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Abstract. Even though most existing monocular 3D pose estimation
approaches achieve very competitive results, they ignore the heterogene-
ity among human body parts by estimating them with the same network
architecture. To accurately estimate 3D poses of different body parts, we
attempt to build a part-aware 3D pose estimator by searching a set of
network architectures. Consequently, our model automatically learns to
select a suitable architecture to estimate each body part. Compared to
models built on the commonly used ResNet-50 backbone, it reduces 62%
parameters and achieves better performance. With roughly the same
computational complexity as previous models, our approach achieves
state-of-the-art results on both the single-person and multi-person 3D
pose estimation benchmarks.

Keywords: 3D pose estimation · Body parts · Neural architecture
search

1 Introduction

3D human pose estimation plays a crucial role to unlock widespread applica-
tions in human-computer interaction, robotics, surveillance, and virtual real-
ity. Compared with multi-view methods [19,41,43,52,61], monocular 3D human
pose estimation is more flexible for deployment in outdoor environments. How-
ever, given its ill-posed nature, estimating 3D human poses from a single RGB
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Fig. 1. Motivation. Most of the previous methods employ a single network architecture
to deal with intrinsically heterogeneous human body parts (as shown in (a)). Instead,
we are motivated to search for a suitable network architecture for a group of parts and
estimate their 3D locations with a part-specific architecture (as shown in (b)).

image remains a challenging problem. Thanks to Convolutional Neural Networks
(CNNs), many effective approaches are proposed and formulate the problem as
joint coordinate regression [28,47] or heat maps learning [57,65]. Recently, many
approaches [39,40,48,62] have followed a popular paradigm in predicting per
voxel likelihood for each human joint and achieved competitive performance.

In most previous approaches shown in Fig. 1(a), CNNs share the same net-
work architecture for predicting all human body parts with different degrees of
freedom (DOFs), ranging from parts with higher DOFs like the wrists to parts
with lower DOFs like the torso. However, a single network architecture might be
sub-optimal to deal with various body parts. Because different parts might have
various movement patterns and shapes, estimating their locations might require
different network topologies (e.g., different kernel sizes and distinct receptive
fields). A recent effort [54] also demonstrates that it is effective to estimate
different body parts by explicitly taking their DOFs into account.

As shown in Fig. 1(b), we approach the problem from a different angle and
propose to estimate different body parts with part-specific network architec-
tures. However, looking for optimal architectures for various body parts is an
intractable and time-consuming job even for an expert. Therefore, instead of
designing them manually, we consult the literature of neural architecture search
(NAS) [4,14,17,23,31,49,56] and propose to search part-specific network archi-
tectures for different parts. In fact, the idea of searching network architectures
for certain tasks is not new. Specifically, it has been applied in semantic segmen-
tation [7,30,60] and object detection [8,13,42].

However, applying NAS into 3D human pose estimation is non-trivial,
because current NAS approaches mainly focus on 2D visual tasks. Different
from them, 3D human poses are commonly estimated in a higher-order volu-
metric space [11,40,48,52]. It consists of 2D spatial and depth axes and greatly
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increases the uncertainty during optimization. More importantly, how to use
prior information about the human body structure to facilitate the architecture
search and achieve a trade-off between accuracy and complexity is another issue.

To deal with these issues, we introduce the fusion cell in the context of NAS
to increase the resolution of feature maps and generate desired volumetric heat
maps efficiently. The fusion cell has multiple head networks that are various
convolutional architectures, consisting of different kernels and operations. To
improve the part-awareness of our model, we attempt to generate the volumetric
heat map for each part with a specially optimized head network. Considering
the symmetry prior of the human body structure, it is inefficient to search a
different head network for each part. Our approach classifies all body parts into
several groups and assigns each group with a part-specific architecture. In the
search stage of our approach, all the architectures, including the fusion cell, are
optimized by gradient descent. Then, we stack these optimized computational
cells to construct our part-aware 3D pose estimator. In the evaluation stage,
our part-aware 3D human pose estimator can select optimized head networks
encoded in the fusion cell to estimate different groups of body parts.

Through extensive experiments, we show that our approach can achieve a good
trade-off between complexity and performance. With 62% fewer parameters and
24% fewer FLOPs (multiply-adds), our approach outperforms the model using
ResNet-50 backbone and achieves 53.6 mm in Mean Per Joint Position Error
(MPJPE). By stacking more computational cells, it can further advance the state-
of-the-art accuracy on Human3.6M by 2.3 mm with 41% fewer parameters.

Our contributions can be summarized as follows:

• Our work shows that it might be sub-optimal to estimate 3D poses of all
body parts with a single network architecture. To the best of our knowledge,
we make the first attempt to search part-specific architectures for different
parts.

