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Abstract. Humans can envision a realistic photo given a free-hand
sketch that is not only spatially imprecise and geometrically distorted
but also without colors and visual details. We study unsupervised sketch
to photo synthesis for the first time, learning from unpaired sketch and
photo data where the target photo for a sketch is unknown during train-
ing. Existing works only deal with either style difference or spatial defor-
mation alone, synthesizing photos from edge-aligned line drawings or
transforming shapes within the same modality, e.g., color images.

Our insight is to decompose the unsupervised sketch to photo syn-
thesis task into two stages of translation: First shape translation from
sketches to grayscale photos and then content enrichment from grayscale
to color photos. We also incorporate a self-supervised denoising objec-
tive and an attention module to handle abstraction and style variations
that are specific to sketches. Our synthesis is sketch-faithful and photo-
realistic, enabling sketch-based image retrieval and automatic sketch gen-
eration that captures human visual perception beyond the edge map of
a photo.

1 Introduction

Sketches, i.e., rapidly executed freehand drawings, make an intuitive and power-
ful visual expression (Fig. 1). There is much research on sketch recognition [7,35],
sketch parsing [26,27], and sketch-based image or video retrieval [21,28,36]. We
study how to imagine a realistic photo given a sketch that is spatially imprecise
and missing colorful details, by learning from unpaired sketches and photos.

Sketch to photo synthesis is challenging for three reasons.
1) Sketches of objects often do not match their shapes in photos, since

sketches commonly drawn by amateurs have large spatial and geometrical distor-
tion. Translating a sketch to a photo thus requires shape rectification. However,
it is not trivial to rectify shape distortion in a sketch, as line strokes are only
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Fig. 1. Comparisons of image types and challenges of sketch to photo synthesis. Left:
A single object shape could have multiple distinctive colorings yet a common or similar
grayscale. Edges extracted by Canny and HED detectors lose colorful details but align
well with boundaries in the color photo, whereas sketches are more abstract lines drawn
with deformations and style variations. Row 2 shows their lines overlaid on the grayscale
photo. Right: Human vision can imagine a realistic photo given a free-hand sketch.
Our goal is to equip computer vision with the same imagination capability.

suggestive of the actual shapes and locations, and the extent of shape fidelity
varies widely between individuals. In Fig. 1, the three sketches for the same shoe
are very different both overall proportions and local stroke styles.

2) Sketches are color-less and lacking details. Drawn in black strokes on
white paper, sketches outline mostly object boundaries and characteristic interior
markings. To synthesize a photo, shading and colorful textures must be filled in
properly. However, it is not trivial to fill in details either. Since a sketch could
depict multiple photos, any synthesizer must have the capability to produce not
only realistic but also diverse photos for a single sketch.

3) Sketches may not have corresponding photos. Free-hand sketches can be
created from observation, memory, or pure imagination; they are not so widely
available as photos, and those with corresponding photos are even rarer. A
few sketch datasets exist in computer vision. TU-Berlin [6] and QuickDraw
[11] contain sketches only, with 20,000 and 50 million instances over 250 and
345 categories respectively. Contour Drawing [19] and Scenesketchy [39] have
sketch-photo image pairs at the scene level; their sketches are either contour
tracings or cartoon-style line drawings, neither representative of real-world free-
hand sketches. Sketchy [28] has only 500 sketches paired with 100 photos in each
of 125 categories. ShoeV2 and ChairV2 [36] contain 6,648/2,000 and 1,297/400
sketches/photos in a single semantic category of shoes and chairs respectively. To
enable data-driven learning of sketch to photo synthesis, we must handle limited
sketch data and unpaired sketches and photos.

