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Abstract. Recent progress on few-shot learning largely relies on anno-
tated data for meta-learning: base classes sampled from the same domain
as the novel classes. However, in many applications, collecting data for
meta-learning is infeasible or impossible. This leads to the cross-domain
few-shot learning problem, where there is a large shift between base and
novel class domains. While investigations of the cross-domain few-shot
scenario exist, these works are limited to natural images that still con-
tain a high degree of visual similarity. No work yet exists that examines
few-shot learning across different imaging methods seen in real world
scenarios, such as aerial and medical imaging. In this paper, we propose
the Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL)
benchmark, consisting of image data from a diverse assortment of image
acquisition methods. This includes natural images, such as crop disease
images, but additionally those that present with an increasing dissimi-
larity to natural images, such as satellite images, dermatology images,
and radiology images. Extensive experiments on the proposed benchmark
are performed to evaluate state-of-art meta-learning approaches, trans-
fer learning approaches, and newer methods for cross-domain few-shot
learning. The results demonstrate that state-of-art meta-learning meth-
ods are surprisingly outperformed by earlier meta-learning approaches,
and all meta-learning methods underperform in relation to simple fine-
tuning by 12.8% average accuracy. In some cases, meta-learning even
underperforms networks with random weights. Performance gains previ-
ously observed with methods specialized for cross-domain few-shot learn-
ing vanish in this more challenging benchmark. Finally, accuracy of all
methods tend to correlate with dataset similarity to natural images, veri-
fying the value of the benchmark to better represent the diversity of data
seen in practice and guiding future research. Code for the experiments
in this work can be found at https://github.com/IBM/cdfsl-benchmark.
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1 Introduction

Fig. 1. The Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL) bench-
mark. ImageNet is used for source training, and domains of varying dissimilarity from
natural images are used for target evaluation. Similarity is measured by 3 orthogonal
criteria: 1) existence of perspective distortion, 2) the semantic content, and 3) color
depth. No data is provided for meta-learning, and target classes are disjoint from the
source classes.

Training deep neural networks for visual recognition typically requires a large
amount of labelled examples [28]. The generalization ability of deep neural net-
works relies heavily on the size and variations of the dataset used for training.
However, collecting sufficient amounts of data for certain classes may be impossi-
ble in practice: for example, in dermatology, there are a multitude of instances of
rare diseases, or diseases that become rare for particular types of skin [1,25,48].
Or in other domains such as satellite imagery, there are instances of rare cate-
gories such as airplane wreckage. Although individually each situation may not
carry heavy cost, as a group across many such conditions and modalities, correct
identification is critically important, and remains a significant challenge where
access to expertise may be impeded.

Although humans generalize to recognize new categories from few examples
in certain circumstances, such as when categories exhibit predictable variations
across examples and have reasonable contrast from background [31,32], even
humans have trouble recognizing new categories that vary too greatly between
examples or differ from prior experience, such as for diagnosis in dermatology,
radiology, or other fields [48]. Because there are many applications where learning
must work from few examples, and both machines and humans have difficulty
learning in these circumstances, finding new methods to tackle the problem
remains a challenging but desirable goal.



126 Y. Guo et al.

The problem of learning how to categorize classes with very few training
examples has been the topic of the “few-shot learning” field, and has been the
subject of a large body of recent work [5,13,34,43,53,55,60]. Few-shot learning is
typically composed of the following two stages: meta-learning and meta-testing.
In the meta-learning stage, there exists an abundance of base category classes
on which a system can be trained to learn well under conditions of few-examples
within that particular domain. In the meta-testing stage, a set of novel classes
consisting of very few examples per class is used to adapt and evaluate the trained
model. However, recent work [5] points out that meta-learning based few-shot
learning algorithms underperform compared to traditional pre-training and fine-
tuning when there exists a large shift between base and novel class domains. This
is a major issue that occurs commonly in practice: by the nature of the problem,
collecting data from the same domain for many few-shot classification tasks is
difficult. This scenario is referred to as cross-domain few-shot learning, to distin-
guish it from the conventional few-shot learning setting. Although benchmarks
for conventional few-shot learning are well established, the cross-domain few-shot
learning evaluation benchmarks are still in early stages. All established works
in this space have built cross-domain evaluation benchmarks that are limited to
natural images [5,56,58]. Under these circumstances, useful knowledge may still
be effectively transferring across different domains of natural images, implying
that methods designed in this setting may not continue to perform well when
applied to domains of other types of images, such as industrial natural images,
satellite images, or medical images. Currently, no works study this scenario.

To fill this gap, we propose the Broader Study of Cross-Domain Few-Shot
Learning (BSCD-FSL) benchmark (Fig. 1), which covers a spectrum of image
types with varying levels of similarity to natural images. Similarity is defined by
3 orthogonal criteria: 1) whether images contain perspective distortion, 2) the
semantic content of images, and 3) color depth. The datasets include agricul-
ture images (natural images, but specific to agriculture industry), satellite (loses
perspective distortion), dermatology (loses perspective distortion, and contains
different semantic content), and radiological images (different according to all 3
criteria). The performance of existing state-of-art meta-learning methods, trans-
fer learning methods, and methods tailored for cross-domain few-shot learning
is then rigorously tested on the proposed benchmark.

In summary, the contributions of this paper are itemized as follows:

– We establish a new Broader Study of Cross-Domain Few-Shot Learning
(BSCD-FSL) benchmark, consisting of images from a diversity of image types
with varying dissimilarity to natural images, according to 1) perspective dis-
tortion, 2) the semantic content, and 3) color depth.

