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Abstract. In this work, we propose an efficient and accurate monocu-
lar 3D detection framework in single shot. Most successful 3D detectors
take the projection constraint from the 3D bounding box to the 2D box
as an important component. Four edges of a 2D box provide only four
constraints and the performance deteriorates dramatically with the small
error of the 2D detector. Different from these approaches, our method
predicts the nine perspective keypoints of a 3D bounding box in image
space, and then utilize the geometric relationship of 3D and 2D perspec-
tives to recover the dimension, location, and orientation in 3D space.
In this method, the properties of the object can be predicted stably
even when the estimation of keypoints is very noisy, which enables us
to obtain fast detection speed with a small architecture. Training our
method only uses the 3D properties of the object without any extra anno-
tations, category-specific 3D shape priors, or depth maps. Our method is
the first real-time system (FPS > 24) for monocular image 3D detection
while achieves state-of-the-art performance on the KITTI benchmark.

Keywords: Real-time monocular 3D detection · Autonomous
driving · Keypoint detection

1 Introduction

3D object detection is an essential component of scene perception and motion
prediction in autonomous driving [2,9]. Currently, most powerful 3D detectors
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Fig. 1. Overview of proposed method: We first predict ordinal keypoints projected
in the image space by eight vertexes and a central point of a 3D object. We then
reformulate the estimation of the 3D bounding box as the problem of minimizing the
energy function by using geometric constraints of perspective projection.

heavily rely on 3D LiDAR laser scanners for the reason that it can provide scene
locations [8,29,41,46]. However, the LiDAR-based systems are expensive and not
conducive to embedding into the current vehicle shape. In comparison, monocular
camera devices are cheaper and convenient which makes it drawing an increasing
attention in many application scenarios [6,26,40]. In this paper, the scope of our
research lies in 3D object detection from only monocular RGB image.

Monocular 3D object detection methods can be roughly divided into two
categories by the type of training data: one imposes complex features, such
as instance segmentation, category-specific shape prior and even depth map to
select best proposals in multi-stage fusion module [6,7,40]. These features require
additional annotation work to train some stand-alone networks which will con-
sume plenty of computing resources in the training and inferring stages. Another
one only employs 2D bounding box and properties of a 3D object as the super-
vised data [3,20,33,42]. In this case, the most straightforward way build a deep
regression network to directly predict the 3D information of the object, which
caused the performance bottlenecks due to the large search space. To address this
challenge, recent works have clearly pointed out that apply geometric constraints
from 3D box vertexes to 2D box edges to refine or directly predict object parame-
ters [3,20,23,26,28]. However, four edges of a 2D bounding box provide only four
constraints on recovering a 3D bounding box while each vertex of a 3D bounding
box might correspond to any edges in the 2D box, which will takes 4,096 of the
same calculations to get one result [26]. Meanwhile, the strong reliance on the
2D box causes a sharp decline in 3D detection performance when predictions
of 2D detectors even have a slight error. Therefore, most of these methods take
advantage of two-stage detectors [10,11,32] to ensure the accuracy of 2D box
prediction, which limit the upper-bound of the detection speed.

In this paper, we propose an efficient and accurate monocular 3D detection
framework in the form of one-stage, which be tailored for 3D detection without



646 P. Li et al.

Table 1. Comparison of the real-time status and the requirements of additional data
in different image-based detection approaches.

Method Real time Stereo Depth Shape/CAD Segmentation

Mono3D [6] �
3DOP [7], stereoRCNN [20] �
MF3D [40], Peseudo-LiDAR [37],
MonoPSR [16] AM3D [25]

�

Mono3D++ [13], Deep-MANTA
[5], 3DVP [38]

�

Deep3DBox [26], GS3D [19],
MonoGRNet [31], FQNet [23],
M3D-RPN [3] Shift-RCNN [28],
MonoDIS [34]

