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Abstract. In this paper, we introduce a new problem, named audio-
visual video parsing, which aims to parse a video into temporal event
segments and label them as either audible, visible, or both. Such a prob-
lem is essential for a complete understanding of the scene depicted inside
a video. To facilitate exploration, we collect a Look, Listen, and Parse
(LLP) dataset to investigate audio-visual video parsing in a weakly-
supervised manner. This task can be naturally formulated as a Mul-
timodal Multiple Instance Learning (MMIL) problem. Concretely, we
propose a novel hybrid attention network to explore unimodal and cross-
modal temporal contexts simultaneously. We develop an attentive MMIL
pooling method to adaptively explore useful audio and visual content
from different temporal extent and modalities. Furthermore, we discover
and mitigate modality bias and noisy label issues with an individual-
guided learning mechanism and label smoothing technique, respectively.
Experimental results show that the challenging audio-visual video pars-
ing can be achieved even with only video-level weak labels. Our proposed
framework can effectively leverage unimodal and cross-modal temporal
contexts and alleviate modality bias and noisy labels problems.

Keywords: Audio-visual video parsing · Weakly-supervised · LLP
dataset

1 Introduction

Human perception involves complex analyses of visual, auditory, tactile, gus-
tatory, olfactory, and other sensory data. Numerous psychological and brain
cognitive studies [3,20,46,51] show that combining different sensory data is cru-
cial for human perception. However, the vast majority of work [9,26,48,64] in
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Fig. 1. Our audio-visual video parsing model aims to parse a video into different audio
(audible), visual (visible), and audio-visual (audi-visible) events with correct categories
and boundaries. A dog in the video visually appears from 2nd second to 5th second and
make barking sounds from 4th second to 8th second. So, we have audio event (4 s–8 s),
visual event (2 s–5 s), and audio-visual event (4 s–5 s) for the Dog event category.

scene understanding, an essential perception task, focuses on visual-only meth-
ods ignoring other sensory modalities. They are inherently limited. For example,
when the object of interest is outside of the field-of-view (FoV), one would rely
on audio cues for localization. While there is little data on tactile, gustatory, or
olfactory signals, we do have an abundance of multimodal audiovisual data, e.g.,
YouTube videos.

Utilizing and learning from both auditory and visual modalities is an emerg-
ing research topic. Recent years have seen progress in learning representations [1,
2,19,23,37,38], separating visually indicated sounds [8,10–13,65,66,70], spatially
localizing visible sound sources [37,45,55], and temporally localizing audio-visual
synchronized segments [27,55,63]. However, past approaches usually assume
audio and visual data are always correlated or even temporally aligned. In prac-
tice, when we analyze the video scene, many videos have audible sounds, which
originate outside of the FoV, leaving no visual correspondences, but still con-
tribute to the overall understanding, such as out-of-screen running cars and a nar-
rating person. Such examples are ubiquitous, which leads us to some basic ques-
tions: what video events are audible, visible, and “audi-visible,” where and when
are these events inside of a video, and how can we effectively detect them?

To answer the above questions, we pose and try to tackle a fundamental prob-
lem: audio-visual video parsing that recognizes event categories bind to sensory
modalities, and meanwhile, finds temporal boundaries of when such an event
starts and ends (see Fig. 1). However, learning a fully supervised audio-visual
video parsing model requires densely annotated event modality and category
labels with corresponding event onsets and offsets, which will make the label-
ing process extremely expensive and time-consuming. To avoid tedious labeling,
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we explore weakly-supervised learning for the task, which only requires sparse
labeling on the presence or absence of video events. The weak labels are easier
to annotate and can be gathered in a large scale from web videos.

We formulate the weakly-supervised audio-visual video parsing as a Multi-
modal Multiple Instance Learning (MMIL) problem and propose a new frame-
work to solve it. Concretely, we use a new hybrid attention network (HAN)
for leveraging unimodal and cross-modal temporal contexts simultaneously. We
develop an attentive MMIL pooling method for adaptively aggregating useful
audio and visual content from different temporal extent and modalities. Fur-
thermore, we discover modality bias and noisy label issues and alleviate them
with an individual-guided learning mechanism and label smoothing [42], respec-
tively.