Existing works focus on either shape or color translation alone (Fig. 2). 1)
Most image synthesis that deals with shape transfiguration tends to stay in the
same visual domain, e.g. changing the picture of a dog to that of a cat [15,22],
where visual details are comparable in the color image. 2) Sketches are a special
case of line drawings, and the most studied case of line drawings in computer
vision is the edge map extracted automatically from a photo. Such an edge map
based drawing to photo synthesis task does not have the spatial deformation
problem between sketches and photos, and realistic photos can be synthesized
with [16,31] or without [38] paired training data between drawings and photos.
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Fig. 2. Comparison of sketch to photo synthesis settings and results. Left: Three
training scenarios on whether line drawings and photos are provided as paired train-
ing instances and whether line drawings are spatially aligned with the photos. Edges
extracted from photos are aligned, whereas sketches are not. The bottom panel com-
pares synthesis results from representative approaches in each setting, indicated by the
same line/bracket color. Ours are superior to unsupervised edge map to photo methods
(cycleGAN [38], MUINT [15], UGATIT [18]) and even supervised methods (Pix2Pix
[16]) trained on paired data. Right: Our unsupervised sketch-to-photo synthesis model
has two separate stages handling spatial deformation and color enrichment respectively:
Shape translation learns to synthesize a grayscale photo given a sketch, from unpaired
sketch set and photo set, whereas color enrichment learns to fill the grayscale with
colorful details given an optional reference photo.

We will show that existing methods fail in sketch to photo synthesis when both
shape and color translations are needed simultaneously.

We consider learning sketch to photo synthesis from sketches and photos of
the same object category such as shoes. There is no pairing information between
individual sketches and photos; these two sets can be independently collected.

Our insight for unsupervised sketch to photo synthesis is to decompose the
task into two separate translations (Fig. 2). Our two-stage model performs first
shape translation in grayscale and then content fill-in in color. Stage 1) Shape
translation learns to synthesize a grayscale photo given a sketch, from unpaired
sketch set and photo set. Geometrical distortions are eliminated at this step.
To handle abstraction and drawing style variations, we apply a self-supervised
learning objective to noise sketch compositions, and also introduce an attention
module for the model to ignore distractions. Stage 2) Content enrichment learns
to fill the grayscale with details, including colors, shading, and textures, given
an optional reference image. It is designed to work with or without reference
images. This capability is enabled by a mixed training strategy. Our model can
thus produce diverse outputs on demand.

Our model links sketches to photos and can be used directly in sketch-based
photo retrieval. Another exciting corollary result from our model is that we can
also synthesize a sketch given a photo, even from unseen semantic categories.
Strokes in a sketch capture information beyond edge maps defined primarily on
intensity contrast and object exterior boundaries. Automatic photo to sketch
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generation could lead to more advanced computer vision capabilities and serve
as a powerful human-user interaction device.

Our work makes the following contributions. 1) We propose the first two-
stage unsupervised model that can generate diverse, sketch-faithful, and photo-
realistic images from a single free-hand sketch. 2) We introduce a self-supervised
learning objective and an attention module to handle abstraction and style vari-
ations in sketches. 3) Our work not only enables sketch-based image retrieval
but also delivers an automatic sketcher that captures human visual perception
beyond the edge map of a photo. See http://sketch.icsi.berkeley.edu.

2 Related Works

Sketch-Based Image Synthesis. While much progress has been made on
sketch recognition [6,35,37] and sketch-based image retrieval [9,13,20,21,28,36],
sketch-based image synthesis remains under-explored.

Prior to deep learning (DL), Sketch2Photo [4] and PhotoSketcher [8] compose
a new photo from photos retrieved for a sketch. Sketch2Photo [4] first retrieves
photos based on the class label, then uses the given sketch to filter them and
compose a target photo. PhotoSketcher [8] has a similar pipeline but retrieves
photos based on a rather restrictive sketch and hand-crafted features.

The first DL-based free-hand sketch-to-photo synthesis is SketchyGAN [5],
which trains an encoder-decoder model conditioned on the class label for sketch
and photo pairs. Contextual GAN [23] treats sketch to photo synthesis as an
image completion problem, using the sketch as a weak contextual constraint.
Interactive Sketch [10] focuses on multi-class photo synthesis based on incom-
plete edges or sketches. All of these works rely on paired sketch and photo data
and do not address the shape deformation problem.