• We introduce the fusion cell to generate volumetric heat maps efficiently. In
the fusion cell, we classify all body parts into several groups and estimate
each group of parts with a distinct head network.

• Our part-aware 3D pose estimator is both compact and efficient. It achieves
state-of-the-art accuracy on both the single-person and multi-person 3D
human pose benchmarks using much fewer parameters and FLOPs.

2 Related Work

3D Human pose estimation has been studied widely in the past. In this section,
we only focus on previous works that can be relevant to our work.

Estimate 3D poses from 2D Joints: Some approaches divide the task of
3D human pose estimation into first predicting 2D joint locations and then
back-projecting them to estimate 3D human poses. The practice of inferring
3D human poses from their 2D projections can be traced back to the classic
work [27]. Given the bone lengths, the problem boils down to a binary decision
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tree where each branch corresponds to two possible states of a joint concerning
its parent. Jiang et al. [20] generate a set of hypothesis of 3D poses using Taylor’s
algorithm [50] and use them to query a large database of motion capture data
to find the nearest neighbor. Similarly, the idea of exploiting nearest neighbor
queries has been revisited by [15]. Chen et al. [6] also share the idea of using
the detected 2D pose to query a large database of exemplary poses. Another
common approach [3,63] is to learn an over-complete dictionary of basis 3D
poses from a large database of motion capture data. Moreno-Noguer et al. [36]
employ the pair-wise distance matrix of 2D joints to learn a distance matrix for
3D joints. Martinez et al. [32] design a fully-connected network to estimate 3D
joint locations relative to the pelvis from 2D poses. Hossain et al. [16] exploit
temporary information to calculate a sequence of 3D poses from a sequence of 2D
joint locations. Ci et al. [10] combine the advantage of graph convolution network
and fully-connected network and equip the model with strong generalization
power. Cai et al. [5] introduce a graph-based local-to-global network to recover
3D poses from 2D pose sequences. These methods focus on estimating 3D poses
from 2D poses, and we attempt to estimate 3D poses from monocular images.

Estimate 3D poses from Monocular Images: Recently, many approaches
have been proposed to estimate 3D poses from monocular images in an end-to-
end fashion. Li et al. [28] and Park et al. [38] exploit the 2D pose information to
benefit 3D pose estimation. Rogez et al. [44] and Varol et al. [53] augment the
training data with synthetic images and train CNNs to predict 3D poses from real
images. Sun et al. [47] adopt a reparameterized pose representation using bones
instead of joints. Pavlakos et al. [40] extend 2D heat maps to 3D volumetric heat
maps and predict per voxel likelihood for each joint. Tome et al. [51] generalize
Convolutional Pose Machine (CPM) [55] to the task of monocular 3D human pose
estimation. Chen et al. [9] propose to decompose the volumetric representation
into 2D depth-aware heat maps and joint depth estimation. Zhou et al. [65]
propose a weakly-supervised transfer learning method that uses mixed 2D and
3D labels in a unified deep neural network. By introducing a simple integral
operation, Sun et al. [48] unify heat maps learning and regression learning for
pose estimation. Kocabas et al. [25] propose to train the 3D pose estimator with
the multi-view triangulation in a self-supervised manner. Instead of estimating
root-relative 3D poses, Moon et al. [35] propose to estimate 3D poses in the
camera coordinate system directly. More recent works [1,21,22,26,37] tend to
focus on reconstructing fine-grained 3D human shapes. Nevertheless, all works
are limited in estimating all body parts with a single head network, and we
attempt to search part-specific head networks for different body parts.

3 The Proposed Approach

In the literature of NAS, differential architecture search (DARTS) [30] is a repre-
sentative method that can search effective network architectures using fewer com-
puting resources. Therefore, we build our model on DARTS. First, we introduce
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some basic knowledge about DARTS. Then, we describe our approach to search
part-specific head networks for intrinsically heterogeneous body parts.

3.1 Preliminaries: Differential Architecture Search (DARTS)

The framework of DARTS decomposes the searched network architecture into
a number of (L) computational cells. There are two types of cells: the normal
cell and the reduction cell. Both of them have typical convolution architectures
to transform feature maps. Additionally, the reduction cell has another function
to downsample the feature map. Each computational cell can be represented as
a directed acyclic graph (DAG), consisting of an ordered sequence of N nodes
(N = {x(i)|i = 1, ..., N}). In the DAG, each node x(i) (i ∈ {1, ..., N}) is a
hidden representation (i.e., feature map), and each edge o(i,j)(·) denotes the
transformation from x(i) to x(j) and is associated with an operation (i.e., pooling
and convolution). In each cell, there are two input nodes (i.e., x(1) and x(2)

receive outputs from the previous two cells) and one output node x(N) (i.e., the
concatenation of all intermediate nodes (x(3), x(4), ..., x(N−1))). The output of an
intermediate node x(j) is computed as:

x(j) =
∑

i<j

o(i,j)(x(i)) (1)

Where the node x(i) is one predecessor of the node x(j). There is a pre-defined
space of operations denoted by O, each element of which is a fixed operation
(e.g., identity connection, convolution and max pooling). In the search stage, our
goal is to automatically select one operation from O and assign the operation to
o(i,j)(·) for each pair of nodes.