– Under these conditions, we extensively evaluate the performance of cur-
rent meta-learning methods, including methods specifically tailored for cross-
domain few-shot learning, as well as variants of fine-tuning.

– The results demonstrate that state-of-art meta-learning methods are outper-
formed by older meta-learning approaches, and all meta-learning methods
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underperform in relation to simple fine-tuning by 12.8% average accuracy. In
some cases, meta-learning underperforms even networks with random weights.

– Results also show that accuracy gains for cross-domain few-shot learning
methods are lost in this new challenging benchmark.

– Finally, we find that accuracy of all methods correlate with the proposed mea-
sure of data similarity to natural images, verifying the diversity of the problem
representation, and the value of the benchmark towards future research.

We believe this work will help the community understand what methods are
most effective in practice, and help drive further advances that can more quickly
yield benefit for real-world applications.

2 Related Work

Few-Shot Learning. Few-shot learning [31,32,60] is an increasingly important
topic in machine learning. Many few-shot methods have been proposed, including
meta-learning, generative and augmentation approaches, semi-supervised meth-
ods, and transfer learning.

Meta-learning methods aim to learn models that can be quickly adapted
using a few examples [13,33,53,55,60]. MatchingNet [60] learns an embedding
that can map an unlabelled example to its label using a small number of labelled
examples, while MAML [13] aims at learning good initialization parameters that
can be quickly adapted to a new task. In ProtoNet [53], the goal is to learn a
metric space in which classification can be conducted by calculating distances to
prototype representations of each class. RelationNet [55] targets learning a deep
distance metric to compare a small number of images. More recently, MetaOpt
[33] learns feature embeddings that can generalize well under a linear classifica-
tion rule for novel categories.

The generative and augmentation based family of approaches learn to gen-
erate more samples from few examples available for training in a given few-shot
learning task. These methods include applying augmentation strategies learned
from data [36], synthesizing new data from few examples using a generative
model, or using external data for obtaining additional examples that facilitate
learning on a given few shot task. In [19,52] the intra-class relations between
pairs of instances of reference categories are modeled in feature space, and then
this information is transferred to the novel category instances to generate addi-
tional examples in that same feature space. In [63], a generator sub-net is added
to a classifier network and is trained to synthesize new examples on the fly in
order to improve the classifier performance when being fine-tuned on a novel
(few-shot) task. In [44], a few-shot class density estimation is performed with
an auto-regressive model, combined with an attention mechanism, where exam-
ples are synthesized by a sequential process. In [6,51,67] label and attribute
semantics are used as additional information for training an example synthesis
network.
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In some situations there exists additional unlabeled data accompanying the
few-shot task. In the semi-supervised few-shot learning [2,35,37,45,49] the unla-
beled data comes in addition to the support set and is assumed to have a similar
distribution to the target classes (although some unrelated samples noise is also
allowed). In LST [35], self-labeling and soft attention are used on the unlabeled
samples intermittently with fine-tuning on the labeled and self-labeled data.
Similarly to LST, [45] updates the class prototypes using k-means like iterations
initialized from the PN prototypes. In [2], unlabeled examples are used through
soft-label propagation. In [15,24,37], graph neural networks are used for sharing
information between labeled and unlabeled examples in semi-supervised [15,37]
and transductive [24] FSL setting. Notably, in [37] a Graph Construction net-
work is used to predict the task specific graph for propagating labels between
samples of semi-supervised FSL task.

Transfer learning [42] is based on the idea of reusing features learned from
the base classes for the novel classes, and is conducted mainly by fine-tuning,
which adjusts a pre-trained model from a source task to a target task. Yosinski
et al. [66] conducted extensive experiments to investigate the transfer utility
of pre-trained deep neural networks. In [27], the authors investigated whether
higher performing ImageNet models transfer better to new tasks. Ge et al. [16]
proposed a selective joint fine-tuning method for improving the performance of
models with a limited amount training data. In [18], the authors proposed an
adaptive fine-tuning scheme to decide which layers of the pre-trained network
should be fine-tuned. Finally, in [10], the authors found that simple transductive
fine-tuning beats all prior state-of-art meta-learning approaches.

Common to all few-shot learning methods is the assumption that base classes
and novel classes are from the same domain. The current benchmarks for evalua-
tion are miniImageNet [60], CUB [61], Omniglot [31], CIFAR-FS [3] and tiered-
ImageNet [46]. In [56], the authors proposed Meta-Dataset, which is a newer
benchmark for training and evaluating few-shot learning algorithms that includes
a greater diversity of image content. Although this benchmark is more broad
than prior works, the included datasets are still limited to natural images, and
both the base classes and novel classes are from the same domain. Recently,
[47] proposes a successful meta-learning approach based on conditional neural
process on the MetaDataset benchmark.

Cross-Domain Few-Shot Learning. In cross-domain few-shot learning, base
and novel classes are both drawn from different domains, and the class label sets
are disjoint. Recent works on cross-domain few-shot learning include analysis
of existing meta-learning approaches in the cross-domain setting [5], specialized
methods using feature-wise transform to encourage learning representations with
improved ability to generalize [58], and works studying cross-domain few-shot
learning constrained to the setting of images of items in museum galleries [26].
Common to all these prior works is that they limit the cross-domain setting to the
realm of natural images, which still retain a high degree of visual similarity, and
do not capture the broader spectrum of image types encountered in practice, such
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as industrial, aerial, and medical images, where cross-domain few-shot learning
techniques are in high demand.