Sketches are often used in photo editing [1,25,34], e.g., line strokes are drawn
on a photo to change the shape of a roof. Unlike our sketch to photo synthesis,
these works mainly address a constrained image inpainting problem.

Synthesis from the opposite direction, photo to sketch, has also been studied
[19,29]: The former proposes a hybrid model to synthesize a sketch stroke by
stroke given a photo, whereas the latter aims to generate boundary-like drawings
that capture the outline of the visual scene. Both models require paired data for
training. While photo to sketch is not our focus, our model trained only on shoes
can generate realistic sketches from photos in other semantic categories.

Generative Adversarial Networks (GAN). GAN has a generator (G) and
a discriminator (D): G tries to fake instances that fool D and D tries to detect
fakes from reals. GAN is widely used for realistic image generation [17,24] and
translation across image domains [15,16].

Pix2Pix [16] is a conditional GAN that maps source images to target images;
it requires paired (source,target) data during training. CycleGAN [38] uses a
pair of GANs to map an image from the source domain to the target domain
and then back to the source domain. Imposing a consistency loss over such a
cycle of mappings, it allows both models to be trained together on unpaired

http://sketch.icsi.berkeley.edu
http://sketch.icsi.berkeley.edu
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Fig. 3. Our two-stage model architecture (top) and three major technical components
(bottom) that tackle abstract and style-varying strokes: noise sketch composition for
training data augmentation, a self-supervised de-noising objective, and an attention
module to suppress distracting dense strokes.

source and target images in two different domains. UNIT [22] and MUNIT [15]
are variations of CycleGAN, both achieving impressive performance.

None of these methods work well when the source and target images are
spatially poorly aligned (Fig. 1) and across different appearance domains.

3 Unsupervised Two-Stage Sketch-to-Photo Synthesis

In our unsupervised learning setting, we are given two sets of data in the same
semantic category such as shoes, and no instance pairing is known or available.
Formally, all we have are n sketches {S1, . . . , Sn} and m color photos {I1, . . . , Im}
along with their grayscale versions {G1, . . . , Gm}.

Compared to photos, sketches are spatially imprecise and colorless. To syn-
thesize a photo from a sketch, we deal with these two aspects at separate stages:
We first translate a sketch into a grayscale photo and then translate the grayscale
into a color photo filled with missing details on texture and shading (Fig. 3).

3.1 Shape Translation: Sketch S → Grayscale G

Overview. We first learn to translate sketch S into grayscale photo G. The
goal is to rectify shape deformation in sketches. We consider unpaired sketch
and photo images, not only because paired data are scarce and hard to collect,
but also because heavy reliance on paired data could restrict the model from
recognizing the inherent misalignment between sketches and photos.

A pair of mappings, T : S −→ G and T ′ : G −→ S, each implemented with an
encoder-decoder architecture, are learned with cycle-consistency objectives: S ≈
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T ′(T (S)) and G ≈ T (T ′(G)). Similar to [38], we train two domain discriminators
DG and DS : DG tries to tease apart G and T (S), while DS teases apart S and
T ′(G) (Fig. 3). The predicted grayscale T (S) goes to content enrichment next.

The input sketch may exhibit various levels of abstraction and different draw-
ing styles. In particular, sketches containing dense strokes or noisy details (Fig. 3)
cannot be handled well by a basic CycleGAN model.

To deal with these variations, we introduce two strategies for the model
to extract style-invariant information only: 1) We compose additional noise
sketches to enrich the dataset and introduce a self-supervised objective; 2) We
introduce an attention module to help detect distracting regions.