Ours (RTM3D) �

relying on extra annotations, category-specific 3D shape priors, or depth maps.
The framework can be divided into two main parts, as shown in Fig. 1. First,
we perform a one-stage fully convolutional architecture to efficiently predict 9 of
the 2D keypoints which are projected points from 8 vertexes and central point of
3D bounding box. This 9 keypoints provides 18 geometric constrains on the 3D
bounding box. Inspired by CenterNet [45], we model the relationship between the
eight vertexes and the central point to solve the keypoints grouping and the ver-
texes order problem. The SIFT, SUFT and other traditional keypoint detection
methods [1,24]computed an image pyramid to solve the scale-invariant problem.
A similar strategy was used by CenterNet as a post-processing step to further
improve detection accuracy, which slows the inference speed. Note that the Fea-
ture Pyramid Network (FPN) [21] in 2D object detection is not applicable to
the network of keypoint detection, because adjacent keypoints may overlap in
the case of small-scale prediction. We propose a novel multi-scale pyramid of
keypoint detection to generate a scale-space response. The final activate map
of keypoints can be obtained by means of the soft-weighted pyramid. Given the
9 projected points, the next step is to minimize the reprojection error over the
perspective of 3D points that parameterized by the location, dimension, and
orientation of the object. We formulate the reprojection error as the form of
multivariate equations in se3 space, which can generate the detection results
accurately and efficiently. We also discuss the effect of different prior informa-
tion, such as dimension, orientation, and distance, predicted in parallel from our
keypoint detection network. The prerequisite for obtaining this information is
not to add too much computation so as not to affect the final detection speed. We
model these priors and reprojection error term into an overall energy function
in order to further improve 3D estimation.

To summarize, our main contributions are the following:

– We formulate the monocular 3D detection as the keypoint detection problem
and combine the geometric constrains to generate properties of 3D objects
more efficiently and accurately.
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– We propose a novel one-stage and multi-scale network for 3D keypoint detec-
tion which provide the accurate project points for multi-scale object.

– We propose an overall energy function that can jointly optimize the prior and
3D object information.

– Evaluation on the KITTI benchmark, We are the first real-time 3D detec-
tion method using only images and achieves better accuracy under the same
running time in comparing other competitors.

2 Related Work

Extra Data or Network for Image-based 3D Object Detection. In the
last years, many studies develop the 3D detection in an image-based method for
the reason that camera devices are more convenient and much cheaper. To com-
plement the lacked depth information in image-based detection, most of the pre-
vious approaches heavily relied on the stand-alone network or additional labeling
data, such as instance segmentation, stereo, wire-frame model, CAD prior, and
depth, as shown in Table 1. Among them, monocular 3D detection is a more
challenging task due to the difficulty of obtaining reliable 3D information from
a single image. One of the first examples [6] enumerate a multitude of 3D pro-
posals from pre-defined space where the objects may appear as the geometrical
heuristics. Then it takes the other complex prior, such as shape, instance seg-
mentation, contextual feature, to filter out dreadful proposals and scoring them
by a classifier. To make up for the lack of depth, [40] embed a pre-trained stand-
alone module to estimate the disparity. The disparity map concatenates the front
view representation to help the 2D proposal network and the 3D detection can
be boosted by fusing the extracted feature after RoI pooling and point cloud.
As a followup, [25] combines the 2D detector and monocular depth estimation
model to obtain the 2D box and corresponding point cloud. The final 3D box can
be obtained by the regression of PointNet [30] after the aggregation of the image
feature and 3D point information through attention mechanism, which achieves
the best performance in the monocular image. Intuitively, these methods would
certainly increase the accuracy of the detection, but the additional network and
annotated data would lead to more computation and labor-intensive work.

Image-only in Monocular 3D Object Detection. Recent works have tried
to fully explore the potency of RGB images for 3D detection. Most of them
include geometric constraints and 2D detectors to explicitly describe the 3D
information of the object. [26] uses CNN to estimate the dimension and orienta-
tion extracted feature from the 2D box, then it proposes to obtain the location
of an object by using the geometric constraints of the perspective relationship
between 3D points and 2D box edges. This contribution is followed by most
image-based detection methods either in refinement step or as direct calculation
on 3D objects [3,20]. All we know in this constraint is that certain 3D points
are projected onto 2D edges, but the corresponding relationship and the exact
location of the projection are not clear. Therefore, it needs to exhaustively enu-
merate 84 = 4096 configurations to determine the final correspondence and can
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only provide four constraints, which is not sufficient for fully 3D representation
in 9 parameters. It led to the need to estimate other prior information. Never-
theless, possible inaccuracies in the 2D bounding boxes may result in a grossly
inaccurate solution with a small number of constraints. Therefore, most of these
methods obtain more accurate 2D box through a two-stage detector, which is
difficult to get real-time speed.