The core idea of DARTS is to make the search space continuous, and formu-
late the choice of an operation as a softmax over all possible operations:

ō(i,j)(x) =
∑

o∈O

exp(αo
i,j)∑

o′∈O exp(αo′
i,j)

o(x) (2)

Where αo
i,j denotes the learnable score of the operation o(·) on the edge from

x(i) to x(j). αi,j ∈ R
|O| represents the scores of all candidate operations over the

edge. The architecture of a cell is denoted as α = {αi,j}, consisting of αi,j for all
edges connecting pairs of nodes. Then, DARTS formulates architecture search
as finding α to minimize the loss function on the validation set:

min
α

Lval(w∗(α), α) (3)

s.t. w∗(a) = argminw Ltrain(w,α) (4)

Where w∗(α) denotes the network weights associated with the architecture α,
which is optimized on the training set. The architecture parameter α can be
optimized via gradient descent by approximating Eq. 3 as:

∇αLval(w∗(α), α) ≈ ∇αLval(w − ξ∇wLtrain(w,α), α) (5)
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Where w denotes the current network weights, ∇wLtrain(w,α) is the a gradient
step of w and ξ is the step’s learning rate. When we finish optimizing α in
the search stage, we assign o(i,j)(·) with the most likely operation candidate
according to α(i,j). For each intermediate node in a computational cell, DARTS
retains its two strongest predecessors.

3.2 DARTS for Monocular 3D Human Pose Estimation

Since the framework of DARTS is originally designed for image classification,
neither the normal cell nor the reduction cell can increase the resolution of fea-
ture maps. However, it is a common practice for 3D pose estimators to upsample
feature maps from the size of 8 × 8 to the size of 64 × 64 consecutively and gen-
erate volumetric heat maps for all body parts. To this end, as shown in Fig. 2,
we propose to introduce another type of cell, namely fusion cell, in the context
of DARTS. It can upsample and transform feature maps propagated from pre-
vious cells. Just like the reduction cell performs downsampling at input nodes,
the fusion cell also upsamples feature maps at input nodes as a preprocessing
step. Then, we employ edges between two nodes (i.e., convolution, pooling, etc.)
to transform upsampled feature maps and produce volumetric heat maps for all
parts at the output node. As shown in Fig. 2, it is interesting to note that the
output node is the concatenation of all intermediate nodes and each intermediate
node represents volumetric heat maps for a certain group of body parts. Through
intermediate nodes in the fusion cell, we automatically divide all body parts into
several groups, and the number of groups is equal to the number of intermedi-
ate nodes in the fusion cell. As shown in Fig. 2(a), there exist many candidate
operations between nodes in the search stage, and we obtain the optimized archi-
tecture upon finishing the search process. In the optimized architecture shown in
Fig. 2(b), we can observe that each intermediate node has been transformed by
a different set of operations. In other words, we learn part-specific architectures
in the search stage and employ them to estimate different groups of body parts
in the evaluation stage.

Fig. 2. An illustration of the fusion cell. Node 0 is the input node, and Node 1, 2, 3
are intermediate nodes. Node 4 is the output node and concatenates all intermediate
nodes. Each edge represents one operation between two nodes. For simplicity, we only
draw one input node here instead of two.

We follow a popular baseline [48] to build our part-aware 3D pose estimator.
It predicts per voxel likelihood for each part and uses the soft-argmax operator to
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extract the 3D coordinate from the volumetric heat map. Instead of using ResNet-
50 backbone and deconvolution layers, we search the whole network architecture.
In the search stage, we stack the normal cell, the reduction cell, the fusion cell to
construct our model with a total of Nc cells. We fix the number of reduction cells
and fusion cells to Nr and Nf , respectively. Because the fusion cell is designed
to generate volumetric heat maps at last, we first interweave (Nc − Nr − Nf )
normal cells and Nr reduction cells. Following the original DARTS, we organize
the position of the reduction cell as:

P i
r = floor(

Nc − Nf

Nr + 1
) × i + 1 (6)

Fig. 3. An overview of our network architecture. We take the 256×256 input image as
an example. It consists of ten computation cells: two normal cells, five reduction cells,
and three fusion cells. The architecture of all types of cells are optimized in the search
stage, and each cell receives inputs from the outputs of the previous two cells.