Noise Sketch Composition. In a rapidly drawn sketch, strokes could be delib-
erately complex, or simply careless and distractive (Fig. 3). We augment limited
sketch data with more noise. Let Snoise = ϕ(S), where ϕ(.) represents composi-
tion. We detect dense strokes and construct a pool of noise masks. We randomly
sample from these masks and artificially generate complex sketches by insert-
ing these dense stroke patterns into original sketches. We generate distractive
sketches by adding a random patch from a different sketch on an existing sketch.
The noise strokes and random patches are used to simulate irrelevant details
in a sketch. We compose such noise sketches on the fly and feed them into the
network with a fixed occurrence ratio.

Self-supervised Objective. We introduce a self-supervised objective to work
with the synthesized noise sketches. For a composed noise sketch, the reconstruc-
tion goal of our model is to reproduce the original clean sketch:

Lss(T, T ′) =
∥
∥S − T ′ (T (Snoise)

)∥
∥
1

(1)

This objective is different from the cycle-consistency loss used on untouched
original sketches. It makes the model ignore irrelevant strokes and put more
efforts on style-invariant strokes in the sketch.

Ignore Distractions with Active Attention. To identify distracting strokes,
we also introduce an attention module. Since most areas of a sketch are blank, the
activation of dense stroke regions is stronger than others. We can thus locate
distracting areas and suppress the activation there accordingly. That is, the
attention module generates an attention map A to be used for re-weighting the
feature representation of sketch S (Eq. 2):

ffinal(S) = (1 − A) � f(S) (2)

where f(.) refers to the feature map and � denotes element-wise multiplication.
Our attention is used for area suppression instead of the usual area highlight.

Our total objective for training a shape translation model is:

min
T,T ′

max
DG,DS

λ1(Ladv(T,DG;S,G) + Ladv(T ′,DS ;G,S))

+λ2Lcycle(T, T ′;S,G) + λ3Lidentity(T, T ′;S,G) + Lss(T, T ′;Snoise).

We follow [38] to add an identity loss Lidentity, which slightly improves the
performance. See the details of each loss in the Supplementary.
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3.2 Content Enrichment: Grayscale G → Color I

Now that we have a predicted grayscale photo G, we learn a mapping C that
turns it into color photo I. The goal at this stage is to enrich the generated
grayscale photo G with missing appearance details.

Since a color-less sketch could have many colorful realizations, many fill-in’s
are possible. We thus model the task as a style transfer task and use an optional
reference color image to guide the selection of a particular style.

We implement C as an encoder (E) and decoder (D) network (Fig. 3). Given
a grayscale photo G as the input, the model outputs a color photo I. The input
G and the grayscale of the output I, specifically the L-channel in CIE Lab
color space of the output should be the same. Therefore we use a self-supervised
intensity loss (Eq. 3) to train the model:

Lit(C) = ‖G − grayscale (C (G))‖1 (3)

We train discriminator DI to ensure that I is also as photo-realistic as I1, . . . , Im.
To achieve the output diversity, we introduce a conditional module that takes

an optional reference image for guidance. We follow AdaIN [14] to inject style
information by adjusting the feature map statistics. Specifically, the encoder
E takes the input grayscale image G and generates a feature map x = E(G),
then the mean and variance of x are adjusted by the reference’s feature map
xref = E(R). The new feature map is xnew = AdaIN(x,xref ) (Eq. 4), which is
subsequently sent to the decoder D for rendering the final output image I:

AdaIN(x,xref) = σ(xref)(
x − μ(x)

σ(x)
) + μ(xref) (4)

Our model can work with or without reference images, in a single network,
enabled by a mixed training strategy. When there is no reference image, only
intensity loss and adversarial loss are used while σ(xref ) and μ(xref ) are set
to 1 and 0 respectively; otherwise, a content loss and style loss are computed
additionally. The content loss (Eq. 5) is used to guarantee that the input and
output images are consistent perceptually, whereas the style loss (Eq. 6) is to
ensure the style of the output is aligned with that of the reference image.