Keypoints in Monocular 3D Object Detection. It is believed that the
detection accuracy of occluded and truncated objects can be improved by deduc-
ing complete shapes from vehicle keypoints [5,27,44]. They represent the regular-
shape vehicles as a wire-frame template, which is obtained from a large number of
CAD models. To train the keypoint detection network, they need to re-label the
data set and even use depth maps to enhance the detection capability. [13] is most
related to our work, which also considers the wire-frame model as prior informa-
tion. Furthermore, It jointly optimizes the 2D box, 2D keypoints, 3D orientation,
scale hypotheses, shape hypotheses, and depth with four different networks. This
has limitations in run time. In contrast to prior work, we reformulate the 3D detec-
tion as the coarse keypoints detection task. Instead of predicting the 3D box based
on an off-the-shelf 2D detectors or other data generators, we build a network to
predict 9 of 2D keypoints projected by vertexes and center of 3D bounding box
while minimize the reprojection error to find an optimal result.

3 Proposed Method

In this section. We first describe the overall architecture for keypoint detection
and prior property prediction. Then we detail how to estimate the 3D bounding
box of the object by maintaining 2D-3D consistency.

3.1 Keypoint Detection Network

Our keypoint detection network takes an only RGB image as the input and
simultaneously generates 2D-related information, such as perspective points and
2D size, and 3D-related information, such as dimension, orientation and distance.
As shown in Fig. 2, it consists of three components: backbone, keypoint feature
pyramid, and detection head. The main architecture adopts a one-stage strategy
that shares a similar layout with the anchor-free 2D object detector [15,18,36,
45], which allows us to get a fast detection speed. Details of the network are
given below.

Backbone. For the trade-off between speed and accuracy, we use two different
structures as our backbones: ResNet-18 [12] and DLA-34 [43]. All models take a
single RGB image I ∈ R

W×H×3 and downsample the input with factor S = 4.
The ResNet-18 and DLA-34 build for image classification network, the maximal
downsample factor is ×32. We upsample the bottleneck thrice by three bilinear
interpolations and 1 × 1 convolutional layer. Before the upsampling layers, we
concatenate the corresponding feature maps of the low level while adding one
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Fig. 2. An overview of proposed keypoint detection architecture: It takes only
the RGB images as the input and outputs main center heatmap, vertexes heatmap,
and vertexes coordinate as the base module to estimate 3D bounding box. It can also
predict other alternative priors to further improve the performance of 3D detection.

1 × 1 convolutional layers for channel dimension reduction. After three upsam-
pling layers, the channels are 256, 128, 64, respectively.

Keypoint Feature Pyramid. Keypoint in the image have no difference in size.
Therefore, the keypoint detection is not suitable for using the Feature Pyramid
Network (FPN) [21], which detect multi-scale 2D box in different pyramid layers.
We propose a novel approach Keypoint Feature Pyramid Network (KFPN) to
detect scale-invariant keypoints in the point-wise space, as shown in Fig. 3.
Assuming we have F scale feature maps, we first resize each scale f, 1 < f < F
back to the size of maximal scale, which yields the feature maps f̂1<f<F . Then,
we generate soft weight by a softmax operation to denote the importance of each
scale. The finally scale-space score map Sscore is obtained by linear weighing sum.
In detail, it can be defined as:

Sscore =
∑

f

f̂�softmax(f̂) (1)

where � denote element-wise product.

