)

where vL,i is the i-th row vector of VL and aV,i is the i-th attention weight (a
scalar). The others, i.e., cQ and cR, can be obtained similarly.

These vectors are integrated and used by the decoders. In our implementa-
tion for visual dialog, we found that cR does not contribute to better results;
thus we use only cV and cQ. Note that this does not mean the dialog utility R
is not necessary; it is interacted with other utilities inside the attention com-
putation, contributing to the final prediction. The two d-vectors cV and cQ are
concatenated as [c�

V , c
�
Q]�, and this is projected to d-dimensional space, yielding

a context vector c ∈ R
d.

We design the discriminative and generative decoders following the previous
studies. Receiving c and the candidate answers, the two decoders compute the
score of each candidate answer in different ways. See details in the supplementary
material.

4.5 Multi-task Learning

We observe in our experiments that accuracy is improved by training the entire
network using the two decoders simultaneously. This is simply done by minimiz-
ing the sum of the losses, LD for the discriminative one and LG for the generative
one (we do not use weights on the losses):

L = LD + LG. (12)

The increase in performance may be attributable to the synergy of learning two
tasks while sharing the same encoder. Details will be given in Sect. 5.3.
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5 Experimental Results

5.1 Experimental Setup

Dataset. We use the VisDial v1.0 dataset in our experiments which consists of
the train 1.0 split (123,287 images), the val 1.0 split (2,064 images), and test
v1.0 split (8,000 images). Each image has a dialog composed of 10 question-
answer pairs along with a caption. For each question-answer pair, 100 candidate
answers are given. The val v1.0 split and 2,000 images of the train v1.0 split are
provided with dense annotations (i.e., relevance scores) for all candidate answers.
Although the test v1.0 split was also densely annotated, the information about
the ground truth answers and the dense annotations are not publicly available.
Additionally, we evaulate the method on the Audio Visual Scene-aware Dialog
Dataset [15]; the results are shown in the supplementary.

Evaluation Metrics. From the visual dialog challenge 2018, normalized dis-
counted cumulative gain (NDCG) has been used as the principal metric to evalu-
ate methods on the VisDial v1.0 dataset. Unlike other classical retrieval metrics
such as R@1, R@5, R@10, mean reciprocal rank (MRR), and mean rank, which
are only based on a single ground truth answer, NDCG is computed based on the
relevance scores of all candidate answers for each question, which can properly
handle the case where each question has more than one correct answer, such as
‘yes it is’ and ‘yes’; such cases do occur frequently.

Other Configurations. We employ the standard method used by many recent
studies for the determination of hyperparameters etc. For the visual features, we
detect K = 100 objects from each image. For the question and history features,
we first build the vocabulary composed of 11,322 words that appear at least five
times in the training split. The captions, questions, and answers are truncated
or padded to 40, 20, and 20 words, respectively. Thus, N = 20 for the question
utility Q. T for the history utilities varies depending on the number of dialogs. We
use pre-trained 300-dimensional GloVe vectors [33] to initialize the embedding
layer, which is shared for all the captions, questions, and answers.

For the attention blocks, we set the dimension of the feature space to d = 512
and the number of heads H in each attention block to 4. We mainly use models
having two stacks of the proposed attention block. We train our models on
the VisDial v0.9 and VisDial v1.0 dataset using the Adam optimizer [21] with 5
epochs and 15 epochs respectively. The learning rate is warmed up from 1×10−5

to 1 × 10−3 in the first epoch, then halved every 2 epochs. The batch size is set
to 32 for the both datasets.

5.2 Comparison with State-of-the-Art Methods

Compared Methods. We compare our method with previously published
methods on the VisDial v0.9 and VisDial v1.0 datasets, including LF, HRE,
MN [7], LF-Att, MN-Att (with attention) [7], SAN [45], AMEM [37], SF [17],
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HCIAE [28] and Sequential CoAttention model (CoAtt) [43], Synergistic [14],
FGA [36], GNN [51], RvA [32], CorefNMN [22], DAN [18], and ReDAN [12],
all of which were trained without using external datasets or data imposition.
Unless noted otherwise, the results of our models are obtained from the output
of discriminative decoders.