3 Proposed Benchmark

In this section, we introduce the Broader Study of Cross-Domain Few-Shot
Learning (BSCD-FSL) benchmark, which includes data from CropDiseases [40],
EuroSAT [21], ISIC2018 [8,57], and ChestX [62] datasets. These datasets cover
plant disease images, satellite images, dermoscopic images of skin lesions, and X-
ray images, respectively. The selected datasets reflect well-curated real-world use
cases for few-shot learning. In addition, collecting enough examples from above
domains is often difficult, expensive, or in some cases not possible. Image simi-
larity to natural images is measured by 3 orthogonal criteria: 1) existence of per-
spective distortion, 2) the semantic data content, and 3) color depth. According
to this criteria, the datasets demonstrate the following spectrum of image types:
1) CropDiseases images are natural images, but are very specialized (similar to
existing cross-domain few-shot setting, but specific to agriculture industry), 2)
EuroSAT images are less similar as they have lost perspective distortion, but are
still color images of natural scenes, 3) ISIC2018 images are even less similar as
they have lost perspective distortion and no longer represent natural scenes, and
4) ChestX images are the most dissimilar as they have lost perspective distortion,
do not represent natural scenes, and have lost 2 color channels. Example images
from ImageNet and the proposed benchmark datasets are shown in Fig. 1.

Having a few-shot learning model trained on a source domain such as Ima-
geNet [9] that can generalize to domains such as these, is highly desirable, as it
enables effective learning for rare categories in new types of images, which has
previously not been studied in detail.

4 Cross-Domain Few-Shot Learning Formulation

The cross domain few-shot learning problem can be formalized as follows. We
define a domain as a joint distribution P over input space X and label space
Y. The marginal distribution of X is denoted as PX . We use the pair (x, y) to
denote a sample x and the corresponding label y from the joint distribution P .
For a model fθ: X → Y with parameter θ and a loss function �, the expected
error is defined as,

ε(fθ) = E(x,y)∼P [�(fθ(x), y)] (1)

In cross-domain few-shot learning, we have a source domain (Xs,Ys) and a
target domain (Xt,Yt) with joint distribution Ps and Pt respectively, PXs

�= PXt
,

and Ys is disjoint from Yt. The base classes data are sampled from the source
domain and the novel classes data are sampled from the target domain. During
the training or meta-training stage, the model fθ is trained (or meta-trained)
on the base classes data. During testing (or meta-testing) stage, the model is
presented with a support set S = {xi, yi}K×N

i=1 consisting of N examples from
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K novel classes. This configuration is referred to as “K-way N -shot” few-shot
learning, as the support set has K novel classes and each novel class has N
training examples. After the model is adapted to the support set, a query set
from novel classes is used to evaluate the model performance.

5 Evaluated Methods for Cross-Domain Few-Shot
Learning

In this section, we describe the few-shot learning algorithms that will be evalu-
ated on our proposed benchmark.

5.1 Meta-learning Based Methods

Single Domain Methods. Meta-learning [13,43], or learning to learn, aims at
learning task-agnostic knowledge in order to efficiently learn on new tasks. Each
task Ti is assumed to be drawn from a fixed distribution, Ti ∼ P (T ). Specially,
in few-shot learning, each task Ti is a small dataset Di := {xj , yj}K×N

j=1 . Ps(T )
and Pt(T ) are used to denote the task distribution of the source (base) classes
data and target (novel) classes data respectively. During the meta-training stage,
the model is trained on T tasks {Ti}T

i=1 which are sampled independently from
Ps(T ). During the meta-testing stage, the model is expected to be quickly
adapted to a new task Tj ∼ Pt(T ).

Meta-learning methods differ in their way of learning the parameter of the
initial model fθ on the base classes data. In MatchingNet [60], the goal is to
learn a model fθ that can map an unlabelled example x̂ to its label ŷ using
a small labelled set Di := {xj , yj}K×N

j=1 as ŷ =
∑K×N

j=1 aθ(x̂, xj)yj , where aθ

is an attention kernel which leverages fθ to compute the distance between the
unlabelled example x̂ and the labelled example xj , and yj is the one-hot rep-
resentation of the label. In contrast, MAML [13] aims at learning an initial
parameter θ that can be quickly adapted to a new task. This is achieved by
updating the model parameter via a two-stage optimization process. ProtoNet
[53] represents each class k with the mean vector of embedded support examples
as ck = 1

N

∑N
j=1 fθ(xj). Classification is then conducted by calculating distance

of the example to the prototype representations of each class. In RelationNet
[55] the metric of the nearest neighbor classifier is meta-learned using a Siamese
Networks trained for optimal comparison between query and support samples.
More recently, MetaOpt [33] employs convex base learners and aims at learning
feature embeddings that generalize well under a linear classification rule for novel
categories. All the existing meta-learning methods implicitly assume that Ps(T )
= Pt(T ) so the task-agnostic knowledge learned in the meta-training stage can
be leveraged for fast learning on novel classes. However, in cross-domain few-shot
learning Ps(T ) �= Pt(T ) which poses severe challenges for current meta-learning
methods.
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Cross-Domain Methods. Only few methods specifically tailored to learning
in the condition of cross-domain few-shot learning have been previously explored,
including feature-wise transform (FWT) [58], and Adversarial Domain Adapta-
tion with Reinforced Sample (ADA-RSS) Selection [11]. Since the problem set-
ting of ADA-RSS requires the existence of unlabelled data in the target domain,
we study FWT alone.