Detection Head. The detection head is comprised of three fundamental com-
ponents and six optional components which can be arbitrarily selected to boost
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Fig. 3. Illustration of our keypoint feature pyramid network (KFPN).

the accuracy of 3D detection with a little computational consumption. Inspired
by CenterNet [45], we take a keypoint as the maincenter for connecting all fea-
tures. Since the 3D projection point of the object may exceed the image bound-
ary in the case of truncation, the center point of the 2D box will be selected
more appropriately. The heatmap can be define as M ∈ [0, 1]

H
S × W

S ×C , where
C is the number of object categories. Another fundamental component is the
heatmap V ∈ [0, 1]

H
S × W

S ×9 of nine keypoints projected by vertexes and center
of 3D bounding box. For keypoints association of one object, we also regress an
local offset Vc ∈ R

H
S × W

S ×18 from the maincenter as an indication. Keypoints of
V closest to the coordinates from Vc are taken as a group of one object.

Although the 18 constraints by the 9 keypoints have an ability to recover
the 3D information of the object, more prior information can provide more
constraints and further improve the detection performance. We offer a num-
ber of options to meet different needs for accuracy and speed. The center offset
Mos ∈ R

H
S × W

S ×2 and vertexes offset Vos ∈ R
H
S × W

S ×2 are discretization error for
each keypoint in heatmaps. The dimension D ∈ R

H
S × W

S ×3 of 3D object have a
smaller variance, which makes it easy to predict. The rotation R(θ) of an object
only by parametrized by orientation θ (yaw) in the autonomous driving scene.
We employ the Multi-Bin based method [26] to regress the local orientation. We
classify the probability with cosin and sine offset of the local angle in one bin,
which generates feature map of orientation O ∈ R

H
S × W

S ×8 with two bins. We
also regress the depth Z ∈ R

H
S × W

S ×1 of 3D box center, which can be used as the
initialization value to speed up the solution in Sect. 3.2.

Training. All the heatmaps of keypoint and maincenter training strategy follow
the [18,45]. The loss solves the imbalance of positive and negative samples with
focal loss [22]:

LK
kp = − 1

N

K∑
k=1

H/S∑
x=1

W/S∑
y=1

{
(1 − p̂kxy)αlog(p̂kxy) if pkxy = 1

(1 − pkxy)β p̂kxylog(1 − p̂kxy) otherwise
(2)

where K is the channels of different keypoints, K = C in maincenter and K = 9
in keypoints. N is the number of maincenter or keypoints in an image, and
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α and β are the hyper-parameters to reduce the loss weight of negative and
easy positive samples. We set is α = 2 and β = 4 in all experiments following
[18,45]. pkxy can be defined by Gaussian kernel pxy = exp

(
−x2+y2

2σ

)
centered

by ground truth keypoint p̃xy. For σ, we find the max area Amax and min area
Amin of 2D box in training data and set two hyper-parameters σmax and σmin.
We then define the σ = A( σmax−σmin

Amax−Amin
) for a object with size A. For regression

of dimension and distance, we define the residual term as:

LD =
1

3N

H/S∑

x=1

W/S∑

y=1

1obj
xy

(
Dxy − ΔD̃xy

)2

LZ =
1
N

H/S∑

x=1

W/S∑

y=1

1obj
xy

(
log(Zxy) − log(Z̃xy)

)2

(3)

We set ΔD̃xy = log
˜Dxy−D̄

Dσ
, where D̄ and Dσ are the mean and standard devia-

tion dimensions of training data. 1obj
xy denotes if maincenter appears in position

x, y. The offset of maincenter, vertexes are trained with an L1 loss following [45]:

Lm
off = 1

2N

H/S∑
x=1

W/S∑
y=1

1obj
xy

∣∣∣Mxy
os −

(
pm

S − p̃m

)∣∣∣

Lv
off = 1

2N

H/S∑
x=1

W/S∑
y=1

1ver
xy

∣∣∣V xy
os −

(
pv

S − p̃v

)∣∣∣
(4)

where pm, pv are the position of maincenter and vertexes in the original image.
The regression coordinate of vertexes with an L1 loss as:

Lver =
1
N

8∑

k=1

H/S∑

x=1

W/S∑

y=1

1ver
xy

∣∣∣∣V
(2k−1):(2k)xy
c −

∣∣∣∣
pv − pm

S

∣∣∣∣

∣∣∣∣ (5)

The finial multi-task loss for keypoint detection define as:

L = ωmainLC
kp + ωkpverL

8
kp + ωverLver + ωdimLD

+ ωoriLori + ωZLdis + ωm
offLm

off + ωv
offLv

off

(6)

We empirical set ωmain = 1, ωkpver = 1, ωver = 1, ωdim = 1, ωori = 0.5, ωdis =
0.1, ωm

off = 0.5 and ωv
off = 0.5 in our experimental.