Table 1. Comparison of the performances of different methods on the validation set
of VisDial v1.0 with discriminative and generative decoders.

Model Discriminative Generative

NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓ NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
MN [7] 55.13 60.42 46.09 78.14 88.05 4.63 56.99 47.83 38.01 57.49 64.08 18.76

CoAtt [43] 57.72 62.91 48.86 80.41 89.83 4.21 59.24 49.64 40.09 59.37 65.92 17.86

HCIAE [28] 57.75 62.96 48.94 80.5 89.66 4.24 59.70 49.07 39.72 58.23 64.73 18.43

ReDAN [12] 59.32 64.21 50.6 81.39 90.26 4.05 60.47 50.02 40.27 59.93 66.78 17.4

LTMI 62.72 62.32 48.94 78.65 87.88 4.86 63.58 50.74 40.44 61.61 69.71 14.93

Results on the val v1.0 Split. We first compare single-model performance on
the val v1.0 split. We select here MN, CoAtt, HCIAE, and ReDAN for compari-
son, as their performances from the both decoders in all metrics are available in
the literature. To be specific, we use the accuracy values reported in [12] for a
fair comparison, in which these methods are reimplemented using the bottom-
up-attention features. Similar to ours, all these methods employ the standard
design of discriminative and generative decoders as in [7]. Table 1 shows the
results. It is seen that our method outperforms all the compared methods on the
NDCG metric with large margins regardless of the decoder type. Specifically, as
compared with ReDAN, the current state-of-the-art on the VisDial v1.0 dataset,
our model has improved NDCG from 59.32 to 62.72 and from 60.47 to 63.58
with discriminative and generative decoders, respectively.

Results on the Test-Standard v1.0 Split. We next consider performance on
the test-standard v1.0 split. In our experiments, we encountered a phenomenon
that accuracy values measured by NDCG and other metrics show a trade-off
relation (see the supplementary material for details), depending much on the
choice of metrics (i.e., NDCG or others) for judging convergence at the training
time. This is observed in the results reported in [12] and is attributable to the
inconsistency between the two types of metrics. Thus, we show two results here,
the one obtained using NDCG for judging convergence and the one using MRR
for it; the latter is equivalent to performing early stopping.

Table 2(a) shows single-model performances on the blind test-standard v1.0
split. With the outputs from the discriminative decoder, our model gains
improvement of 3.33pp in NDCG from the best model. When employing the
aforementioned early stopping, our model achieves at least comparable or better
performance in other metrics as well.

Many previous studies report the performance of an ensemble of multiple
models. To make a comparison, we create an ensemble of 16 models with some
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Table 2. Comparison in terms of (a) single- and (b) ensemble-model performance on
the blind test-standard v1.0 split of the VisDial v1.0 dataset and in terms of (c) the
number of parameters of the attention mechanism. The result obtained by early stop-
ping on MRR metric is denoted by � and those with fine-tuning on dense annotations
are denoted by †.

a) Performance of single models

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓
LF [7] 45.31 55.42 40.95 72.45 82.83 5.95

HRE [7] 45.46 54.16 39.93 70.45 81.50 6.41

MN [7] 47.50 55.49 40.98 72.30 83.30 5.92

MN-Att [7] 49.58 56.90 42.42 74.00 84.35 5.59

LF-Att [7] 49.76 57.07 42.08 74.82 85.05 5.41

FGA [36] 52.10 63.70 49.58 80.97 88.55 4.51

GNN [51] 52.82 61.37 47.33 77.98 87.83 4.57

CorefNMN [22] 54.70 61.50 47.55 78.10 88.80 4.40

RvA [32] 55.59 63.03 49.03 80.40 89.83 4.18

Synergistic [14] 57.32 62.20 47.90 80.43 89.95 4.17

DAN [18] 57.59 63.20 49.63 79.75 89.35 4.30

LTMI� 59.03 64.08 50.20 80.68 90.35 4.05

LTMI 60.92 60.65 47.00 77.03 87.75 4.90

b) Performance of ensemble models

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓
FGA [36] 52.10 67.30 53.40 85.28 92.70 3.54