FWT is a model agnostic approach that adds a feature-wise transform layer to
pre-trained models to learn scale and shift parameters from a collection of several
dataset domains, or use parameters empirically determined from a single dataset
domain. Both approaches have been previously found to improve performance.
Since our benchmark is focused on ImageNet as the single source domain, we
focus on the single data domain approach. The method is studied in combination
with all meta-learning algorithms described in the prior section.

5.2 Transfer Learning Based Methods

An alternative way to tackle the problem of few-shot learning is based on transfer
learning, where an initial model fθ is trained on the base classes data in a
standard supervised learning way and reused on the novel classes. There are
several options to realize the idea of transfer learning for few-shot learning:

Single Model Methods. In this paper, we extensively evaluate the following
commonly variants of single model fine-tuning:

– Fixed feature extractor (Fixed): simply leverage the pre-trained model as a
fixed feature extractor.

– Fine-tuning all layers (Ft All): adjusts all the pre-trained parameters on the
new task with standard supervised learning.

– Fine-tuning last-k (Ft Last-k): only the last k layers of the pre-trained model
are optimized for the new task. In the paper, we consider Fine-tuning last-1,
Fine-tuning last-2, Fine-tuning last-3.

– Transductive fine-tuning (Transductive Ft): in transductive fine-tuning, the
statistics of the query images are used via batch normalization [10,41].

In addition, we compare these single model transfer learning techniques
against a baseline of an embedding formed by a randomly initialized network
(termed Random) to contrast against a fixed feature vector that has no pre-
training. All the variants of single model fine-tuning are based on linear classifier
but differ in their approach to fine-tune the single model feature extractor.

Another line of work for few-shot learning uses a broader variety of classifiers
for transfer learning. For example, recent works show that mean-centroid classi-
fier and cosine-similarity based classifier are more effective than linear classifier
for few-shot learning [5,39]. Therefore we study these two variations as well.
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Mean-Centroid Classifier. The mean-centroid classifier is inspired from ProtoNet
[53]. Given the pre-trained model fθ and a support set S = {xi, yi}K×N

i=1 , where
K is the number of novel classes and N is the number of images per class.
The class prototypes are computed in the same way as in ProtoNet. Then the
likelihood of an unlabelled example x̂ belongs to class k is computed as,

p(y = k|x̂) =
exp(−d(fθ, ck))

∑K
l=1 exp(−d(fθ, cl))

(2)

where d() is a distance function. In the experiments, we use negative cosine
similarity. Different from ProtoNet, fθ is pretrained on the base classes data in
a standard supervised learning way.

Cosine-Similarity Based Classifier. In cosine-similarity based classifier, instead
of directly computing the class prototypes using the pre-trained model, each
class k is represented as a d-dimension weight vector wk which is initialized
randomly. For each unlabeled example x̂i, the cosine similarity to each weight
vector is computed as ci,k = fθ(x̂i)

T wk

‖fθ(x̂i)‖‖wk‖ . The predictive probability of the
example x̂i belongs to class k is computed by normalizing the cosine similarity
with a softmax function. Intuitively, the weight vector wk can be thought as the
prototype of class k.

Transfer from Multiple Pre-trained Models. In this section, we describe
a straightforward method that utilizes multiple models pre-trained on source
domains of natural images similar to ImageNet. Note that all domains are still
disjoint from the target datasets for the cross-domain few-shot learning setting.
The purpose is to measure how much performance may improve by utilizing an
ensemble of models trained from data that is different from the target domain.
The described method requires no change to how models are trained and is an
off-the-shelf solution to leverage existing pre-trained models for cross-domain
few-shot learning, without requiring access to the source datasets.

Assume we have a library of C pre-trained models {Mc}C
c=1 which are trained

on various datasets in a standard way. We denote the layers of all pre-trained
models as a set F . Given a support set S = {xi, yi}K×N

i=1 where (xi, yi) ∼ Pt,
our goal is to find a subset I of the layers to generate a feature vector for each
example in order to achieve the lowest test error. Mathematically,

arg min
I⊆F

(x,y)∼ Pt
�(fs(T ({l(x) : l ∈ I}), y) (3)

where � is a loss function, T () is a function which concatenates a set of feature
vectors, l is one particular layer in the set I, and fs is a linear classifier. Practi-
cally, for feature vectors l coming from inner layers which are three-dimensional,
we convert them to one-dimensional vectors by using Global Average Pooling.
Since Eq. 3 is intractable generally, we instead adopt a two-stage greedy selec-
tion method, called Incremental Multi-model Selection, to iteratively find the
best subset of layers for a given support S.
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Table 1. The results of meta-learning methods on the proposed benchmark.

Methods ChestX ISIC

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet 22.40% ± 0.7% 23.61% ± 0.86% 22.12% ± 0.88% 36.74% ± 0.53% 45.72% ± 0.53% 54.58% ± 0.65%

MatchingNet+FWT 21.26% ± 0.31% 23.23% ± 0.37% 23.01% ± 0.34% 30.40% ± 0.48% 32.01% ± 0.48% 33.17% ± 0.43%

MAML 23.48% ± 0.96% 27.53% ± 0.43% – 40.13% ± 0.58% 52.36% ± 0.57% –

ProtoNet 24.05% ± 1.01% 28.21% ± 1.15% 29.32% ± 1.12% 39.57% ± 0.57% 49.50% ± 0.55% 51.99% ± 0.52%