3.2 3D Bounding Box Estimate

We estimate the 3D bounding box by enforcing the 2D-3D consistency between
estimated 2D-related and 3D-related information, given by our keypoint detec-
tion network. Considering an image I, a set of i = 1...N object are represented
by 9 keypoints and other optional prior, keypoints as k̂pij for j ∈ 1...9, dimen-
sion as D̂i, orientation as θ̂i, and distance as Ẑi. The corresponding 3D bounding
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box Bi can be defined by its rotation Ri(θ), position Ti = [T x
i , T y

i , T z
i ]T , and

dimensions Di = [hi, wi, li]T . Our goal is to estimate the 3D bounding box Bi,
whose projections of 3D center and vertexes on the image space best fit the cor-
responding 2D keypoints k̂pij . This can be solved by minimize the reprojection
error of 3D keypoints and 2D keypoints. We formulate it and other prior errors
as a nonlinear least squares optimization problem:

R∗, T ∗,D∗ = arg min
{R,T,D}

∑

Ri,Ti,Di

∥∥∥ecp

(
Ri, Ti,Di, k̂pi

)∥∥∥
2

Σi

+ ωd

∥∥∥ed

(
Di, D̂i

)∥∥∥
2

2
+ ωr

∥∥∥er

(
Ri, θ̂i

)∥∥∥
2

2

(7)

where ecp(..), ed(..), er(..) are measurement error of camera-point, dimension
prior and orientation prior respectively. We set ωd = 1 and ωr = 1 in our
experimental. Σ is the covariance matrix of keypoints projection error. It is the
confidence extracted from the heatmap corresponding to the keypoints:

Σi = diag(softmax(V (k̂pi)) (8)

In the rest of the section, we will first define this error item, and then introduce
the way to optimize the formulation.

Camera-Point. Following the [9], the homogeneous coordinate of eight vertexes
and 3D center can be parametrized as:

P i
3D = diag(Di)Cor

Cor =

[
0 0 0 0 −1 −1 −1 −1 −1/2

1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2 1/2 0
1/2 1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2 0
1 1 1 1 1 1 1 1 1

]
(9)

Given the camera intrinsics matrix K, the projection of these 3D points into the
image coordinate is:

kpi =
1
si

K

⎡

⎣ R T

0T 1

⎤

⎦ diag(Di)Cor =
1
si

K exp(ξ∧)diag(Di)Cor (10)

where ξ ∈ se3 and exp maps the se3 into SE3 space. The projection coordinate
should fit tightly into 2D keypoints detected by the detection network. Therefore,
the camera-point error is then defined as:

ecp = k̂pi − kpi (11)

Minimizing the camera-point error needs the Jacobians in se3 space. It is given
by:

∂ecp

∂δξ
= −

⎡

⎣
fx

Z′ 0 − fxX
′

Z′2

0 fy

Z′ 0 − fyY
′

Z′2

⎤

⎦ · [
I, −P

′∧]

∂ecp

∂Di
= −1

9

9∑

col=1

⎡

⎣
fx

Z′ 0 − fxX
′

Z′2

0 fy

Z′ 0 − fyY
′

Z′2

⎤

⎦ · R · Corcol

(12)
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where P
′
= [X

′
, Y

′
, Z

′
]T = (exp(ξ∧P ))1:3.

Dimension-Prior: The ed is simply defined as:

ed = D̂i − Di (13)

Rotation-Prior: We define er in SE3 space and use log to map the error into
its tangent vector space:

er = log(R−1R(θ̂))∨
se3

(14)

These multivariate equations can be solved via the Gauss-newton or Levenberg-
Marquardt algorithm in the g2o library [17]. A good initialisation is mandatory
using this optimization strategy. We adopt the prior information generated by
keypoint detection network as the initialization value, which is very important
in improving the detection speed.

