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Abstract. Arguably one of the top success stories of deep learning is
transfer learning. The finding that pre-training a network on a rich source
set (e.g., ImageNet) can help boost performance once fine-tuned on a usu-
ally much smaller target set, has been instrumental to many applications
in language and vision. Yet, very little is known about its usefulness in
3D point cloud understanding. We see this as an opportunity considering
the effort required for annotating data in 3D. In this work, we aim at
facilitating research on 3D representation learning. Different from pre-
vious works, we focus on high-level scene understanding tasks. To this
end, we select a suit of diverse datasets and tasks to measure the effect of
unsupervised pre-training on a large source set of 3D scenes. Our findings
are extremely encouraging: using a unified triplet of architecture, source
dataset, and contrastive loss for pre-training, we achieve improvement
over recent best results in segmentation and detection across 6 different
benchmarks for indoor and outdoor, real and synthetic datasets – demon-
strating that the learned representation can generalize across domains.
Furthermore, the improvement was similar to supervised pre-training,
suggesting that future efforts should favor scaling data collection over
more detailed annotation. We hope these findings will encourage more
research on unsupervised pretext task design for 3D deep learning.

Keywords: Unsupervised learning · Point cloud recognition ·
Representation learning · 3D scene understanding

1 Introduction

Representation learning is one of the main driving forces of deep learning
research. In 2D vision, the finding that pre-training a network on a rich source
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set (e.g. ImageNet classification) can help boost performance once fine-tuned
on the usually much smaller target set, has been key to the success of many
applications. A particularly important setting, is when the pre-training stage
is unsupervised, as this opens up the possibility to utilize a practically infinite
train set size. Unsupervised pre-training has been remarkably successful in nat-
ural language processing [13,47], and has recently attracted increasing attention
in 2D vision [3,3,8,8,26,26,27,38,40,40,64,81].

In the past few years, the field of 3D deep learning has witnessed much
progress with an ever-increasing number of 3D representation learning schemes
[1,9,12,15,16,21,22,34,62,69,75]. However, it still falls behind compared to its
2D counterpart as evidently, in all 3D scene understanding tasks, ad-hoc train-
ing from scratch on the target data is still the dominant approach. Notably, all
existing representation learning schemes are tested either on single objects or
low-level tasks (e.g. registration). This status quo can be attributed to multiple
reasons: 1) Lack of large-scale and high-quality data: compared to 2D images,
3D data is harder to collect, more expensive to label, and the variety of sens-
ing devices may introduce drastic domain gaps; 2) Lack of unified backbone
architectures: in contrast to 2D vision where architectures such as ResNets were
proven successful as backbone networks for pre-training and fine-tuning, point
cloud network architecture designs are still evolving; 3) Lack of a comprehensive
set of datasets and high-level tasks for evaluation.

The purpose of this work is to move the needle by initiating research on
unsupervised pre-training with supervised fine-tuning in deep learning for 3D
scene understanding. To do so, we cover four important ingredients: 1) Selecting
a large dataset to be used at pre-training; 2) identifying a backbone architecture
that can be shared across many different tasks; 3) evaluating two unsupervised
objectives for pre-training the backbone network; and 4) defining an evaluation
protocol on a set of diverse downstream datasets and tasks.

Specifically, we choose ScanNet [11] as our source set on which the pre-
training takes place, and utilize a sparse residual U-Net [9,49] as the backbone
architecture in all our experiments and focus on the point cloud representa-
tion of 3D data. For the pre-training objective, we evaluate two different con-
trastive losses: Hardest-contrastive loss [10], and PointInfoNCE – an extension
of InfoNCE loss [40] used for pre-training in 2D vision. Next, we choose a broad
set of target datasets and downstream tasks that includes: semantic segmenta-
tion on S3DIS [2], ScanNetV2 [11], ShapeNetPart [71] and Synthia 4D [50]; and
object detection on SUN RGB-D [31,53,55,65] and ScanNetV2. Remarkably, our
results indicate improved performance across all datasets and tasks (See Table 1
for a summary of the results). In addition, we found a relatively small advantage
to pre-training with supervision. This implies that future efforts in collecting
data for pre-training should favor scale over precise annotations.

Our contributions can be summarized as follows:

– We evaluate, for the first time, the transferability of learned representation
in 3D point clouds to high-level scene understanding.
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– Our results indicate that unsupervised pre-training improves performance
across downstream tasks and datasets, while using a single unified archi-
tecture, source set and objective function.