Where i ∈ {1, 2, ..., Nr} denotes the ith reduction cell. P i
r denotes the position of

the ith reduction cell. floor(·) represents the function that discards the decimal
point of a given number. After arranging normal cells and reduction cells, we
append Nf fusion cells behind them. In the search stage, our model has a total
of ten cells. We set Nr and Nf as 5 and 3, respectively. As illustrated in Fig. 3,
out of the top seven cells, we interweave two normal cells and five reduction
cells. Then, we append three fusion cells consecutively behind them to generate
volumetric heat maps for all parts. We employ L1 loss to supervise estimated 3D
poses and update network parameters w on the training set and architectures
for all types of cells α on the validation set alternately.

When we finish the search process, we obtain the optimized normal cell,
reduction cell, and fusion cell, as in Fig. 2(b). To evaluate the effectiveness of our
searched architectures, we re-train our model constructed with these optimized
cells. When our model is built with ten computational cells, the overview of its
architecture is the same as what it was in the search stage. As shown in Fig. 3,
given an input image, it first goes through a 3 × 3 convolution layer and a normal
cell to generate the feature map. Then, we append five consecutive reduction cells
to downsample the feature map and double its channel with a total stride of 25.
After a series of reduction cells, the feature map is 8 × 8 × 2048 in size, and we
use a normal cell to refine it further. To generate the volumetric heat map, we
use the proposed fusion cell to upsample the feature map. Except for the last
one, we set the output channel of remaining fusion cells to 256 as a common
practice. Three consecutive fusion cells upsample the feature map with a total
stride of 23 and generate the volumetric heat map of size 64 × 64 × 64 for all
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body parts. For each part, we extract its 3D coordinate from the corresponding
volumetric heat map via the differential soft-argmax operation [48]. As we do in
the search stage, we still employ L1 loss to train our model.

4 Experimental Evaluation

In this section, we present a detailed evaluation of our proposed approach. First,
we introduce main benchmarks and present our experimental settings. Then, we
conduct rigorous ablation analysis about our approach. Finally, we build our
strongest part-aware estimator upon the knowledge obtained in ablation studies
and compare it with state-of-the-art performance.

4.1 Main Benchmarks and Evaluation Metrics

Human3.6M Dataset [18]: It is captured in a calibrated multi-view studio
and consists of 3.6 millions of video frames. Eleven subjects are recorded from
four camera viewpoints, performing 15 activities. Previous works widely use two
evaluation metrics. The first one is mean per joint position error (MPJPE), which
first aligns the pelvis joint between estimated and ground-truth 3D poses and
computes the average joint error among all human joints. The second metric uses
Procrustes Analysis (PA) to align MPJPE further, and it is called PA MPJPE.

MuCo-3DHP and MuPoTS-3D Datasets [34]: These datasets are designed
for multi-person 3D pose estimation. The training set is the MuCo-3DHP
dataset, and it is generated by compositing the MPI-INF-3DHP dataset [33].
MuPoTS-3D dataset acts as the test set and contains 20 in-the-wild scenes. The
evaluation metric is the 3D percentage of correct keypoints (3DPCK).

4.2 Experimental Settings and Implementation Details

Human3.6M Dataset: Two evaluation protocols are widely used. Protocol 1
uses six subjects (S1, S5, S6, S7, S8, S9) in training and reports the evaluation
result on every 64th frame of Subject 11’s videos using PA MPJPE. Protocol 2
uses six subjects (S1, S5, S6, S7, S8) in training and reports the evaluation result
on every 64th frame of two subjects (S9, S11) using MPJPE. In the evaluation
stage of our approach, we use additional MPII [2] 2D pose data during training.

In the search stage, we train the network only with Human3.6M data. We
split three subjects (S1, S5, S6) as the training set to update the network param-
eter w and use two subjects (S7, S8) as the validation set to update the network
architecture α. We include following eight operations in the pre-defined space
O: 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and 5 × 5 dilated separable
convolutions, 3 × 3 max pooling, 3 × 3 average pooling, identity and zero.

MuCo-3DHP and MuPoTS-3D Datasets: We create 400K composite
frames of the MuCo-3DHP dataset, of which half are without appearance aug-
mentation. We use additional COCO [29] 2D pose data during training.
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Table 1. Quantitative evaluation of the number of intermediate nodes within each
fusion cell on Human3.6M using Protocol 2. Ni denotes the number of intermediate
nodes within each fusion cell. Lower is better, best in bold, second-best underlined.

Methods Search space Params FLOPs Direct. Dicuss Eating Greet Phone Pose

dil. conv. sep. conv.