4 Experimental

4.1 Implementation Details

Our experiments were evaluated on the KITTI 3D detection benchmark [9],
which has a total of 7481 training images and 7518 test images. We follow the
[7] and [39] to split the training set as train1, val1 and train2, val2 respectively,
and comprehensively compare our framework with other methods on this two
validation as well as test set.

Our deep neural network implemented by using PyTorch with the machine i7-
8086K CPU and 2 1080Ti GPUs. All the original image are padded to 1280×384
for training and testing. We project the 3D bounding box of Ground Truths in the
left and right images to obtain Ground Truth keypoints and use the horizontal
flipping as the data augmentation, which makes our dataset is quadruple with
the origin training set. We run Adam [14] optimizer with a base learning rate
of 0.0002 for 300 epochs and reduce 10× at 150 and 180 epochs. For standard
deviation of Gaussian kernel, we set σmax = 19 and σmin = 3. Based on the
statistics of KITTI dataset, we set l̃ = 3.89, w̃ = 1.62, h̃ = 1.53 and σl̃ =
0.41, σw̃ = 0.1, σh̃ = 0.13. In the inference step, after 3×3 max pooling, we filter
the maincenter and keypoints with threshold 0.4 and 0.1 respectively, and only
keypoints that in the image size range are sent into the geometric constraint
module. The backbone networks are initialized by a classification model pre-
trained on the ImageNet data set. Finally, The ResNet-18 takes about three
days with batch size 30 and DLA-34 for four days with batch size 16 in the
training stage.

4.2 Comparison with Other Methods

To fully evaluate the performance of our keypoint-based method, for each
task three official evaluation metrics be reported in KITTI: average precision
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Table 2. Comparison of our framework with current image-based 3D detection meth-
ods for car category evaluated using metric AP3D on val1/val2 of KITTI data set.
“Extra” means the extra data used in training. Red denotes the highest result, blue
for the second highest, and cyan for the third.

Method Extra Time
AP3D (IoU=0.5) AP3D (IoU=0.7)

Easy Moderate Hard Easy Moderate Hard
Mono3D [6] Mask 4.2 s 25.19 / - 18.20 / - 15.52 / - 2.53 / - 2.31 / - 2.31 / -
3DOP [7] Stereo 3 s 46.04 / - 34.63 / - 30.09 / - 6.55 / - 5.07 / - 4.10 / -
MF3D [40] Depth - 47.88 / 45.57 29.48 / 30.03 26.44 / 23.95 10.53 / 7.85 5.69 / 5.39 5.39 / 4.73

Mono3D++ [13] Depth+Shape >0.6s 42.00 / - 29.80 / - 24.20 / - 10.60 / - 7.90 / - 5.70 / -

GS3D [19] None 2.3s 32.15 / 30.60 29.89 / 26.40 26.19 / 22.89 13.46 / 11.63 10.97 / 10.51 10.38 / 10.51
Deep3DBox [26] None - 27.04 / - 20.55 / - 15.88 / - 5.85 / - 4.10 / - 3.84 / -
MonoGRNet [31] None 0.06s 50.51/ - 36.97/ - 30.82 / - 13.88 / - 10.19 / - 7.62 / -

FQNet[23] None 3.33s 28.16 / 28.98 21.02 / 20.71 19.91 / 18.59 5.98 / 5.45 5.50 / 5.11 4.75 / 4.45
M3D-RPN [3] None 0.16s 48.96/49.89 39.57/36.14 33.01/ 28.98 20.27/20.40 17.06/16.48 15.21/13.34

Ours (ResNet18) None 0.035s 47.43 /46.52 33.86 /32.61 31.04/30.95 18.13/18.38 14.14/14.66 13.33/12.35
Ours (DLA34) None 0.055s 54.36/52.59 41.90/40.96 35.84/34.95 20.77/19.47 16.86/16.29 16.63/15.57

Table 3. Comparison of our framework with current image-based 3D detection frame-
works for car category, evaluated using metric APBEV on val1/val2 of KITTI data
set.