Synergistic [14] 57.88 63.42 49.30 80.77 90.68 3.97

DAN [18] 59.36 64.92 51.28 81.60 90.88 3.92

ReDAN [12] 64.47 53.73 42.45 64.68 75.68 6.63

LTMI 66.53 63.19 49.18 80.45 89.75 4.14

P1 P2[34]† 74.91 49.13 36.68 62.98 78.55 7.03

VD-BERT[42]† 75.13 50.00 38.28 60.93 77.28 6.90

LTMI† 74.88 52.14 38.93 66.60 80.65 6.53

c) Num. of attention parameters and the metrics scores

Model # params MRR↑ NDCG↑
DAN [18] 12.6M 63.20 57.59

RvA [32] 11.9M 63.03 55.59

Naive Transformer 56.8M 62.09 55.10

LTMI* (MRR-based) 4.8M 64.08 59.92

LTMI (Q, V) 4.8M 60.65 60.92

LTMI (Q, V, R) 4.8M 60.76 61.12

differences, from initialization with different random seeds to whether to use
sharing weights across attention blocks or not, the number of attention blocks
(i.e. L = 2, 3), and the number of objects in the image (i.e. K = 50, 100).
Aiming at achieving the best performance, we also enrich the image features by
incorporating the class label and attributes of each object in an image, which
are also obtained from the pretrained Faster-RCNN model. Details are given
in the supplementary material. We take the average of the outputs (probabil-
ity distributions) from the discriminative decoders of these models to rank the
candidate answers. Furthermore, we also test fine-tuning each model with its
discriminative decoder on the available dense annotations from the train v1.0
and val v1.0, where the cross-entropy loss with soft labels (i.e. relevance scores)
is minimized for two epochs. Table 2(b) shows the results. It is observed that our
ensemble model (w/o the fine-tuning) achieves the best NDCG = 66.53 in all
the ensemble models.

With optional fine-tuning, our ensemble model further gains a large improve-
ment in NDCG, resulting in the third place in the leaderboard. The gap in NDCG
to the first place (VD-BERT) is only 0.25pp, while our model yields performance
that is better in all the other metrics, i.e, by 2.14pp, 5.67pp, and 3.37pp in MRR,
R@5, and R@10, respectively, and 5.36% reduction in Mean.

Table 2(c) shows the number of parameters of the multi-modal attention
mechanism employed in the recent methods along with their NDCG scores on the
VisDial v1.0 test-standard set. We exclude the parameters of the networks com-
puting the input utilities and the decoders, as they are basically shared among
these methods. ‘Naive Transformer’ consists of two stacks of transformer blocks
with simple extension to three utilities as mentioned in Sect. 1. The efficiency
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of our models can be observed. Note also that the gap between (Q, V) and (Q,
V, R) is small, contrary to the argument in [34].

Table 3. Ablation study on the components of our method on the val v1.0 split of
VisDial dataset. ↑ indicates the higher the better.

(a)

Component Details A-NDCG ↑ D-NDCG ↑ G-NDCG ↑
Number of 1 65.37 62.06 62.95

attention blocks 2 65.75 62.72 63.58

3 65.42 62.48 63.22

Self-Attention No 65.38 61.76 63.31

Yes 65.75 62.72 63.58

Attended features Add 64.12 60.28 61.49

aggregation Concat 65.75 62.72 63.58

Shared Attention No 65.75 62.72 63.58

weights Yes 65.57 62.50 63.24

(b)

Component Details A-NDCG ↑ D-NDCG ↑ G-NDCG ↑
Context feature [Q] 65.12 61.50 63.19

aggregation [Q, V] 65.75 62.72 63.58

[Q, V, R] 65.53 62.37 63.38

Decoder Type Gen - - 62.35

Disc - 61.80 -

Both 65.75 62.72 63.58

The number of 36 65.25 62.40 63.08

objects in an image 50 65.24 62.29 63.12

100 65.75 62.72 63.58

Positional and No 65.18 61.84 62.96

spatial embeddings Yes 65.75 62.72 63.58

5.3 Ablation Study

To evaluate the effect of each of the components of our method, we perform
the ablation study on the val v1.0 split of VisDial dataset. We evaluate here the
accuracy of the discriminative decoder and the generative decoder separately. We
denote the former by D-NDCG and the latter by G-NDCG, and the accuracy
of their averaged model by A-NDCG (i.e., averaging the probability distribu-
tions over the candidate answers obtained by the discriminative and generative
decoders). The results are shown in Table 3(a–b).