Lcont(C;G,R) = ‖E(D(t)) − t‖1 (5)

Lstyle(C;G,R)=
K∑

i=1

‖μ (φi(D(t)))−μ (φi(R))‖2+
K∑

i=1

‖σ (φi(D(t)))−σ (φi(R))‖2
(6)

where t = AdaIN(E(G), E(R)) (7)

φi(.) denotes a layer of a pre-trained VGG-19 model. In our implementation,
we use relu1 1, relu2 1, relu3 1, relu4 1 layers with equal weights to com-
pute the style loss. Equation 8 shows the total loss for training the content
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enrichment model. Network architectures and further details are provided in the
Supplementary.

min
C

max
DI

λ4Ladv(C, DI ; G, I) + λ5Lit(C) + λ6Lstyle(C; G, R) + λ7Lcont(C; G, R) (8)

4 Experiments and Applications

4.1 Experimental Setup and Evaluation Metrics

Datasets. We train our model on two single-category sketch datasets, ShoeV2
and ChairV2 [36], with 6,648/2,000 and 1,297/400 sketches/photos respectively.
Each photo has at least 3 corresponding sketches drawn by different individuals.
Note that we do not use pairing information at training. Compared to QuickDraw
[11], Sketchy [28], and TU-Berlin [6], sketches in ShoeV2/ChairV2 have more
fine-grained details. They demand like-kind details in synthesized photos and
are thus more challenging as a testbed for sketch to photo synthesis.

Baselines for Image Translation. 1) Pix2Pix [16] is our supervised learning
baseline which requires paired training data. 2) CycleGAN [38] is an unsu-
pervised bidirectional image translation model. It is the first to apply cycle-
consistency with GANs and allows unpaired training data. 3) MUNIT[15] is
also an unsupervised model that could generate multiple outputs given an input.
It assumes that the representation of an image can be decomposed into a content
code and a style code. 4) UGATIT [18] is an attention-based image translation
model, with the attention to help the model focus on the domain-discriminative
regions and thereby improve the synthesis quality.

Training Details. We train our shape translation network for 500 (400) epochs
on shoes (chairs), and train our content enrichment network for 200 epochs. The
initial learning rate is 0.0002, and the input image size is 128×128. We use Adam
optimizer with batch size 1. Following the practice by CycleGAN, we train the
first 100 epochs at the same learning rate and then linearly decrease the rate to
zero until the maximum epoch. We randomly compose complex and distractive
sketches with the possibility of 0.2 and 0.3 respectively. The random patch size
is 50 × 50. When training the content enrichment network, we feed reference
images into the network with possibility 0.2.

Evaluation Metrics. 1) Fréchet Inception Distance (FID). It evaluates
image quality and diversity according to the distance between synthesized and
real samples according to the statistics of activations in layer pool3 of a pre-
trained Inception-v3. A lower FID value indicates higher fidelity. 2) User study
(Quality). It evaluates subjective impressions in terms of similarity and realism.
As in [30], we ask the subject to compare two generated photos and select the one
better fitting their imagination for a given sketch. We sample 50 pairs for each
comparison (more details in Supplementary). 3) Learned perceptual image
patch similarity (LPIPS). It measures the distance between two images. As in
[15,38], we use it to evaluate the diversity of synthesized photos.
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Input Pix2Pix CycleGAN MUNIT UGATIT Ours Ours ref1 Ours ref2

Input Ours Ours ref Input Ours Ours ref Input Ours Ours ref

Fig. 4. Our model can produce high-fidelity and diverse photos from a sketch. Top:
Result comparisons. Most baselines cannot handle this task well. While UGATIT can
generate realistic photos, our results are more faithful to the input sketch, e.g., the
three chair examples. Bottom: Results without (Column 2) or with (Column 3) the
reference image. Our single content enrichment model can work under both settings,
with or without a reference photo (shown in the top right corner).
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Table 1. Benchmarks on ShoeV2/ChairV2. ‘∗’ indicates paired data for training.