Ours, Ni = 1 � � 14.7M 22.9G 52.6 60.9 50.8 54.3 62.0 53.4

Ours, Ni = 2 � � 13.0M 10.7G 46.3 55.3 47.2 49.0 55.0 48.2

Ours, Ni = 3 � � 9.9M 7.8G 53.5 62.2 54.1 56.5 62.7 55.5

Ours, Ni = 4 � � 9.9M 7.9G 50.8 60.0 53.2 53.3 60.7 50.8

Ours, Ni = 2 – � 15.9M 12.8G 55.8 61.3 52.5 55.3 63.0 54.6

Ours, Ni = 2 � – 10.4M 8.7G 52.0 60.0 51.4 53.9 61.5 52.6

Methods Purch. Sitting SitD. Smoke Photo Wait Walk WalkD. WalkT. Avg

Ours, Ni = 1 56.0 68.8 76.7 60.0 65.8 53.8 44.6 62.7 51.8 58.9

Ours, Ni = 2 52.6 64.6 70.8 54.4 60.0 48.8 40.9 58.3 46.7 53.6

Ours, Ni = 3 59.0 73.1 81.5 60.7 66.9 55.8 46.9 63.7 53.3 60.9

Ours, Ni = 4 55.9 69.8 74.3 58.7 64.8 53.0 43.4 61.2 49.5 58.0

Ours, Ni = 2 57.0 69.9 76.8 61.3 67.6 54.4 45.9 64.2 52.9 59.9

Ours, Ni = 2 56.6 68.8 76.7 59.9 66.3 53.5 44.8 62.6 51.6 58.7

Fig. 4. Cells found on Human3.6M dataset when we set Ni to 2. Our model uses two
intermediate nodes encoded in the fusion cell to estimate different groups of body parts.

Implementation Details: In the search stage, to save GPU memory, we set
the size of the input image and the volumetric heat map to 128 × 128 and
32×32×32, respectively. The total training epoch is 25, and the parameter w is
updated by the Adam optimizer [24] with a batch size of 40. The initial learning
rate is 1 × 10−3 and reduced by a factor of 10 at the 15th and the 20th epoch.
We start to optimize the network architecture α at the 8th epoch. Its learning
rate and weight decay are 8 × 10−4 and 3 × 10−4, respectively. The search
process lasts two days on a single NVIDIA TITAN RTX GPU. In the evaluation
stage, the size of the input image and the volumetric heat map are 256 × 256
and 64 × 64 × 64, respectively. The total epoch is 20. We train our network
with Adam with a batch size of 64. The initial learning rate is 1 × 10−3 and
reduced by ten at the 12th and the 16th epoch. Training samples are augmented
via rotation (±30◦), horizontal flip, color jittering, and synthetic occlusion [46].
The training process takes two days on four NVIDIA P100 GPUs. We run each
experiment three times with different random seeds, and the confidence interval
is about ±0.3 mm.
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4.3 Ablation Experiments

The Number of Intermediate Nodes in the Fusion Cell
As we explain in Sect. 3, the number of intermediate nodes in the fusion cell is
equal to the number of groups that we divide all body parts into. In this set of
experiments, by adjusting the number of intermediate nodes, we are motivated
to explore how many groups all body parts are divided into is an optimal choice.
In the search stage, we optimize the network architecture where the fusion cell
can have Ni ∈ {1, 2, 3, 4} intermediate nodes, and the model has a total of ten
computational cells, as in Fig. 3. In Table 1, we can observe that the model with
two intermediate nodes outperforms all the others on every action. Compared to
dividing all parts into more or fewer groups, it achieves a better trade-off between
performance and computational complexity. With only 13.0M parameters and
10.7G FLOPs, it encouragingly reduces MJPJE to 53.6 mm.

Fig. 5. Illustration of the equivalence between shuffling the part order and shuffling
the heat map order. The number in the box denotes the part id. There are a total of
eighteen parts. As shown in Fig. 4(d), within the last fusion cell, orange boxes indicate
parts estimated by Node 0, and pink boxes indicate ones estimated by Node 1. (Color
figure online)

To investigate what makes our architecture efficient when Ni is 2, we visualize
searched architectures in Fig. 4. As a comparison, when Ni is 1, our model esti-
mates all body parts with a single head network. It is computationally intensive,
having 14.7M parameters and 22.9G FLOPs, but its performance is not satisfac-
tory. Towards a better solution shown in Fig. 4(d), we employ two intermediate
nodes encoded in the fusion cell to estimate the torso and limbs, respectively.
Specifically, Node 0 is transformed from pooling layers and is robust to estimate
parts with relatively low DOFs. On the other side, dilated convolutional layers
empower Node 1 to capture long-range context information, which is helpful
to estimate parts with higher DOFs, such as the wrist and ankle. The normal
cell, shown in Fig. 4(a), consists of many dilated convolutional layers, which
greatly increase the receptive field of our model, and are critical to performance
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improvement. As shown in Table 1, if we remove dilated convolution from our
search space O, our searched model has more parameters and FLOPs, and its
performance drops from 53.6 mm to 59.9 mm. The reduction cell employs many
depth-wise convolution layers to fuse multi-scale features efficiently. Similarly,
we validate their importance by removing these operations from O, and it leads
to a 5.1 mm decline in performance.