The first block of Table 3(a) shows the effect of the number of stacks of
the proposed attention blocks. We observe that the use of two to three stacks
achieves good performance on all three measures. More stacks did not bring
further improvement, and thus are omitted in the table.

The second block of Table 3(a) shows the effect of self-attention, which com-
putes the interaction within a utility, i.e., ĀX(X). We examine this because it
can be removed from the attention computation. It is seen that self-attention
does contribute to good performance. The third block shows the effects of how to
aggregate the attended features. It is seen that their concatenation yields better
performance than their simple addition. The fourth block shows the impact of
sharing the weights across the stacks of the attention blocks. If the weights can
be shared as in [25], it contributes a further decrease in the number of parame-
ters. We observe that the performance does drop if weight sharing is employed,
but the drop is not very large.

The first block of Table 3(b) shows the effect of how to aggregate the context
features cV , cQ, and cR in the decoder(s), which are obtained from the outputs
of our encoder. As mentioned above, the context vector cR of the dialog history
does not contribute to the performance. However, the context vector cv of the
image is important for achieving the best performance. The second block of
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Table 3(b) shows the effects of simultaneously training the both decoders (with
the entire model). It is seen that this contributes greatly to the performance; this
indicates the synergy of learning two tasks while sharing the encoder, resulting
better generalization as compared with those trained with a single decoder.

We have also confirmed that the use of fewer objects leads to worse results.
Besides, the positional embedding for representing the question and history utili-
ties as well as the spatial embedding (i.e., the bounding box geometry of objects)
for image utility representation have a certain amount of contribution.

Fig. 4. Examples of visualization for the attention weights generated in our model at
two Q&A rounds on two images. See Sect. 5.4 for details.

5.4 Visualization of Generated Attention

Figure 4 shows attention weights generated in our model on two rounds of Q&A
on two images. We show here two types of attention. One is the self-attention
weights used to compute the context vectors cV and cQ. For cV , the atten-
tion weights aV are generated over image regions (i.e., bounding boxes), as in
Eq. (10). Similarly, for cQ, the attention weights are generated over question
words. These two sets of attention weights are displayed by brightness of the
image bounding-boxes and darkness of question words, respectively, in the cen-
ter and the rightmost columns. It can be observed from these that the relevant
regions and words are properly highlighted at each Q&A round.

The other attention we visualize is the source-to-target attention computed
inside the proposed block. We choose here the image-to-question attention
ĀV (Q) and the history-to-question attention ĀR(Q). For each, we compute the
average of the attention weights over all the heads computed inside the block
belonging to the upper stack. In Fig. 4, the former is displayed by the red boxes
connected between an image region and a question word; only the region with
the largest weight is shown for the target word; the word with the largest self-
attention weight is chosen for the target. The history-to-question attention is
displayed by the Q&As highlighted in blue color connected to a selected question
word that is semantically ambiguous, e.g., ‘its’, ‘he’, and ‘his’. It is seen that the
model performs proper visual grounding for the important words, ‘hair’, ‘shorts’,
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and ’tusks’. It is also observed that the model properly resolves the co-reference
for the words, ‘he’ and ‘its’.

6 Summary and Conclusion

In this paper, we have proposed LTMI (Light-weight Transformer for Many
Inputs) that can deal with all the interactions between multiple input utilities
in an efficient way. As compared with other methods, the proposed architecture
is much simpler in terms of the number of parameters as well as the way of han-
dling inputs (i.e., their equal treatment), and nevertheless surpasses the previous
methods in accuracy; it achieves the new state-of-the-art results on the VisDial
datasets, e.g., high NDCG scores on the VisDial v1.0 dataset. Thus, we believe
our method can be used as a simple yet strong baseline.
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