– Powered by unsupervised pre-training, we achieve a new state-of-the-art per-
formance on 6 different benchmarks.

– We believe these findings would encourage a change of paradigm on how we
tackle 3D recognition and drive more research on 3D representation learning.

2 Related Work

Representation Learning in 3D. Deep neural networks are notoriously data
hungry. This renders the ability to transfer learned representations between
datasets and tasks extremely powerful. In 2D vision it has led to a surge of
interest in finding optimal pretext unsupervised tasks [3,5,8,10,14,18,26,27,38–
41,64,77,78,81]. We note that while many of these tasks are low-level (e.g. pixel
or patch level reconstruction), they are evaluated based on their transferability
to high-level tasks such as object detection. Being much harder to annotate,
3D tasks are potentially the biggest beneficiaries of unsupervised- and transfer-
learning. This was shown in several works on single object tasks like reconstruc-
tion, classification and part segmentation [1,16,21,22,34,51,62,69]. Yet, gener-
ally much less attention has been devoted to representation learning in 3D that
extends beyond the single-object level. Further, in the few cases that did study
it, the focus was on low-level tasks like registration [12,15,75]. In contrast, here
we wish to push forward research in 3D representation learning by focusing on
transferability to more high-level tasks on more complex scenes.

Deep Architectures for Point Cloud Processing. In this work we focus
on learning useful representation for point cloud data. Inspired by the success
in 2D domain, we conjecture that an important ingredient in enabling such
progress is the evident standardization of neural architectures. Canonical exam-
ples include VGGNet [54] and ResNet/ResNeXt [25,66]. In contrast, point cloud
neural network design is much less mature, as is apparent by the abundance of
new architectures that have been recently proposed. This has multiple reasons.
First, is the challenge of processing unordered sets [37,45,48,74]. Second, is the
choice of neighborhood aggregation mechanism which could either be hierarchi-
cal [16,32,33,46,76], spatial CNN-like [29,35,57,68,79], spectral [58,60,72] or
graph-based [52,59,63,67]. Finally, since the points are discrete samples of an
underlying surface, continuous convolutions have also been considered [4,61,70].
Recently Choy et al. proposed the Minkowski Engine [9], an extension of sub-
manifold sparse convolutional networks [20] to higher dimensions. In particular,
sparse convolutional networks facilitate the adoption of common deep architec-
tures from 2D vision, which in turn can help standardize deep learning for point
cloud. In this work, we use a unified UNet [49] architecture built with Minkowski
Engine as the backbone network in all experiments and show it can gracefully
transfer between tasks and datasets.
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3 PointContrast Pre-training

In this section, we introduce our unsupervised pre-training pipeline. First, to
motivate the necessity of a new pre-training scheme, we conduct a pilot study
to understand the limitations of existing practice (pre-training on ShapeNet) in
3D deep learning (Sect. 3.1). After briefly reviewing an inspirational local fea-
ture learning work Fully Convolutional Geometric Features (FCGF) (Sect. 3.2),
we introduce our unsupervised pre-training solution, PointContrast, in terms of
pretext task (Sect. 3.3), loss function (Sect. 3.4), network architecture (Sect. 3.5)
and pre-training dataset (Sect. 3.6).

Fig. 1. Training from scratch vs. fine-tuning with ShapeNet pretrained weights.

3.1 Pilot Study: Is Pre-training on ShapeNet Useful?

Previous works on unsupervised 3D representation learning [1,16,21,22,34,62,
69] mainly focused on ShapeNet [7], a dataset of single-object CAD models. One
underlying assumption is that by adopting ShapeNet as the ImageNet counter-
part in 3D, features learned on synthetic single objects could transfer to other
real-world applications. Here we take a step back and reassess this assumption
by studying a straightforward supervised pre-training setup: we simply pre-train
an encoder network on ShapeNet with full supervision, and fine-tune it with a
U-Net on a downstream task (S3DIS semantic segmentation). Based on results
in 2D representation learning, we use full supervision here as an upper bound
to what could be gained from pre-training. We train a sparse ResNet-34 model
(details to follow in Sect. 3.5) for 200 epochs. The model achieves a high valida-
tion accuracy of 85.4% on ShapeNet classification task. In Fig. 1, we show the
downstream task training curves for (a) training from scratch and (b) fine-tuning
with ShapeNet pretrained weights. Critically, one can observe that ShapeNet
pre-training, even in the supervised fashion, hampers downstream task learning.
Among many potential explanations, we highlight two major concerns:

– Domain gap between source and target data: Objects in ShapeNet are
synthetic, normalized in scale, aligned in pose, and lack scene context. This
makes pre-training and fine-tuning data distributions drastically different.
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Fig. 2. PointContrast: pretext task for 3D pre-training.