The Part-Awareness of Our Model
We begin to validate the part-awareness of our approach from two perspectives.
First, to investigate whether searched head networks are part-specific, we intend
to shuffle the order of parts when we re-train our model in the evaluation stage.
However, it is a little troublesome to do this since we would have to modify the
data augmentation policy according to the shuffled order. Alternatively, as shown
in Fig. 5, we propose to shuffle the order of heat maps produced in the last fusion
cell. The implementation of the shuffle operation is the same as ShuffleNet [59],
which is efficient and GPU-friendly. If our model trained with the shuffled order
behaves obviously worse than the original one, we can validate that our optimized
head networks are part-aware. We run experiments three times and train our
model with different shuffled orders. As shown in Table 2, we observe that all
models trained with shuffled orders suffer from a significant drop in performance,
more than 3 mm in MPJPE. As we take a closer look, the decline in performance
also reflects on every individual part, especially parts with higher DOFs (e.g.,
ankle, knee), and their estimation accuracy might drop by more than 5 mm. By
comparing models trained with shuffled orders, we validate that our approach
learns part-specific head networks for specific body parts in the search stage.

In our model, the fusion cell plays a pivotal role in learning part-specific
head networks. To evaluate the importance of the fusion cell, we replace them
with deconvolution layers and only search the backbone network. The backbone
network only consists of normal cells and reduction cells. For a fair comparison,
all constructed networks have two normal cells and five reduction cells, and their

Table 2. Quantitative evaluation of the shuffled part order on Human3.6M using
Protocol 2. We set Nc and Ni to 10 and 2 respectively. We compute part-wise MPJPE
to report performance. Bold values indicate parts estimated by Node 0 and italic values
denote ones estimated by Node 1.

Methods Pelvis R Hip R Kn. R An. L Hip L Kn. L An. Torso Neck

Ours, original 0.0 23.2 53.4 74.4 22.6 47.3 75.5 37.2 44.7

Ours, shuffled 1 0.0 24.3 56.2 78.3 23.7 50.3 78.6 38.9 48.3

Ours, shuffled 2 0.0 25.1 56.1 83.8 24.9 52.1 82.8 39.4 46.5

Ours, shuffled 3 0.0 24.3 58.2 81.7 24.2 53.6 82.7 40.4 45.4

Methods Nose Head L Sh. L El. L Wr. R Sh. R El. R Wr. Avg

Ours, original 46.9 50.8 51.7 72.1 92.2 50.6 76.0 93.9 53.6

Ours, shuffled 1 53.7 57.8 57.0 74.7 95.3 55.4 80.1 98.2 57.2

Ours, shuffled 2 50.7 55.7 54.2 74.1 93.3 53.5 79.9 96.0 56.9

Ours, shuffled 3 49.3 53.1 55.0 75.8 95.3 54.2 80.8 97.7 57.1
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Table 3. Quantitative evaluation of the importance of the fusion cell on Human3.6M
using Protocol 2. BS and WS denote the backbone search and the whole architecture
search, respectively. We compute action-wise MPJPE to report the network perfor-
mance. Lower is better, best in bold, second-best underlined.

Methods Backbone Pretrain Params FLOPs Direct. Dicuss Eating Greet Phone Pose

Ours, ResNet ResNet50 � 34.3M 14.1G 50.8 52.3 54.8 57.9 52.8 47.0

Ours, BS Searched – 20.5M 12.5G 49.0 59.9 49.8 53.5 58.0 51.0

Ours, WS – – 13.0M 10.7G 46.3 55.3 47.2 49.0 55.0 48.2

Methods Purch. Sitting SitD. Smoke Photo Wait Walk WalkD. WalkT. Avg

Ours, ResNet 52.1 62.0 73.7 52.6 58.3 50.4 40.9 54.1 45.1 53.9

Ours, BS 56.0 65.8 77.5 56.3 63.8 52.9 44.4 62.7 50.0 57.1

Ours, WS 52.6 64.6 70.8 54.4 60.0 48.8 40.9 58.3 46.7 53.6

only difference is whether they have fusion cells. In Table 3, compared to the
backbone search, searching the whole network architecture improves performance
by 3.5 mm and reduces 37% parameters and 14% FLOPs. In comparison with
the model built on the commonly used ResNet-50 backbone, we advance esti-
mation accuracy by 0.3 mm with 62% fewer parameters and 24% fewer FLOPs.
Through our experiments, we show that fusion cells significantly contribute to
the compactness and efficiency of our approach and exhibit more competitive
performance over models using the ResNet-50 backbone.