Method Extra Time
APBEV (IoU=0.5) APBEV (IoU=0.7)

Easy Moderate Hard Easy Moderate Hard
Mono3D [6] Mask 4.2 s 30.50 / - 22.39 / - 19.16 / - 5.22 / - 5.19 / - 4.13 / -
3DOP [7] Stereo 3 s 55.04 / - 41.25 / - 34.55 / - 12.63 / - 9.49 / - 7.59 / -
MF3D [40] Depth - 55.02 / 54.18 36.73 / 38.06 31.27 / 31.46 22.03 / 19.20 13.63 / 12.17 11.60 / 10.89

Mono3D++ [13] Depth+Shape >0.6s 46.70 / - 34.30 / - 28.10 / - 16.70 / - 11.50 / - 10.10 / -

GS3D [19] None 2.3s - / - - / - - / - - / - - / - - / -
Deep3DBox [26] None - 30.02 / - 23.77 / - 18.83 / - 9.99 / - 7.71 / - 5.30 / -
MonoGRNet [31] None 0.06s - / - - / - - / - - / - - / - - / -

FQNet[23] None 3.33s 32.57 / 33.37 24.60 / 26.29 21.25 / 21.57 9.50 / 10.45 8.02 / 8.59 7.71 / 7.43
M3D-RPN [3] None 0.16s 55.37/55.87 42.49/41.36 35.29/34.08 25.94/26.86 21.18/21.15 17.90/17.14

Ours(ResNet18) None 0.035s 52.79/41.91 35.92/34.28 33.02/28.88 20.81/21.34 16.60/16.48 15.80/15.45
Ours (DLA34) None 0.055s 57.47/56.90 44.16/44.69 42.31/41.75 25.56/24.74 22.12/22.03 20.91/18.05

for 3D intersection-over-union (AP3D), average precision for Birds Eye View
(APBEV ), and Average Orientation Similarity (AOS) if 2D bounding box avail-
able. We evaluate our method at three difficulty settings: easy, moderate, and
hard, according to the object’s occlusion, truncation, and height in the image
space [9].

AP3D and APBEV . We compare our method with current image-based SOTA
approaches and also provide a comparison about running time. However, it is
not realistic to list the running times of all previous methods because most of
them do not report their efficiency. The results AP3D, APBEV and running time
are shown in Table 2 and 3, respectively. ResNet-18 as the backbone achieves the
best speed while our accuracy outperforms most of the image-only method. In
particular, it is more than 100 times faster than Mono3D [6] while outperforms
over 10% for both APBEV and AP3d across all datasets. In addition, our ResNet-
18 method is more than 75 times faster while having a comparable accuracy than
3DOP [7], which employs stereo images as the input. DLA-34 as the backbone
achieves the best accuracy while having relatively good speed. It is faster about 3
times than the recently proposed M3D-RPN [3] while achieves the improvement
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in most of the metrics. Note that comparing our method with this all approaches
is unfair because most of these approaches rely on extra stand-alone network or
data in addition to monocular images. Nevertheless, we achieve the best speed
with better performance.

Fig. 4. Qualitative results of our 3D detection. From top to bottom are keypoints,
projections of the 3D bounding box and bird’s eye view image, ground truths in green
and our results in blue. The crimson arrows, green arrows, and red arrows point to
occluded, distant, and truncated objects, respectively. (Color figure online)

Results on the KITTI Testing Set. We also evaluate our results on the
KITTI testing set, as shown in Table 4.

4.3 Qualitative Results

Figure 4 shows some qualitative results of our method. We visualize the key-
point detection network outputs, geometric constraint module outputs and BEV
images. The results of the projected 3D box on image demonstrate than our
method can handle crowded and truncated objects. The results of the BEV
image show that our method has an accuracy localization in different scenes.
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Table 4. Comparing 3D detection AP3D on KITTI testing set. We use the DLA-34 as
the backbone.