To facilitate our investigations, we collect a Look, listen, and Parse (LLP)
dataset that has 11, 849 YouTube video clips from 25 event categories. We label
them with sparse video-level event labels for training. For evaluation, we label a
set of precise labels, including event modalities, event categories, and their tem-
poral boundaries. Experimental results show that it is tractable to learn audio-
visual video parsing even with video-level weak labels. Our proposed HAN model
can effectively leverage multimodal temporal contexts. Furthermore, modality
bias and noisy label problems can be addressed with the proposed individual
learning strategy and label smoothing, respectively. Besides, we make a discus-
sion on the potential applications enabled by audio-visual video parsing.

The contributions of our work include: (1) a new audio-visual video parsing
task towards a unified multisensory perception; (2) a novel hybrid attention net-
work to leverage unimodal and cross-modal temporal contexts simultaneously;
(3) an effective attentive MMIL pooling to aggregate multimodal information
adaptively; (4) a new individual guided learning approach to mitigate the modal-
ity bias in the MMIL problem and label smoothing to alleviate noisy labels; and
(5) a newly collected large-scale video dataset, named LLP, for audio-visual video
parsing. Dataset, code, and pre-trained models are publicly available in https://
github.com/YapengTian/AVVP-ECCV20.

2 Related Work

In this section, we discuss some related work on temporal action localization,
sound event detection, and audio-visual learning.

Temporal Action Localization. Temporal action localization (TAL) methods
usually use sliding windows as action candidates and address TAL as a classi-
fication problem [9,25,29,47,48,67] learning from full supervisions. Recently,
weakly-supervised approaches are proposed to solve the TAL. Wang et al. [60]
present an UntrimmedNet with a classification module and a selection module
to learn the action models and reason about the temporal duration of action
instances, respectively. Hide-and-seek [49] randomly hides certain sequences
while training to force the model to explore more discriminative content. Paul et
al. [40] introduce a co-activity similarity loss to enforce instances in the same

https://github.com/YapengTian/AVVP-ECCV20
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Fig. 2. Some examples from the LLP dataset.

class to be similar in the feature space. Inspired by the class activation map
method [68], Nguyen et al. [36] propose a sparse temporal pooling network
(STPN). Liu et al. [28] incorporate both action completeness modeling and
action-context separation into a weakly-supervised TAL framework. Unlike
actions in TAL, video events in audio-visual video parsing might contain motion-
less or even out-of-screen sound sources and the events can be perceived by either
audio or visual modalities. Even though, we extend two recent weakly-supervised
TAL methods: STPN [36] and CMCS [28] to address visual event parsing and
compare them with our model in Sect. 6.2.

Sound Event Detection. Sound event detection (SED) is a task of recognizing
and locating audio events in acoustic environments. Early supervised approaches
rely on some machine learning models, such as support vector machines [7], Gaus-
sian mixture models [17] and recurrent neural networks [39]. To bypass strongly
labeled data, weakly-supervised SED methods are developed [6,22,31,62]. These
methods only focus on audio events from constrained domains, such as urban
sounds [44] and domestic environments [32] and visual information is ignored.
However, our audio-visual video parsing will exploit both modalities to parse not
only event categories and boundaries but also event perceiving modalities towards
a unified multisensory perception for unconstrained videos.