Table 1. Summary of downstream fine-tuning tasks. Compared to the baseline learning
paradigm of training from scratch, which is dominant in 3D deep learning, our unsu-
pervised pre-training method PointContrast boosts the performance across the board
when finetuning on a diverse set of high-level 3D understanding tasks. ∗ indicates
results trained using only 1% of the training data.

PointContrast: downstream tasks for fine-tuning

Datasets Real/Synth. Complexity Env. Task Rel.gain

S3DIS Real Entire floor, office Indoor Segmentation (+2.7%) mIoU

SUN RGB-D Real Medium-sized cluttered rooms Indoor Detection (+3.1%) mAP0.5

ScanNetV2 Real Large rooms Indoor
Segmentation (+1.9%) mIoU

Detection (+2.6%) mAP0.5

ShapeNet Synth. Single objects Indoor &

outdoor

Classification (+4.0%) Acc.∗

ShapeNetPart Synth. Object parts Indoor &

outdoor

Segmentation (+2.2%) mIoU∗

Synthia 4D Synth. Street scenes, driving envs. Outdoor Segmentation (+3.3%) mIoU

– Point-level representation matters: In 3D deep learning, the local geo-
metric features, e.g. those encoded by a point and its neighbors, have proven
to be discriminative and critical for 3D tasks [45,46]. Directly training on
object instances to obtain a global representation might be insufficient.

This led us to rethink the problem: if the goal of pre-training is to boost
performance across many real world tasks, exploring pre-training strategies on
single objects might offer limited potential. (1) To address the domain gap con-
cern, it might be beneficial to directly pre-train the network on complex scenes
with multiple objects, to better match the target distributions; (2) to capture
point-level information, we need to design a pretext task and corresponding net-
work architecture that is not only based on instance-level/global representations,
but instead can capture dense/local features at the point level.

3.2 Revisiting Fully Convolutional Geometric Features (FCGF)

Here we revisit a previous approach FCGF [10] designed to learn geometric
features for low-level tasks (e.g. registration) as our work is mainly inspired
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by FCGF. FCGF is a deep learning based algorithm that learns local feature
descriptors on correspondence datasets via metric learning. FCGF has two major
ingredients that help it stand out and achieve impressive results in registration
recall: (1) a fully-convolutional design and (2) point-level metric learn-
ing. With a fully-convolutional network (FCN) [36] design, FCGF operates on
the entire input point cloud (e.g. full indoor or outdoor scenes) without hav-
ing to crop the scene into patches as done in previous works; this way the local
descriptors can aggregate information from a large number of neighboring points
(up to the extent of receptive field size). As a result, point-level metric learning
becomes natural. FCGF uses a U-Net architecture that has full-resolution out-
put (i.e. for N points, the network outputs N associated feature vectors), and
positive/negative pairs for metric learning are defined at the point level.

Despite having a fundamentally different goal in mind, FCGF offers inspira-
tions that might address the pretext task design challenges: A fully-convolutional
design will allow us to pre-train on the target data distributions that involve
complex scenes with a large number of points, and we could define the pretext
task directly on points. Under this perspective, we pose the question: Can we
repurpose FCGF as the pretext task for high-level 3D understanding?

Algorithm 1 General Framework of PointContrast
Input: Backbone architecture NN; Dataset X = {xi ∈ R

N×3}; Point feature dimension D;
Output: Pre-trained weights for NN.
for each point cloud x in X do

- From x, generate two views x1 and x2.
- Compute correspondence mapping (matches) M between points in x1 and x2.
- Sample two transformations T1 and T2.
- Compute point features f1, f2 ∈ R

N×D by
f1 = NN(T1(x1)) and f2 = NN(T2(x2)).
- Backprop. to update NN with contrastive loss Lc(f1, f2) on the matched points.