ProtoNet+FWT 23.77% ± 0.42% 26.87% ± 0.43% 30.12% ± 0.46% 38.87% ± 0.52% 43.78% ± 0.47% 49.84% ± 0.51%

RelationNet 22.96% ± 0.88% 26.63% ± 0.92% 28.45% ± 1.20% 39.41% ± 0.58% 41.77% ± 0.49% 49.32% ± 0.51%

RelationNet+FWT 22.74% ± 0.40% 26.75% ± 0.41% 27.56% ± 0.40% 35.54% ± 0.55% 43.31% ± 0.51% 46.38% ± 0.53%

MetaOpt 22.53% ± 0.91% 25.53% ± 1.02% 29.35% ± 0.99% 36.28% ± 0.50% 49.42% ± 0.60% 54.80% ± 0.54%

Methods EuroSAT CropDiseases

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet 64.45% ± 0.63% 77.10% ± 0.57% 54.44% ± 0.67% 66.39% ± 0.78% 76.38% ± 0.67% 58.53% ± 0.73%

MatchingNet+FWT 56.04% ± 0.65% 63.38% ± 0.69% 62.75% ± 0.76% 62.74% ± 0.90% 74.90% ± 0.71% 75.68% ± 0.78%

MAML 71.70% ± 0.72% 81.95% ± 0.55% – 78.05% ± 0.68% 89.75% ± 0.42% –

ProtoNet 73.29% ± 0.71% 82.27% ± 0.57% 80.48% ± 0.57% 79.72% ± 0.67% 88.15% ± 0.51% 90.81% ± 0.43%

ProtoNet+FWT 67.34% ± 0.76% 75.74% ± 0.70% 78.64% ± 0.57% 72.72% ± 0.70% 85.82% ± 0.51% 87.17% ± 0.50%

RelationNet 61.31% ± 0.72% 74.43% ± 0.66% 74.91% ± 0.58% 68.99% ± 0.75% 80.45% ± 0.64% 85.08% ± 0.53%

RelationNet+FWT 61.16% ± 0.70% 69.40% ± 0.64% 73.84% ± 0.60% 64.91% ± 0.79% 78.43% ± 0.59% 81.14% ± 0.56%

MetaOpt 64.44% ± 0.73% 79.19% ± 0.62% 83.62% ± 0.58% 68.41% ± 0.73% 82.89% ± 0.54% 91.76% ± 0.38%

In the first stage, for each pre-trained model, we a train linear classifier on the
feature vector generated by each layer individually and select the corresponding
layer which achieves the lowest average error using five-fold cross-validation on
the support set S. Essentially, the goal of the first stage is to find the most
effective layer of each pre-trained model given the task in order to reduce the
search space and mitigate risk of overfitting. For convenience, we denote the
layers selected in the first selection stage as set I1. In the second stage, we
greedily add the layers in I1 into the set I following a similar cross-validation
procedure. First, we add the layer in I1 into I which achieves the lowest cross-
validation error. Then we iterate over I1, and add each remaining layer into I
if the cross-validation error is reduced when the new layer is added. Finally, we
concatenate the feature vector generated by each layer in set I and train the
final linear classifier. Please see Algorithm 1 in Appendix for further details.

6 Evaluation Setup

For meta-learning methods, we meta-train all meta-learning methods on the base
classes of miniImageNet [60] and meta-test the trained models on each dataset
of the proposed benchmark. For transfer learning methods, we train the pre-
trained model on base classes of miniImageNet. For transferring from multiple
pre-trained models, we use a maximum of five pre-trained models, trained on
miniImagenet, CIFAR100 [29], DTD [7], CUB [64], Caltech256 [17], respectively.
On all experiments we consider 5-way 5-shot, 5-way 20-shot, 5-way 50-shot.
For all cases, the test (query) set has 15 images per class. All experiments are
performed with ResNet-10 [20] for fair comparison. For each evaluation, we use
the same 600 randomly sampled few-shot episodes (for consistency), and report
the average accuracy and 95% confidence interval.



134 Y. Guo et al.

Table 2. The results of different variants of single model fine-tuning on the proposed
benchmark.

Methods ChestX ISIC

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Random 21.80% ± 1.03% 25.69% ± 0.95% 26.19% ± 0.94% 37.91% ± 1.39% 47.24% ± 1.50% 50.85% ± 1.37%

Fixed 25.35% ± 0.96% 30.83% ± 1.05% 36.04% ± 0.46% 43.56% ± 0.60% 52.78% ± 0.58% 57.34% ± 0.56%

Ft All 25.97% ± 0.41% 31.32% ± 0.45% 35.49% ± 0.45% 48.11% ± 0.64% 59.31% ± 0.48% 66.48% ± 0.56%

Ft Last-1 25.96% ± 0.46% 31.63% ± 0.49% 37.03% ± 0.50% 47.20% ± 0.45% 59.95% ± 0.45% 65.04% ± 0.47%

Ft Last-2 26.79% ± 0.59% 30.95% ± 0.61% 36.24% ± 0.62% 47.64% ± 0.44% 59.87% ± 0.35% 66.07% ± 0.45%

Ft Last-3 25.17% ± 0.56% 30.92% ± 0.89% 37.27% ± 0.64% 48.05% ± 0.55% 60.20% ± 0.33% 66.21% ± 0.52%

Transductive Ft 26.09% ± 0.96% 31.01% ± 0.59% 36.79% ± 0.53% 49.68% ± 0.36% 61.09% ± 0.44% 67.20% ± 0.59%