Audio-Visual Learning. Benefiting from the natural synchronization between
auditory and visual modalities, audio-visual learning has enabled a set of
new problems and applications including representation learning [1,2,19,23,35,
37,38], audio-visual sound separation [8,10–13,65,66,70], vision-infused audio
inpainting [69], sound source spatial localization [37,45,55], sound-assisted action
recognition [14,21,24], audio-visual video captioning [41,53,54,61], and audio-
visual event localization [27,55,56,63]. Most previous work assumes that tem-
porally synchronized audio and visual content are always matched conveying
the same semantic meanings. However, unconstrained videos can be very noisy:
sound sources might not be visible (e.g., an out-of-screen running car and a
narrating person) and not all visible objects are audible (e.g., a static motorcy-
cle and people dancing with music). Different from previous methods, we pose
and seek to tackle a fundamental but unexplored problem: audio-visual video
parsing for parsing unconstrained videos into a set of video events associated
with event categories, boundaries, and modalities. Since the existing methods
cannot directly address our problem, we modify the recent weakly-supervised
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audio-visual event localization methods: AVE [55] and AVSDN [27] adding addi-
tional audio and visual parsing branches as baselines.

3 LLP: The Look, Listen and Parse Dataset

To the best of our knowledge, there is no existing dataset that is suitable for our
research. Thus, we introduce a Look, Listen, and Parse dataset for audio-visual
video scene parsing, which contains 11,849 YouTube video clips spanning over 25
categories for a total of 32.9 h collected from AudioSet [15]. A wide range of video
events (e.g., human speaking, singing, baby crying, dog barking, violin playing,
and car running, and vacuum cleaning etc.) from diverse domains (e.g., human
activities, animal activities, music performances, vehicle sounds, and domestic
environments) are included in the dataset. Some examples in the LLP dataset
are shown in Fig. 2.

Videos in the LLP have 11,849 video-level event annotations on the presence
or absence of different video events for facilitating weakly-supervised learning.
Each video is 10 s long and has at least 1 s audio or visual events. There are 7,202
videos that contain events from more than one event categories and per video has
averaged 1.64 different event categories. To evaluate audio-visual scene parsing
performance, we annotate individual audio and visual events with second-wise
temporal boundaries for randomly selected 1,849 videos from the LLP dataset.
Note that the audio-visual event labels can be derived from the audio and visual
event labels. Finally, we have totally 6,626 event annotations, including 4,131
audio events and 2,495 visual events for the 1,849 videos. Merging the individual
audio and visual labels, we obtain 2,488 audio-visual event annotations. To do
validation and testing, we split the subset into a validation set with 649 videos
and a testing set with 1,200 videos. Our weakly-supervised audio-visual video
parsing network will be trained using the 10,000 videos with weak labels and the
trained models are developed and tested on the validation and testing sets with
fully annotated labels, respectively.

4 Audio-Visual Video Parsing with Weak Labels

We define the Audio-Visual Video Parsing as a task to group video segments
and parse a video into different temporal audio, visual, and audio-visual events
associated with semantic labels. Since event boundary in the LLP dataset
was annotated at second-level, video events will be parsed at scene-level not
object/instance level in our experimental setting. Concretely, given a video
sequence containing both audio and visual tracks, we divide it into T non-
overlapping audio and visual snippet pairs {Vt, At}T

t=1, where each snippet is
1s long and Vt and At denote visual and audio content in the same video snip-
pet, respectively. Let y t = {(ya

t , yv
t , yav

t )|[yt
a]c, [yt

v]c, [yt
av]c ∈ {0, 1}, c = 1, ..., C}

be the event label set for the video snippet {Vt, At}, where c refers to the c-th
event category and ya

t , yv
t , and yav

t denote audio, visual, and audio-visual event
labels, respectively. Here, we have a relation: yav

t = ya
t ∗ yv

t , which means that
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Fig. 3. The proposed audio-visual video parsing framework. It uses pre-trained CNNs
to extract snippet-level audio and visual features and leverages multimodal temporal
contexts with the proposed hybrid attention network (HAN). For each snippet, we will
predict both audio and visual event labels from the aggregated features by the HAN.
Attentive MMIL pooling is utilized to adaptively predict video-level event labels for
weakly-supervised learning (WSL) and individual guided learning is devised to mitigate
the modality bias issue.

audio-visual events occur only when there exists both audio and visual events
at the same time and from the same event categories.