3.3 PointContrast as a Pretext Task

FCGF focuses on local descriptor learning for low-level tasks only. In contrast,
a good pretext task for pre-training aims to learn network weights that are
universally applicable and useful to many high-level 3D understanding tasks.
To take the inspiration of FCGF and create such pretext tasks, there are sev-
eral design choices that need to be revisited. In terms of architecture, since
inference speed is a major concern in registration tasks, the network used in
FCGF is very light-weight; Contrarily, the success of pre-training relies on over-
parameterized networks, as clearly evidenced in other domains [8,13]. In terms of
dataset, FCGF uses domain-specific registration datasets such as 3DMatch [75]
and KITTI odometry [17], which lack both scale and generality. Finally, in terms
of loss design, contrastive losses explored in FCGF are tailored for registration
and it is interesting to explore other alternatives.

In Algorithm 1, we summarize the overall pretext task framework explored in
this work. We name the framework PointContrast, since the high-level strategy
of this pretext task is, contrasting—at the point level—between two transformed
point clouds. Conceptually, given a point cloud x sampled from a certain distri-
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bution, we first generate two views x1 and x2 that are aligned in the same world
coordinates. We then compute the correspondence mapping M between these
two views. If (i, j) ∈ M then point x1

i and point x2
j are a pair of matched points

across two views. We then sample two random geometric transformations T1

and T2 to further transform the point clouds in two views. The transformation
is what could make the pretext task challenging as the network needs to learn
certain equivariance with respect to the geometric transformation imposed. In
this work, we mainly consider rigid transformation including rotation, translation
and scaling. Further details are provided in Appendix. Finally, a contrastive loss
is defined over points in two views: we minimize the distance for matched points
and maximize the distance of unmatched points. This framework, though coming
from a very different motivation (metric learning for geometric local descriptors),
shares a strikingly similar pipeline with recent contrastive-based methods for 2D
unsupervised visual representation learning [8,23,64]. The key difference is that
most work for 2D focuses on contrasting between instances/images, while in our
work the contrastive learning is done densely at the point level.

3.4 Contrastive Learning Loss Design

Hardest-Contrastive Loss. The first loss function, hardest-contrastive loss
we try, is borrowed from the best-performing loss design proposed in FCGF [10],
which adopts a hard negative mining scheme in traditional margin-based con-
trastive learning formulation,

Lc =
∑

(i,j)∈P

{[
d(fi, fj) − mp

]2
+/|P| + 0.5

[
mn − min

k∈N d(fi, fk)
]2
+/|Ni| + 0.5

[
mn − min

k∈N d(fj , fk)
]2
+/|Nj |

}

Here P is a set of matched (positive) pairs of points x1
i and x2

j from two views
x1 and x2, and f1i and f2j are associated point features for the matched pair. N
is a randomly sampled set of non-matched (negative) points which is used for
the hardest negative mining, where the hardest sample is defined as the closest
point in the L2 normalized feature space to a positive pair. [x]+ denotes function
max(0, x). mp = 0.1 and mn = 1.4 are margins for positive and negative pairs.

PointInfoNCE Loss. Here we propose an alternative loss design for Point-
Contrast. InfoNCE proposed in [40] is widely used in recent unsupervised rep-
resentation learning approaches for 2D visual understanding. By modeling the
contrastive learning framework as a dictionary look-up process [23], InfoNCE
poses contrastive learning as a classification problem and is implemented with a
Softmax loss. Specifically, the loss encourages a query q to be similar to its pos-
itive key k+ and dissimilar to, typically many, negative keys k−. One challenge
in 2D is to scale the number of negative keys [23].
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However, in the domain of 3D, we have a different problem: usually the
real-world 3D datasets are much smaller in terms of instance count, but the
number of points for each instance (e.g. a indoor or outdoor scene) can be huge,
i.e. 100K+ points even from one RGB-D frame. This unique property of 3D
data property, together with the original motivation to modelling point level
information, inspire us to propose the following PointInfoNCE loss:

Lc = −
∑

(i,j)∈P
log

exp(fi · fj/τ)∑
(·,k)∈P exp(fi · fk/τ)

Here P is the set of all the positive matches from two views. In this formulation,
we only consider points that have at least one match and do not use additional
non-matched points as negatives. For a matched pair (i, j) ∈ P, point feature
f1i will serve as the query and f2j will serve as the positive key k+. We use point
feature f2k where (·, k) ∈ P and k �= j as the set of negative keys. In practice, we
sample a subset of 4096 matched pairs from P for faster training.

Compared to hardest-contrastive loss, the PointInfoNCE loss has a simpler
formulation with less hyperparatmers. Perhaps more importantly, due to the
large number of negative distractors, it is more robust against mode collapsing
(features collapsed to a single vector) than the hardest-contrastive loss. In our
experiments, we find that hard-contrastive loss is unstable and hard to train:
the representation often collapses with extended training epochs (which is also
observed in FCGF [10]).