Methods EuroSAT CropDiseases

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Random 58.00% ± 2.01% 68.93% ± 1.47% 71.65% ± 1.47% 69.68% ± 1.72% 83.41% ± 1.25% 86.56% ± 1.42%

Fixed 75.69% ± 0.66% 84.13% ± 0.52% 86.62% ± 0.47% 87.48% ± 0.58% 94.45% ± 0.36% 96.62% ± 0.25%

Ft All 79.08% ± 0.61% 87.64% ± 0.47% 90.89% ± 0.36% 89.25% ± 0.51% 95.51% ± 0.31% 97.68% ± 0.21%

Ft Last-1 80.45% ± 0.54% 87.92% ± 0.44% 91.41% ± 0.46% 88.72% ± 0.53% 95.76% ± 0.65% 97.87% ± 0.48%

Ft Last-2 79.57% ± 0.51% 87.67% ± 0.46% 90.93% ± 0.45% 88.07% ± 0.56% 95.68% ± 0.76% 97.64% ± 0.59%

Ft Last-3 78.04% ± 0.77% 87.52% ± 0.53% 90.83% ± 0.42% 89.11% ± 0.47% 95.31% ± 0.7% 97.45% ± 0.46%

Transductive Ft 81.76% ± 0.48% 87.97% ± 0.42% 92.00% ± 0.56% 90.64% ± 0.54% 95.91% ± 0.72% 97.48% ± 0.56%

During the training (meta-training) stage, models used for transfer learning
and meta-learning models are both trained for 400 epochs with Adam optimizer.
The learning rate is set to 0.001. During testing (meta-testing), both transfer
learning methods and those meta-learning methods that require adaptation on
the support set of the test episodes (MAML, RelationNet, etc.) use SGD with
momentum. The learning rate is 0.01 and the momentum rate is 0.9. All variants
of fine-tuning methods are trained for 100 epochs. For feature-wise transforma-
tion [58], we adopt the recommended hyperparameters in the original paper for
meta-training from one source domain. In the training or meta-training stage,
we apply standard data augmentation including random crop, random flip, and
color jitter.

In the cross-domain few-shot learning setting, since the source domain and
target domain are drastically different, it may not be appropriate to use the
source domain data for hyperparameter tuning or validation. Therefore, we leave
the question of how to determine the best hyperparameters in the cross-domain
few-shot learning as future work. One simple strategy is to use the test set
or validation set of the source domain data for hyperparameter tuning. More
sophisticated methods may use datasets that are similar to the target domain
data.

7 Experimental Results

7.1 Meta-learning Based Results

Table 1 show the results on the proposed benchmark of meta-learning, for each
dataset, method, and shot level in the benchmark. Across all datasets and
shot levels, the average accuracies (and 95% confidence internals) are 50.21%
(0.70) for MatchingNet, 46.55% (0.58) for MatchingNet+FWT, 38.75% (0.41) for
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Table 3. The results of varying the classifier for fine-tuning on the proposed bench-
mark.

Methods ChestX ISIC

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Linear 25.97% ± 0.41% 31.32% ± 0.45% 35.49% ± 0.45% 48.11% ± 0.64% 59.31% ± 0.48% 66.48% ± 0.56%

Mean-centroid 26.31% ± 0.42% 30.41% ± 0.46% 34.68% ± 0.46% 47.16% ± 0.54% 56.40% ± 0.53% 61.57% ± 0.66%

Cosine-similarity 26.95% ± 0.44% 32.07% ± 0.55% 34.76% ± 0.55% 48.01% ± 0.49% 58.13% ± 0.48% 62.03% ± 0.52%

Methods EuroSAT CropDiseases

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Linear 79.08% ± 0.61% 87.64% ± 0.47% 91.34% ± 0.37% 89.25% ± 0.51% 95.51% ± 0.31% 97.68% ± 0.21%

Mean-centroid 82.21% ± 0.49% 87.62% ± 0.34% 88.24% ± 0.29% 87.61% ± 0.47% 93.87% ± 0.68% 94.77% ± 0.34%

Cosine-similarity 81.37% ± 1.54% 86.83% ± 0.43% 88.83% ± 0.38% 89.15% ± 0.51% 93.96% ± 0.46% 94.27% ± 0.41%

MAML, 59.78% (0.70) for ProtoNet, 56.72% (0.55) for ProtoNet+FWT, 54.48%
(0.71) for RelationNet, 52.6% (0.56) for RelationNet+FWT, and 57.35% (0.68)
for MetaOpt. The performance of MAML was impacted by its inability to scale
to larger shot levels due to memory overflow. Methods paired with Feature-Wise
Transform are marked with “+FWT”.

What is immediately apparent from Table 1, is that the prior state-of-art
MetaOptNet is no longer state-of-art, as it is outperformed by ProtoNet. In addi-
tion, methods designed specifically for cross-domain few-shot learning lead to
consistent performance degradation in this new challenging benchmark. Finally,
performance in general strongly positively correlates to the dataset’s similarity
to ImageNet, confirming that the benchmark’s intentional design allows us to
investigate few-shot learning in a spectrum of cross-domain difficulties.