Model ShoeV2 ChairV2

FID ↓ Quality ↑ LPIPS ↑ FID ↓ Quality ↑ LPIPS ↑
Pix2Pix∗ 65.09 27.0 0.071 177.79 13.0 0.096

CycleGAN 79.35 12.0 0.0 124.96 20.0 0.0

MUNIT 92.21 14.5 0.248 168.81 6.5 0.264

UGATIT 76.89 21.5 0.0 107.24 19.5 0.0

Ours 48.73 50.0 0.146 100.51 50.0 0.156

Fig. 5. Left: With different references, our model can produce diverse outputs. Mid-
dle: Given sketches of similar shoes drawn by different users, our model can capture
their commonality as well as subtle distinctions. Each row shows input sketch, syn-
thesized grayscale image, synthesized RGB photo. Right: Our model even works for
sketches at different completion stages, delivering realistic closely looking shoes. (Color
figure online)

4.2 Sketch-Based Photo Synthesis Results

Table 1 shows that: 1) Our model outperforms all the baselines in terms of FID
and user studies. Note that all the baselines adopt one-stage architectures. 2) All
the models perform poorly on ChairV2, probably due to more shape variations
but far fewer training data for chairs than for shoes (1:5). 3) Ours outperforms
MUNIT by a large margin, indicating that our task-level decomposition strategy,
i.e., two-stage architecture, is more effective than feature-level decomposition for
this task. 4) UGATIT ranks the second on each dataset. It is also an attention-
based model, showing the effectiveness of attention in image translation tasks.

Comparisons in Fig. 4 and Varieties in Fig. 5 (Left). Our results are more
realistic and faithful to the input sketch (e.g., buckle and logo); our synthesis
with different reference images produces varieties.

Robustness and Sensitivity in Fig. 5 (Middle & Right). We test our
ShoeV2 model under two settings: 1) sketches corresponding to the same photo,
2) sketches at different completion stages. Given sketches of similar shoes drawn
by different users, our model can capture their commonality as well as subtle
distinctions and translate them into photos. Our model also works for sketches
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Input Grayscale RGB With ref. (a) (b) (c) (d)

Fig. 6. Left: Generalization across domains. Column 1 are sketches from two unseen
datasets, Sketchy and TU-Berlin. Columns 2–4 are results from our model trained on
ShoeV2. Right: Our shoe model can be used as a shoe detector and generator. It can
generate a shoe photo based on a non-shoe sketch. It can further turn the non-shoe
sketch into a more shoe-like sketch. (a) Input sketch; (b) synthesized grayscale photo;
(c) re-synthesized sketch; (d) Green (a) overlaid over gray (c). (Color figure online)

Table 2. Comparison of different architecture designs.

FID ↓ CycleGAN (1-stage) CycleGAN (2-stage) Edge Map Grayscale (Ours)

ShoeV2 79.35 51.80 96.58 48.73

ChairV2 124.96 109.46 236.38 100.51

at different completion stages (obtained by removing strokes according to their
orderings), synthesizing realistic closely-looking shoes for partial sketches.

Generalization Across Domains in Fig. 6 (Left). When sketches are ran-
domly sampled from different datasets such as TU-Berlin [6] and Sketchy [28],
which have greater shape deformation than ShoeV2, our model trained on ShoeV2
can still produce good results (see more examples in the Supplementary).