3.5 A Sparse Residual UNet as Shared Backbone

We use a Sparse Residual UNet (SR-UNet) architecture in this work. It is a 34-
layer UNet [49] architecture that has an encoder network of 21 convolution layers
and a decoder network of 13 convolution/deconvolution layers. It follows the 2D
ResNet basic block design and each conv/deconv layer in the network are fol-
lowed by Batch Normalization (BN) [30] and ReLU activation. The overall UNet
architecture has 37.85M parameters. We provide more information and a visu-
alization of the network in Appendix. The SR-UNet architecture was originally
designed in [9] that achieved significant improvement over prior methods on the
challenging ScanNet semantic segmentation benchmark. In this work we explore
if we can use this architecture as a unified design for both the pre-training task
and a diverse set of fine-tuning tasks.

3.6 Dataset for Pre-training

For local geometric feature learning approaches, including FCGF [10], training
and evaluation are typically conducted on domain and task specific datasets such
as KITTI odometry [17] or 3DMatch [75]. Common registration datasets are
typically constrained in either scale (training samples collected from just dozens
of scenes), or generality (focusing on one specific application scenario, e.g. indoor
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scenes or LiDAR scans for self-driving car), or both. To facilitate future research
on 3D unsupervised representation learning, in our work we utilize the ScanNet
dataset for pre-training, aiming to address the scale issue. ScanNet is a collection
of ∼1500 indoor scenes. Created with a light-weight RGB-D scanning procedure,
ScanNet is currently the largest of its kind.1

Here we create a point cloud pair dataset on top of ScanNet for the pretrain-
ing framework shown in Fig. 2. Given a scene x, we extract pairs of partial scans
x1 and x2 from different views. More precisely, for each scene, we first sub-sample
RGB-D scans from the raw ScanNet videos every 25 frames, and align the 3D
point clouds in the same world coordinates (by utilizing estimated camera poses
for each frame). Then we collect point cloud pairs from the sampled frames and
require that two point clouds in a pair have at least 30% overlap. We sample a
total number of 870K point cloud pairs. Since the partial views are aligned in
ScanNet scenes, it is straight-forward to compute the correspondence mapping
M between two views with nearest neighbor search.

Although ScanNet only captures indoor data distributions, as we will see
in Section 4.4, surprisingly it can generalize to other target distributions. We
provide additional visualizations for the pre-training dataset in Appendix.

4 Fine-Tuning on Downstream Tasks

The most important motivation for representation learning is to learn features
that can transfer well to different downstream tasks. There could be different
evaluation protocols to measure the usefulness of the learned representation. For
example, probing with a linear classifier [19], or evaluating in a semi-supervised
setup [26]. The supervised fine-tuning strategy, where the pre-trained weights are
used as the initialization and are further refined on the target downstream task,
is arguably the most practically meaningful way of evaluating feature transfer-
ability. With this setup, good features could directly lead to performance gains
in downstream tasks.

Under this perspective, in this section we perform extensive evaluations of the
effectiveness of PointContrast framework by fine-tuning the pre-trained weights
on multiple downstream tasks and datasets. We aim to cover a diverse suit of
high-level 3D understanding tasks of different natures such as semantic segmen-
tation, object detection and classification. In all experiments we use the same
backbone network, pre-trained on the proposed ScanNet pair dataset (Sect. 3.6)
using both PointInfoNCE and Hardest-Constrastive objectives.

4.1 ShapeNet: Classification and Part Segmentation

Setup. In Sect. 3.1 we have observed that weights learned on supervised
ShapeNet classification are not able to transfer well to scene-level tasks. Here we
explore the opposite direction: Are PointContrast features learned on ScanNet

1 Admittedly, ScanNet is still much smaller in scale compared to 2D datasets.
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Table 2. ShapeNet classification. Top: classification accuracy with limited labeled
training data for finetuning. Bottom: classification accuracy on the least represented
classes in the data (tail-classes). In all cases, PointContrast boosts performance. Rel-
ative improvement increases with scarcer training data and on less frequent classes.