7.2 Transfer Learning Based Results

Single Model Results. Table 2 show the results on the proposed benchmark
of various single model transfer learning methods. Across all datasets and shot
levels, the average accuracies (and 95% confidence internals) are 53.99% (1.38)
for random embedding, 64.24 (0.59) for fixed feature embedding, 67.23% (0.46)
for fine-tuning all layers, 67.41% (0.49) for fine-tuning the last 1 layer, 67.26%
(0.53) for fine-tuning the last 2 layers, 67.17% (0.58) for fine-tuning the last 3
layers, and 68.14% (0.56) for transductive fine-tuning. From these results, several
observations can be made. The first observation is that, although meta-learning
methods have been previously shown to achieve higher performance than trans-
fer learning in the standard few-shot learning setting [5,60], in the cross-domain
few-shot learning setting this situation is reversed: meta-learning methods signif-
icantly underperform simple fine-tuning methods. In fact, MatchingNet performs
worse than a randomly generated fixed embedding. A possible explanation is that
meta-learning methods are fitting the task distribution on the base class data,
improving performance in that circumstance, but hindering ability to generalize
to another task distribution. The second observation is that, by leveraging the
statistics of the test data, transductive fine-tuning continues to achieve higher
results than the standard fine-tuning and meta-learning, as previously reported
[10]. While transductive fine-tuning, however, assumes that all the queries are
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available as unlabeled data. The third observation is that the accuracy of most
methods on the benchmark continues to be dependent on how similar the dataset
is to ImageNet: CropDiseases commands the highest performance on average,
while EuroSAT follows in 2nd place, ISIC in 3rd, and ChestX in 4th. This fur-
ther supports the motivation behind benchmark design in targeting applications
with increasing visual domain dissimilarity to natural images.

Table 3 shows results from varying the classifier. While mean-centriod clas-
sifier and cosine-similarity classifier are shown to be more efficient than simple
linear classifier in the conventional few-shot learning setting, our results show
that mean-centroid and cosine-similarity classifier only have a marginal advan-
tage on ChestX and EuroSAT over linear classifier in the 5-shot case (Table
3). As the shot increases, linear classifier begins to dominate mean-centroid and
cosine-similarity classifier. One plausible reason is that since both mean-centroid
and cosine-similarity classifier conduct classification based on unimodal class pro-
totypes, when the number of examples increases, unimodal distribution becomes
less suitable, and multi-modal distribution is required.

Transfer from Multiple Pre-trained Models. The results of the described
Incremental Muiti-model Selection are shown in Table 4. IMS-f fine-tunes each
pre-trained model before applying the model selection. We include a baseline
called all embeddings which concatenates the feature vectors generated by all the
layers from the fine-tuned models. Across all datasets and shot levels, the average
accuracies (and 95% confidence internals) are 68.22% (0.45) for all embeddings,
and 68.69% (0.44) for IMS-f. The results show that IMS-f generally improves
upon all embeddings which indicates the importance of selecting relevant pre-
trained models to the target dataset. Model complexity also tends to decrease
by over 20% compared to all embeddings on average. We can also observe that it
is beneficial to use multiple pre-trained models than using just one model, even
though these models are trained from data in different domains and different
image types. Compared with standard finetuning with a linear classifier, the
average improvement of IMS-f across all the shots on ChestX is 0.20%, on ISIC
is 0.69%, on EuroSAT is 3.52% and on CropDiseases is 1.27%.

In further analysis, we study the effect of the number of pre-trained models
for the studied multi-model selection method. We consider libraries consisting
of two, three, four, and all five pre-trained models. The pre-trained models are
added into the library in the order of ImageNet, CIFAR100, DTD, CUB, Cal-
tech256. For each dataset, the experiment is conducted on 5-way 50-shot with
600 episodes. The results are shown in Table 5. As more pre-trained models are
added into the library, we can observe that the test accuracy on ChestX and
ISIC gradually improves which can be attributed to the diverse features pro-
vided by different pre-trained models. However, on EuroSAT and CropDiseases,
only a marginal improvement can be observed. One possible reason is that the
features from ImageNet already captures the characteristics of the datasets and
more pre-trained models does not provide additional information.
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Table 4. The results of using all embeddings, and the Incremental Multi-model Selec-
tion (IMS-f) based on fine-tuned pre-trained models on the proposed benchmark.

Methods ChestX ISIC

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

All embeddings 26.74% ± 0.42% 32.77% ± 0.47% 38.07% ± 0.50% 46.86% ± 0.60% 58.57% ± 0.59% 66.04% ± 0.56%

IMS-f 25.50% ± 0.45% 31.49% ± 0.47% 36.40% ± 0.50% 45.84% ± 0.62% 61.50% ± 0.58% 68.64% ± 0.53%

Methods EuroSAT CropDiseases

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

All embeddings 81.29% ± 0.62% 89.90% ± 0.41% 92.76% ± 0.34% 90.82% ± 0.48% 96.64% ± 0.25% 98.14% ± 0.18%

IMS-f 83.56% ± 0.59% 91.22% ± 0.38% 93.85% ± 0.30% 90.66% ± 0.48% 97.18% ± 0.24% 98.43% ± 0.16%

Table 5. Number of models’ effect on test
accuracy.

Dataset # of models

2 3 4 5

ChestX 34.35% 36.29% 37.64% 37.89%

ISIC 59.4% 62.49% 65.07% 64.77%

EuroSAT 91.71% 93.49% 92.67% 93.00%

CropDiseases 98.43% 98.09% 98.05% 98.60%
Fig. 2. Comparisons of methods across
the entire benchmark.

7.3 Benchmark Summary

Figure 2 summarizes the comparison across algorithms, according to the average
accuracy across all datasets and shot levels in the benchmark. The degradation in
performance suffered by meta-learning approaches is significant. In some cases,
a network with random weights outperforms meta-learning approaches. FWT
methods, which yielded no performance improvements, are omitted for brevity.
MAML, which failed to operate on the entire benchmark, is also omitted.