Sketches from Novel Categories in Fig. 6 (Right). While we focus on
a single category training, we nonetheless feed our model sketches from other
categories. When the model is trained on shoes, the shape translation network
has learned to synthesize a grayscale shoe photo based on a shoe sketch. For
a non-shoe sketch, our model translates it into a shoe-like photo. Some fine
details in the sketch become a common component of a shoe. For example, a
car becomes a trainer while the front window becomes part of a shoelace. The
superimposition of the input sketch and the re-shoe-synthesized sketch reveals
which lines are chosen by our model and how it modifies the lines for re-synthesis.
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(a) (b) (c) (d) (a) (b) (c) (d) (e) (f)

Fig. 7. Left: Synthesized results when the edge map is used as the intermediate goal
instead of the grayscale photo. (a) Input sketch; (b) Synthesized edge map, (c) Synthe-
sized RGB photo using the edge map; (d) Synthesized RGB photo using grayscale (Ours).
Right: Our model can successfully deal with noise sketches, which are not well handled
by another attention-based model, UGATIT. For an input sketch (a), our model pro-
duce an attention mask (b); (c) and (d) are grayscale images produced by vanilla and
our model. (e) and (f) compare ours with the result of UGATIT. (Color figure online)

Fig. 8. Comparisons of paired and unpaired training for shape translation. There are
four examples. For each example, the 1st one is the input sketch, the 2nd and the 3rd
are grayscale images synthesized by Pix2Pix and our model respectively. Note that for
each example, although the input sketches are different visually, Pix2Pix produces a
similar-looking grayscale image. Our results are more faithful to the sketch.

4.3 Ablation Study

Two-Stage Architecture. Two-stage architecture is the key to the success of
our model. This strategy can be easily adapted by other models such as cycle-
GAN. Table 2 compares the performance of the original cycleGAN and its two-
stage version (i.e., cycleGAN is used only for shape translation while the content
enrichment network is the same as ours). The two-stage version outperforms the
original cycleGAN by 27.55 (on ShoeV2) and 68.33 (on ChairV2), indicating the
significant benefits brought by this architectural design.

Edge Map vs. Grayscale as the Intermediate Goal. We choose grayscale
as our intermediate goal of translation. As shown in Fig. 1, edge maps could
be an alternative since it does not have shape deformation either. We can first
translate sketch to an edge map, and then fill the edge map with colorful details.

Table 2 and Fig. 7 show that using the edge map is worse than using the
grayscale. Our explanations are: 1) Grayscale images contain more visual details
thus can provide more learning signals for training shape translation network;
2) Content enrichment is easier for grayscale as they are closer to color photos
than edge maps. The grayscale is also easier to obtain in practice.

Deal with Abstraction and Style Variations. We have discussed the prob-
lem encountered during shape translation in Sect. 3.1, and further introduced 1)
a self-supervised objective along with noise sketch composition strategies and
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Table 3. Contribution of each proposed component. The FID scores are obtained based
on the results of shape translation stage.

FID ↓ Pix2Pix Vanilla w/o self-supervision w/o attention Ours

ShoeV2 75.84 48.30 46.88 47.0 46.46

ChairV2 164.01 104.0 93.33 92.03 90.87

Table 4. Exclude the effect of paired data. Although the paired information is not
used during training, they indeed exist in ShoeV2. We compose a new dataset where
pairing does not exist to train the model again. Results obtained on the same test set.

Dataset Paired exist? Use pair info. FID ↓
ShoeV2 Yes No 48.7

UT Zappos50K No No 48.6

2) an attention module to handle the problem. Table 3 compares FID achieved
at the first stage by different variants. Our full model can tackle the problem
better than the vanilla model, and each component contributes to the improved
performance. Figure 7 shows two examples and compares the results of UGATIT.

Paired vs. Unpaired Training. We train a Pix2Pix model for shape transla-
tion to see if paired information helps. As shown in Table 3 (Pix2Pix ) and Fig. 8,
It turns out the performance of Pix2Pix is much worse than ours (FID: 75.84
vs. 46.46 on ShoeV2 and 164.01 vs. 90.87 on ChairV2). It is most likely caused
by the shape misalignment between sketches and grayscale images.