Evaluating on all 55 classes 1% data 10% data 100% data

Trained from scratch 62.2 77.9 85.1

PointConstrast (Hardest-Contrastive) 66.2 (+4.0) 79.0 (+1.1) 85.7 (+0.6)

PointConstrast (PointInfoNCE) 65.8 (+3.6) 78.8 (+0.9) 85.7 (+0.6)

Using 100% training data 10 tail classes 30 tail classes All 55 classes

Train from scratch 65.0 70.9 85.1

PointConstrast (Hardest-Contrastive) 70.9 (+5.9) 72.9 (+2.0) 85.7 (+0.6)

PointConstrast (PointInfoNCE) 67.8 (+2.8) 72.0 (+1.1) 85.7 (+0.6)

Table 3. ShapeNet part segmentation. Replacing the backbone architecture with
SR-UNet already boosts performance. PointContrast pre-training further adds a sig-
nificant gain, and outshines where labels are most limited.

Methods IoU (1% data) IoU (5% data) IoU (100% data)

SO-Net [34] 64.0 69.0 –

PointCapsNet [80] 67.0 70.0 –

Multitask Unsupervised [22] 68.2 77.7 –

Train from scratch 71.8 79.3 84.7

PointConstrast (Hardest-Contrastive) 74.0 (+2.2) 79.9 (+0.6) 85.1 (+0.4)

PointConstrast (PointInfoNCE) 73.1 (+1.3) 79.9 (+0.6) 85.1 (+0.4)

useful for tasks on ShapeNet? To recap, ShapeNet [7] is a dataset of synthetic
3D objects of 55 common categories. It was curated by collecting CAD models
from online open-sourced 3D repositories. In [71], part annotations were added
to a subset of ShapeNet models segmenting them into 2–5 parts. In order to pro-
vide a comparison with existing approaches, here we utilize the ShapeNetCore
dataset (SHREC 15 split) for classification, and the ShapeNet part dataset for
part segmentation, respectively. We uniformly sample point clouds of 1024 points
from each model for classification and 2048 points for part segmentation. Albeit
containing overlapping indoor object categories with ScanNet, this dataset is
substantially different as it is synthetic, and contains only single objects. We also
follow recent works on 3D unsupervised representation learning [22] to explore a
more challenging setup: using a very small percentage (e.g. 1%–10%) of training
data to fine-tune the pre-trained model.

Results. As shown in Table 2 and Table 3, for both datasets, the effectiveness of
pre-training are correlated with the availability of training data. In the ShapeNet
classification task (Table 2), pre-training helps most where less training data is
available, achieving a 4.0% improvement over the training-from-scratch baseline
with the hardest-negative objective. We also note that ShapeNet is a class-
imbalanced dataset and the minority (tail) classes are very infrequent. When
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using 100% of the training data, pre-training provides a class-balancing effect,
as it boosts performance more on underrepresented (tail) classes. Table 3 shows a
similar effects of pre-training on part segmentation performance. Notably, using
SR-UNet backbone architecture already boosts performance; yet, pre-training is
able to provide further gains, especially when training data is scarce.

4.2 S3DIS Segmentation

Setup. Stanford Large-Scale 3D Indoor Spaces (S3DIS) [2] dataset comprises
3D scans of 6 large-scale indoor areas collected from 3 office buildings. The scans
are represented as point clouds and annotated with semantic labels of 13 object
categories. Among the datasets used here for evaluation S3DIS is probably the
most similar to ScanNet. Transferring features to S3DIS represents a typical sce-
nario for fine-tuning: the downstream task dataset is similar yet much smaller
than the pre-training dataset. For the commonly used benchmark split (“Area
5 test”), there are only about 240 samples in the training set. We follow [9] for
pre-processing, and use standard data augmentations. See Appendix for details.

Results. Results are summarized in Table 4. Again, merely switching the SR-
UNet architecture, training from scratch already improves upon prior art. Yet,
fine-tuning the features learned by PointContrast achieves markedly better seg-
mentation results in mIoU and mAcc. Notably, the effect persists across both
loss types, achieving a 2.7% mIoU gain using Hardest-Contrastive loss and an
on-par improvement of 2.1% mIoU for the PointInfoNCE variant.

Table 4. Stanford Area 5 Test (Fold 1) (S3DIS). Replacing the backbone network
with SR-UNet improves upon prior art. Using PointContrast adds further significant
boost with a mild preference for Hardest-contrastive over the PointInfoNCE objective.
See Appendix for more methods in comparison.