The Number of Computational Cells
Instead of stacking only ten computation cells, we attempt to construct a deeper
part-aware 3D pose estimator, according to Eq. 6. As shown in Table 4, as
we increase the number of computational cells, our model becomes better in
performance but has more parameters and FLOPs. When Nc is 20, our model
achieves the best performance, 47.3 mm in MPJPE. As we increase Nc from 10
to 20, the gain in network parameters (from 13.0M to 20.4M) and FLOPs (from
10.7G to 14.1G) also leads to an improvement in performance (from 53.6 mm
to 47.3 mm). This phenomenon also demonstrates that the network architecture
optimized during the search process is computationally efficient.

Table 4. Quantitative evaluation of the number of cells on Human3.6M using Protocol
2. Nc denotes the number of computational cells. We compute action-wise MPJPE to
report the network performance. Lower is better, best in bold, second-best underlined.

Methods Params FLOPs Direct. Discuss Eating Greet Phone Pose Purch.

Ours, Nc = 10 13.0M 10.7G 46.3 55.3 47.2 49.0 55.0 48.2 52.6

Ours, Nc = 15 14.7M 12.7G 45.8 53.7 43.4 49.4 52.0 46.4 51.4

Ours, Nc = 20 20.4M 14.1G 41.4 48.6 42.0 45.3 47.1 42.3 46.0

Methods Sitting SitD. Smoke Photo Wait Walk WalkD. WalkT. Avg

Ours, Nc = 10 64.6 70.8 54.4 60.0 48.8 40.9 58.3 46.7 53.6

Ours, Nc = 15 60.8 63.4 50.9 55.6 45.7 40.8 55.4 44.5 50.9

Ours, Nc = 20 57.9 62.1 47.8 51.2 43.6 36.1 51.1 41.5 47.3
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Table 5. Comparison with state-of-the-art methods on Human3.6M using Protocol 1.
S denotes our small part-aware model with ten cells, and L denotes our large model
with twenty cells. Lower is better, best in bold, second-best underlined.

Methods Dire. Dis. Eat Gre. Phe. Pose Pur. Sit SitD. Smo. Phot.. Wait Walk WD. WT. Ave.

Yasin [58] 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 108.3

Chen [6] 71.6 66.6 74.7 79.1 70.1 67.6 89.3 90.7 195.6 83.5 93.3 71.2 55.7 85.9 62.5 82.7

Moreno [36] 67.4 63.8 87.2 73.9 71.5 69.9 65.1 71.7 98.6 81.3 93.3 74.6 76.5 77.7 74.6 76.5

Zhou [64] 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1 53.7 65.5 51.6 50.4 54.8 55.9 55.3

Sun [47] 42.1 44.3 45.0 45.4 51.5 43.2 41.3 59.3 73.3 51.0 53.0 44.0 38.3 48.0 44.8 48.3

Fang [12] 38.2 41.7 43.7 44.9 48.5 40.2 38.2 54.5 64.4 47.2 55.3 44.3 36.7 47.3 41.7 45.7

Sun [48] 36.9 36.2 40.6 40.4 41.9 34.9 35.7 50.1 59.4 40.4 44.9 39.0 30.8 39.8 36.7 40.6

Moon [35] 31.9 30.6 39.9 35.5 34.8 30.2 32.1 35.0 43.8 35.7 37.6 30.1 24.6 35.7 29.3 34.0

Ours, S 31.8 33.4 38.9 37.9 36.4 36.6 32.6 36.2 47.8 38.9 43.0 32.6 26.5 39.8 30.8 36.4

Ours, L 27.5 30.9 34.0 35.5 32.4 30.8 31.9 32.7 41.9 36.3 39.1 28.4 23.3 37.1 27.0 32.7

4.4 Comparison with the State-of-the-Art

To demonstrate the effectiveness and the generalization ability of our approach,
we conduct our experiments on both single-person and multi-person 3D pose
estimation benchmarks. Previous works have different experimental settings, and
we summarize comparison results in Tables 5, 6 and 7, respectively. In Fig. 6, we
show qualitative results produced by our model with ten cells. It can generalize
well for in-the-wild images, even on challenging poses and crowded scenes.