Exclude the Effect of Paired Information. Although pairing information
is not used during training, they do exist in ShoeV2. To eliminate any potential
pairing facilitation, we train another model on a composed dataset, created by
merging all the sketches of ShoeV2 and 9,995 photos of UT Zappos50K [33].
These photos are collected from a different source than ShoeV2. We train this
model in the same setting. In Table 4, we can see this model achieves similar
performance with the one trained on ShoeV2, indicating the effectiveness of our
approach for learning the task from entirely unpaired data.

4.4 Photo-to-Sketch Synthesis Results

Synthesize a Sketch Given a Photo. As the shape translation network is
bidirectional (i.e., T and T ′), our model can also translate a photo into a sketch.
This task is not trivial, as users can easily detect a fake sketch based on its stroke
continuity and consistency. Figure 9 (Top) shows that our generated sketches
mimic manual line-drawings and emphasize contours that are perceptually sig-
nificant.

Sketch-Like Edge Extraction. Sketch-to-photo and photo-to-sketch synthesis
are opposite processes. We suspect that our model can create sketches from
photos in broader categories as it may require less class priors.
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Input Canny HED Contour Ours Input Canny HED Contour Ours

Fig. 9. Our results on photo-based sketch synthesis. Top: each sketch-photo pair: left:
input photo, right: synthesized sketch. Results obtained on ShoeV2 and ChairV2. Bot-
tom: Results obtained on ShapeNet [3]. The column 1 is the input photo, Column 2–5
are lines generated by Canny, HED, Photo-Sketching [19] (Contour for short), and our
model. Our model can generate line strokes with a hand-drawn effect, while HED and
Canny detectors produce edge maps faithful to the original photos. Ours emphasize
perceptually significant contours, not intensity-contrast significant as in edge maps.

Fig. 10. Sample retrieval results. Our synthesis model can map photo to sketch domain
and vice versa. Cross-domain retrieval task can thus be converted to intra-domain
retrieval. Left: All candidate photos are mapped to sketches, thus both query and
candidates are in the sketch domain. Right: The query sketch is translated to a photo,
so the matching is in the photo domain. Top right shows the original photo or sketch.

We test our shoe model directly on photos in ShapeNet [3]. Figure 9 (Bottom)
lists our results along with those from HED [32] and Canny edge detector [2].
We also compare with Photo-Sketching [19], a method specifically designed for
generating boundary-like drawing from photos. 1) Unlike HED and Canny pro-
ducing an edge map faithful to the photo, ours presents a hand-drawn style. 2)
Our model can dub as an edge+ extractor on unseen classes. This is an exciting
corollary product: A promising automatic sketch generator that captures human
visual perception beyond the edge map of a photo (more results in Supp.).

4.5 Application: Unsupervised Sketch-Based Image Retrieval

Sketch-based image retrieval is an important application of sketch. One of its
main challenges is the large domain gap. Existing methods either map sketches
and photos into a common space or use edge maps as the intermediate represen-
tation. However, our model enables direct mapping between these two domains.



50 R. Liu et al.

We thus conduct experiments in two possible mapping directions: 1) Trans-
late gallery photos to sketches, and then find the nearest sketches to the query
sketch (Fig. 10 (Left)); 2) Translate a sketch to a photo and then find its nearest
neighbors in the photo gallery (Fig. 10 (Right)). Two ResNet18 [12] models, one
is pretrained on the ImageNet while the other is on the TU-Berlin dataset, are
used as feature extractors for photos and sketches respectively (see Supplemen-
tary for further details). Figure 10 shows our retrieval results. Even without any
supervision, the results are already acceptable. In the second experiment, we
achieve an accuracy of 37.2% (65.2%) at top5 (top20) respectively. These results
are higher than the results from sketch to edge map, which are 34.5% (57.7%).

Summary. We propose the first unsupervised two-stage sketch-to-photo syn-
thesis model that can produce photos of high fidelity, realism, and diversity.
It enables sketch-based image retrieval and automatic sketch generation that
captures human visual perception beyond the edge map of a photo.
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