Methods mIoU mAcc

PointNet [45] 41.1 49.0

PointCNN [35] 57.3 63.9

MinkowskiNet32 [9] 65.4 71.7

Train from scratch 68.2 75.5

PointConstrast (Hardest-Contrastive) 70.9 77.0

PointConstrast (PointInfoNCE) 70.3 76.9

4.3 SUN RGB-D Detection

Setup. We now attend to a different high-level 3D understanding task: object
detection. Compared to segmentation tasks that estimate point labels, 3D
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object detection predicts 3D bounding boxes (localization) and their correspond-
ing object labels (recognition). This calls for an architectural modification as
the SR-UNet architecture does not directly output bounding box coordinates.
Among many different choices [28,42,44,73], we identify the recently proposed
VoteNet [43] as a good candidate for three main reasons. First, VoteNet is
designed to work directly on point clouds with no additional input (e.g. images).
Second, VoteNet originally uses PointNet++ [46] as the backbone architecture
for feature extraction. Replacing this with a SR-UNet requires a minimal mod-
ification, keeping the proposal pipeline intact. In particular, we reuse the same
hyperparameters. Third, VoteNet is the current state-of-the-art method that
uses geometric features only, rendering an improvement markedly useful. We
evaluate the detection performance on the SUN RGB-D dataset [55], a collec-
tion of single view RGB-D images. The train set contains 5K images annotated
with amodal, 3D oriented bounding boxes for objects from 37 categories.

Results. We summarize the results in Table 5. We find that by simply switching
in the backbone network, our baseline results (training from scratch) with the
SR-UNet architecture achieves worse results (-1.4% mAP@0.25). This may be
attributed to the fact that VoteNet design and hyperparamter settings were tai-
lored to its PointNet++ backbone. However, PointContrast gracefully closes the
gap by showing a +3.1% gain on mAP@0.5, which also sets a new state-of-the-art
in this metric. The performance gain with harder evaluation metric (mAP@0.5)
suggests that the PointContrast pre-training can greatly help localization.

Table 5. SUN RGB-D detection results. PointContrast demonstrates a substan-
tial boost compared to training from scratch. We observe a larger improvement in
localization as manifested by the ΔmAP being larger for @0.5 than @0.25.

Methods Input mAP@0.5 mAP@0.25

VoteNet [43] Geo – 57.0

VoteNet [43] Geo+Height 32.9 57.7

Train from scratch Geo 31.7 55.6

PointContrast(Hardest-Contrastive) Geo 34.5 57.5

PointContrast(PointInfoNCE) Geo 34.8 57.5

Table 6. Segmentation results on the 4D Synthia test set. All networks here are
SR-UNet with 3D kernels, trained on individual 3D frames without temporal modeling.

Methods mIoU mAcc

MinkowskiNet32 [9] 78.7 91.5

Train from scratch 79.8 91.5

PointContrast (Hardest-contrastive) 82.6 93.7

PointContrast (PointInfoNCE) 83.1 93.7
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4.4 Synthia4D Segmentation

Setup. Synthia4D [50] is a large synthetic dataset designed to facilitate the
training of deep neural networks for visual inference in driving scenarios. Photo-
realistic renderings are generated from a virtual city, allowing dense and precise
annotations of 13 semantic classes, together with pixel-accurate depth. We follow
the train/val/test split as prescribed by [9] in the clean setting. In the context
of this work, Synthia4D is especially interesting since it is probably the most
distant from our pre-training set (outdoor v.s. indoor, synthetic v.s. real). We
test the segmentation performance using 3D SR-UNet on a per-frame basis.

Results. PointContrast pre-training brings substantial improvement over the
baseline model trained from scratch (+2.3% mIoU) as seen in Table 6. PointIn-
foNCE performs noticeably better than the hardest-contrastive loss. With unsu-
pervised pre-training, the overall results are much better than the previous state-
of-the-art reported in [9]. Note that in [9] it has been shown that adding the tem-
poral learning (i.e. using a 4D network instead of a 3D one) brings additional
benefit. To use 3D pre-trained weights for a 4D network with an additional tem-
poral dimension, we can simply inflate the convolutional kernels, following the
standard practice in 2D video recognition [6]. We leave it as a future work.

Table 7. Segmentation results on ScanNet validation set. PointContrast boosts
performance on the “in-domain” transfer task where the pre-training and fine-tuning
datasets come from a common source, showing the usefulness of pre-training even when
labels are available.