Single-Person 3D Human Pose Estimation: We compare our approach
on Human3.6M with state-of-the-art methods in Tables 5 and 6. By reducing
about 40% parameters, our large part-aware model advances the-state-of-the-art
accuracy by 1.3 mm and 2.3 mm in protocol 1 and protocol 2, respectively. If
we add supervision on intermediate feature maps, the performance of our small

Table 6. Comparison with state-of-the-art methods on Human3.6M using Protocol 2.
S denotes our small part-aware model with ten cells, and L denotes our large model
with twenty cells. Lower is better, best in bold, second-best underlined.

Methods Dire. Dis. Eat Gre. Phe. Pose Pur. Sit SitD. Smo. Phot. Wait Walk WD. WT. Ave.

Chen [6] 89.9 97.6 90.0 107.9 107.3 93.6 136.1 133.1 240.1 106.7 139.2 106.2 87.0 114.1 90.6 114.2

Tome [51] 65.0 73.5 76.8 86.4 86.3 68.9 74.8 110.2 173.9 85.0 110.7 85.8 71.4 86.3 73.1 88.4

Moreno [36] 69.5 80.2 78.2 87.0 100.8 76.0 69.7 104.7 113.9 89.7 102.7 98.5 79.2 82.4 77.2 87.3

Zhou [64] 68.7 74.8 67.8 76.4 76.3 84.0 70.2 88.0 113.8 78.0 98.4 90.1 62.6 75.1 73.6 79.9

Mehta [33] 57.5 68.6 59.6 67.3 78.1 56.9 69.1 98.0 117.5 69.5 82.4 68.0 55.3 76.5 61.4 72.9

Fang [12] 50.1 54.3 57.0 57.1 66.6 53.4 55.7 72.8 88.6 60.3 73.3 57.7 47.5 62.7 50.6 60.4

Omran [37] – – – – – – – – – – – – – – – 59.9

Sun [47] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 63.4 59.1

Kanazawa [47] – – – – – – – – – – – – – – – 56.8

Moon [35] 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3

Sun [48] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6

Ours, S 46.3 55.3 47.2 49.0 55.0 48.2 52.6 64.6 70.8 54.4 60.0 48.8 40.9 58.3 46.7 53.6

Ours, L 41.4 48.6 42.0 45.3 47.1 42.3 46.0 57.9 62.1 47.8 51.2 43.6 36.1 51.1 41.4 47.3
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Table 7. Comparison with state-of-the-art methods on MuPoTS-3D using all ground
truths. S denotes our small part-aware model with ten cells, and L denotes our large
model with twenty cells. Higher is better, best in bold, second-best underlined.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Rogez [45] 67.7 49.8 53.4 59.1 67.5 22.8 43.7 49.9 31.1 78.1

Mehta [34] 81.0 60.9 64.4 63.0 69.1 30.3 65.0 59.6 64.1 83.9

Moon [35] 94.4 77.5 79.0 81.9 85.3 72.8 81.9 75.7 90.2 90.4

Ours, S 93.1 76.7 79.9 78.2 83.6 64.6 79.0 72.5 87.6 88.3

Ours, L 95.8 80.2 81.3 84.6 87.1 74.5 82.7 79.4 91.2 93.3

Methods S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Rogez [45] 50.2 51.0 51.6 49.3 56.2 66.5 65.2 62.9 66.1 59.1

Mehta [34] 68.0 68.6 62.3 59.2 70.1 80.0 79.6 67.3 66.6 67.2

Moon [35] 79.2 79.9 75.1 72.7 81.1 89.9 89.6 81.8 81.7 76.2

Ours, S 76.1 79.4 71.1 70.6 77.7 86.6 87.1 80.3 79.5 72.0

Ours, L 83.4 82.0 78.6 76.5 84.3 92.1 91.1 85.3 82.4 77.8

Fig. 6. Qualitative results on different datasets. Our small model produces convincing
results even on challenging poses and crowded scenes.

model can be significantly improved, achieving 50.4 mm in Protocol 2. Moreover,
our method is also compatible with some efficient learning frameworks [19,25,62].

Multi-person 3D Human Pose Estimation: For multi-person 3D pose esti-
mation, we use RootNet [35] to estimate absolute depth for the root joint of each
person. As shown in Table 7, we compare our model with previous state-of-the-
art multi-person pose estimation methods on MuPoTS-3D, and our large part-
aware 3D pose estimator achieves more superior performance on every sequence.
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5 Conclusion and Future Works

In this work, we propose to estimate 3D poses of different parts with part-
specific neural architectures. In the search stage, we optimize the architectures
of different types of cells via gradient descent. Then, we interweave optimized
computational cells to construct our part-aware 3D pose estimator, which is com-
pact and efficient. Our model advances the state-of-the-art accuracy on both the
single-person and multi-person 3D human pose estimation benchmarks. In the
future, we attempt to explore other NAS methods to search 3D pose estimators
in a larger space, which may open up the possibility for a global optimization.
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