8 Conclusion

In this paper, we formally introduce the Broader Study of Cross-Domain Few-
Shot Learning (BSCD-FSL) benchmark, which covers several target domains
with varying similarity to natural images. We extensively analyze and evaluate
existing meta-learning methods, including approaches specifically designed for
cross-domain few-shot learning, and variants of transfer learning. The results
show that, surprisingly, state-of-art meta-learning approaches are outperformed
by earlier approaches, and recent methods for cross-domain few-shot learning
actually degrade performance. In addition, all meta-learning methods signifi-
cantly underperform in comparison to fine-tuning methods. In fact, some meta-
learning approaches are outperformed by networks with random weights. In addi-
tion, accuracy of all methods correlate with proposed measure of data similarity
to natural images, verifying the diversity of the proposed benchmark in terms
of its problem representation, and its value towards guiding future research. In
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conclusion, we believe this work will help the community understand what meth-
ods are most effective in practice, and help drive further advances that can more
quickly yield benefit for real-world applications.
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40. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based
plant disease detection. Front. Plant Sci. 7, 1419 (2016)

41. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018)

42. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2009)

43. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)
44. Reed, S., et al.: Few-shot autoregressive density estimation: towards learning to

learn distributions. arXiv:1710.10304 (2016). 1–11 (2018)
45. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: ICLR,

March 2018. http://arxiv.org/abs/1803.00676bair.berkeley.edu/blog/2017/07/18/
46. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. arXiv

preprint arXiv:1803.00676 (2018)
47. Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., Turner, R.E.: Fast and flexible

multi-task classification using conditional neural adaptive processes. In: Advances
in Neural Information Processing Systems, pp. 7959–7970 (2019)

48. Rotemberg, V., Halpern, A., Dusza, S.W., Codella, N.C.F.: The role of public
challenges and data sets towards algorithm development, trust, and use in clinical
practice. Semin. Cutan. Med. Surg. 38(1), E38–E42 (2019)

49. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain
adaptation via minimax entropy. In: ICCV (2019). http://arxiv.org/abs/1904.
06487

50. Saito, K., Kim, D., Sclaroff, S., Saenko, K.: Universal domain adaptation through
self supervision https://arxiv.org/abs/2002.07953 (2020)

51. Schwartz, E., Karlinsky, L., Feris, R., Giryes, R., Bronstein, A.M.: Baby steps
towards few-shot learning with multiple semantics, pp. 1–11 (2019). http://arxiv.
org/abs/1906.01905

52. Schwartz, E., et al.: Delta-encoder: an effective sample synthesis method for few-
shot object recognition. In: Neural Information Processing Systems (NIPS) (2018).
https://arxiv.org/pdf/1806.04734.pdf

53. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

54. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In:
Thirtieth AAAI Conference on Artificial Intelligence (2016)

55. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning
to compare: relation network for few-shot learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

56. Triantafillou, E., et al.: Meta-dataset: a dataset of datasets for learning to learn
from few examples. arXiv preprint arXiv:1903.03096 (2019)

http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1710.10304
http://arxiv.org/abs/1803.00676bair.berkeley.edu/blog/2017/07/18/
http://arxiv.org/abs/1803.00676
http://arxiv.org/abs/1904.06487
http://arxiv.org/abs/1904.06487
https://arxiv.org/abs/2002.07953
http://arxiv.org/abs/1906.01905
http://arxiv.org/abs/1906.01905
https://arxiv.org/pdf/1806.04734.pdf
http://arxiv.org/abs/1903.03096


A Broader Study of Cross-Domain Few-Shot Learning 141

57. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data
5, 180161 (2018)

58. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classifi-
cation via learned feature-wise transformation. In: ICLR (2020)

59. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 7167–7176 (2017)

60. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks
for one shot learning. In: Advances in Neural Information Processing Systems, pp.
3630–3638 (2016)

61. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
birds-200-2011 dataset (2011)

62. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8:
hospital-scale chest X-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

63. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imag-
inary data. arXiv:1801.05401 (2018)

64. Welinder, P., et al.: Caltech-UCSD Birds 200. Technical report CNS-TR-2010-001,
California Institute of Technology (2010)

65. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using
adaptive SVMs. In: Proceedings of the 15th ACM International Conference on
Multimedia, pp. 188–197 (2007)

66. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: NIPS (2014)

67. Yu, A., Grauman, K.: Semantic Jitter: dense supervision for visual comparisons
via synthetic images. In: Proceedings of the IEEE International Conference on
Computer Vision, October 2017, pp. 5571–5580 (2017). https://doi.org/10.1109/
ICCV.2017.594

68. Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? arXiv preprint
arXiv:1902.01996 (2019)

69. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2223–2232 (2017)

http://arxiv.org/abs/1801.05401
https://doi.org/10.1109/ICCV.2017.594
https://doi.org/10.1109/ICCV.2017.594
http://arxiv.org/abs/1902.01996

	A Broader Study of Cross-Domain Few-Shot Learning
	1 Introduction
	2 Related Work
	3 Proposed Benchmark
	4 Cross-Domain Few-Shot Learning Formulation
	5 Evaluated Methods for Cross-Domain Few-Shot Learning
	5.1 Meta-learning Based Methods
	5.2 Transfer Learning Based Methods

	6 Evaluation Setup
	7 Experimental Results
	7.1 Meta-learning Based Results
	7.2 Transfer Learning Based Results
	7.3 Benchmark Summary

	8 Conclusion
	References