Methods mIoU mAcc

Train from scratch 72.2 80.7

PointContrast(Hardest-Contrastive) 73.3 81.0

PointContrast(PointInfoNCE) 74.1 81.6

Table 8. 3D object detection results on ScanNet validation set. Similarly to in-
domain segmentation task, here as well PointContrast boost performance on detection,
setting a new best result over prior art. See Appendix for more methods in comparison.

Methods Input mAP@0.5 mAP@0.25

DSS [28,56] Geo+RGB 6.8 15.2

3D-SIS [28] Geo+RGB (5 Views) 22.5 40.2

VoteNet [43] Geo+Height 33.5 58.6

Train from scratch Geo 35.4 56.7

PointContrast(Hardest-Contrastive) Geo 37.3 59.2

PointContrast(PointInfoNCE) Geo 38.0 58.5
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4.5 ScanNet: Segmentation and Detection

Setup. Although typically the source dataset for pre-training and the target
dataset for fine-tuning are different, because of the specific multi-view contrastive
learning pipeline for pre-training, it is likely that PointContrast can learn dif-
ferent representations (e.g. invariance/equivariance to rigid transformations or
robustness to noise) compared to directly training with supervision. Thus it
is interesting to see whether the pre-trained weights can further improve the
results on ScanNet itself. We use ScanNet semantic segmentation and object
detection tasks to test our hypothesis. For the segmentation experiment, we
use the SR-UNet architecture to directly predict point labels. For the detection
experiment, we again follow VoteNet [43] and simply switch the original back-
bone network with the SR-UNet without other modifications to the detection
head (See Appendix for details).

Results. Results are summarized in Table 7 and Table 8. Remarkably, on both
detection and segmentation benchmark, models pre-trained with PointContrast
outperform those trained from scratch. Notably, PointInfoNCE objective per-
forms better than the Hardest-contrastive one, achieving a relative improve-
ment of +1.9% in terms of segmentation mIoU and 2.6%+ in terms of detection
mAP@0.5. Similar to SUN RGB-D detection, here we also observe that Point-
Contrast features help most for localization as indicated by the larger margin of
improvement for mAP@0.5 than mAP@0.25.

4.6 Analysis Experiments and Discussions

In this section we show additional experiments to provide more insights on our
pre-training framework. We use S3DIS segmentation for the experiments below.

Supervised Pre-training. While the focus of this work is unsupervised pre-
training, a natural baseline is to compare against supervised pre-training. To
this end, we use the training-from-scratch baseline for the segmentation task on
ScanNetV2 and finetune the network on S3DIS. This yields an mIoU of 71.2%,
which is only 0.3% better than PointContrast unsupervised pre-training. We
deem this a very encouraging signal that suggests that the gap between super-
vised and unsupervised representation learning in 3D has been mostly closed (cf.
years of effort in 2D). One might argue that this is due to the limited quality
and scale of ScanNet, but even at this scale the amount of labor involved in
annotating thousands of rooms is large. The outcome of this, complements the
conclusion we had so far: not only should we put resources into creating large-
scale 3D datasets for pre-training; but if facing a trade-off between scaling the
data size and annotating it, we should favor the former.

Fine-Tuning vs From-Scratch Under Longer Training Schedule. Recent
study in 2D vision [24] suggests that simply by training from scratch for more
epochs might close the gap from ImageNet pre-training. We conduct additional
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experiment to train the network from scratch with 2× and 3× schedules on
S3DIS, relative to the 1× schedule of our default setup (10K iterations with
batch size 48). We found that validation mIoU does not improve with longer
training. In fact, the model exhibits overfitting due to the small dataset size,
achieving 66.7% and 66.1% mIoU at 20K and 30K iteration, respectively. This
suggests that potentially many of the 3D datasets could fall into the “breakdown
regime” [24] where network pre-training is essential for good performance.

Holistic Scene as a Single View for PointContrast. To show that the
multi-view design in PointContrast is important, we try a different variant where
instead of having partial views x1 and x2, we directly use the reconstructed
point cloud x (a full scene in ScanNet) PointContrast. We still apply indepen-
dent transformations T1 and T2 to the same x. We tried different variants and
augmentations such as random cropping, point jittering, and dropout. We also
tried different transformations for T1 and T2 of different degrees of freedom.
However, with the best configuration we can get a validation mIoU on S3DIS
of 68.35, which is just slightly better than the training from scratch baseline
of 68.17. This suggests that the multi-view setup in PointContrast is critical.
Potential reasons include: much more abundant and diverse training samples;
natural noise due to camera instability as good regularization, as also observed
in [75].
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