Method Accelerater Time
AP3D(IoU=0.7)
Easy Mode Hard

GS3D[19] - 2.3s 7.69 6.29 6.16
MonoGRNet[31] Tesla P40 0.06s 9.61 5.74 4.25
M3D-RPN[3] 1080Ti 0.16s 14.76 9.71 7.42
FQNet[23] 1080Ti 3.33s 2.77 1.51 1.01

MonoDIS[34] V100 - 10.37 7.94 6.40
Ours(DLA34) 1080Ti 0.055s 14.41 10.34 8.77

4.4 Ablation Study

Effect of Optional Components. Three optional components be employed
to enhance our method: dimension, orientation, distance and keypoints offset.
We experiment with different combinations to demonstrate their effect on 3D
detection. The results are shown in Table 5, we train our network with DLA-34
backbone and evaluate it using AP3D and APBEV . The combinations of dimen-
sion, orientation, distance and keypoints offset achieve the best accuracy mean-
while have a faster running speed. This is because we take the output predicted
by our network as the initial value of the geometric optimization module, which
can reduce the search space of the gradient descent method.

Table 5. Ablation study of different optional selecting results on val1 set. We use the
DLA-34 as the backbone.

dim ori dist off Time (s)
AP3D (IoU = 0.5) AP3D (IoU = 0.7)

Easy Mode Hard Easy Mode Hard
√

0.058 51.21 40.73 35.00 18.23 17.05 15.94√
0.061 25.35 22.33 21.18 3.12 3.43 2.97√ √
0.057 54.18 41.34 34.89 20.23 16.02 15.94√ √ √
0.055 54.20 41.56 35.13 20.76 16.80 16.25√ √ √ √
0.055 54.36 41.90 35.84 20.77 16.86 16.36

Effect of Keypoint FPN. We propose keypoint FPN as a strategy to improve
the performance of multi-scale keypoint detection. To better understand its
effect, we compare the AP3D and APBEV with and without KFPN. The details
are shown in Table 6, using KFPN achieves the improvement across all sets while
no significant change in time consumption.

2D Detection and Orientation. Although our focus is on 3D detection, we
also report the performance of our methods in 2D detection and orientation
evaluation in order to better understand the comprehensive capabilities of our
approach. We report the AOS and AP with a threshold IoU = 0.7 for comparison.
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Table 6. Comparing 3D detection AP3D of w/o KFPN and w/ KFPN for car category
on val1 set. We use the DLA-34 as the backbone.

KFPN Time AP3D (IoU = 0.7) AP3D (IoU = 0.5)

Easy Mode Hard Easy Mode Hard

w/o 0.054 50.14 40.73 34.94 17.47 15.99 15.36

w/ 0.055 54.36 41.90 35.84 20.77 16.86 16.36

Table 7. Comparing of 2D detection AP2D with IoU = 0.7 and orientation AOS results
for car category evaluated on val1/val2 of KITTI data set. Only the results under
the moderate criteria are shown. Ours (2D) represents the results from the keypoint
detection network, and Ours (3D) is the 2D bounding box of the projected 3D box.

Method AP2D AOS

Mono3D [6] 88.67/- 86.28/-

3DOP [7] 88.07/- 85.80/-

Deep3DBox [26] -/97.20 -/96.68

DeepMANTA [5] 90.89/91.01 90.66/90.66

GS3D [19] 88.85/90.02 87.52/89.13

Ours (2D) 90.14/91.85 89.58/89.22

Ours (3D) 90.41/92.08 89.95/89.40

The results are shown in Table 7, the Deep3DBox train MS-CNN [4] in KITTI
to produce 2D bounding box and adopt VGG16 [35] for orientation prediction,
which gives him the highest accuracy. Deep3Dbox takes advantage of better 2D
detectors, however, our AP3D outperforms it by about 20% in moderate sets,
which emphasize the importance of customizing the network specifically for 3D
detection. Another interesting finding is that the 2D accuracy of back-projection
3D results is better than the direct prediction, thanks to our method that can
infer the occlusive area of the object.

5 Conclusion

In this paper, we have proposed a faster and more accurate monocular 3D object
detection method for autonomous driving scenarios. We reformulate 3D detection
as the keypoint detection problem and show how to recover the 3D bounding box
by using keypoints and geometric constraints. We specially customize the point
detection network for 3D detection, which can simultaneously predict keypoints
of the 3D box and other prior information of the object using only images. Our
geometry module formulates this prior to easy-to-optimize loss functions. Our
approach generates a stable and accurate 3D bounding box without containing
stand-alone networks, additional annotation while achieving real-time running
speed.
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