In this work, we explore the audio-visual video parsing in a weakly-supervised
manner. We only have video-level labels for training, but will predict precise
event label sets for all video snippets during testing, which makes the weakly-
supervised audio-visual video parsing be a multi-modal multiple instance learn-
ing (MMIL) problem. Let a video sequence with T audio and visual snippet pairs
be a bag. Unlike the previous audio-visual event localization [55] that is formu-
lated as a MIL problem [30] where an audio-visual snippet pair is regarded as
an instance, each audio snippet and the corresponding visual snippet occurred
at the same time denote two individual instances in our MMIL problem. So, a
positive bag containing video events will have at least one positive video snippet;
meanwhile at least one modality has video events in the positive video snippet.
During training, we can only access bag labels. During inference, we need to
know not only which video snippets have video events but also which sensory
modalities perceive the events. The temporal and multi-modal uncertainty in
this MMIL problem makes it very challenging.

5 Method

First, we present the overall framework that formulates the weakly-supervised
audio-visual video parsing as an MMIL problem in Sect. 5.1. Built upon this
framework, we propose a new multimodal temporal model: hybrid attention
network in Sect. 5.2; attentive MMIL pooling in Sect. 5.3; addressing modality
bias and noisy label issues in Sect. 5.4.

5.1 Audio-Visual Video Parsing Framework

Our framework, as illustrated in Fig. 3, has three main modules: audio and visual
feature extraction, multimodal temporal modeling, and attentive MMIL pooling.
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Given a video sequence with T audio and visual snippet pairs {Vt, At}T
t=1, we

first use pre-trained visual and audio models to extract snippet-level visual fea-
tures: {f t

v}T
t=1 and audio features: {f t

a}T
t=1, respectively. Taking extracted audio

and visual features as inputs, we use two hybrid attention networks as the multi-
modal temporal modeling module to leverage unimodal and cross-modal temporal
contexts and obtain updated visual features {f̂ t

v}T
t=1 and audio features {f̂ t

a}T
t=1.

To predict audio and visual instance-level labels and make use of the video-level
weak labels, we address the MMIL problem with a novel attentive MMIL pooling
module outputting video-level labels.

5.2 Hybrid Attention Network

Natural videos tend to contain continuous and repetitive rather than isolated
audio and visual content. In particular, audio or visual events in a video usually
redundantly recur many times inside the video, both within the same modality
(unimodal temporal recurrence [34,43]), as well as across different modalities
(audio-visual temporal synchronization [23] and asynchrony [59]). The observa-
tion suggests us to jointly model the temporal recurrence, co-occurrence, and
asynchrony in a unified approach. However, existing audio-visual learning meth-
ods [27,55,63] usually ignore the audio-visual temporal asynchrony and explore
unimodal temporal recurrence using temporal models (e.g., LSTM [18] and
Transformer [58]) and audio-visual temporal synchronization using multimodal
fusion (e.g., feature fusion [55] and prediction ensemble [21]) in a isolated way.
To simultaneously capture multimodal temporal contexts, we propose a new
temporal model: Hybrid Attention Network (HAN), which uses a self-attention
network and a cross-attention network to adaptively learn which bimodal and
cross-modal snippets to look for each audio or visual snippet, respectively.

At each time step t, a hybrid attention function g in HAN will be learned
from audio and visual features: {f t

a, f t
v}T

t=1 to update f t
a and f t

v, respectively.
The updated audio feature f̂ t

a and visual feature f̂ t
v can be computed as:

f̂ t
a = g(f t

a,fa,fv) = f t
a + gsa(f t

a,fa) + gca(f t
a,fv) , (1)

f̂ t
v = g(f t

v,fa,fv) = f t
v + gsa(f t

v,fv) + gca(f t
v,fa) , (2)

where fa = [f1
a ; ...; fT

a ] and fv = [f1
v ; ...; fT

v ]; gsa and gca are self-attention and
cross-modal attention functions, respectively; skip-connections can help preserve
the identity information from the input sequences. The two attention functions
are formulated with the same computation mechanism. With gsa(f t

a,fa) and
gca(f t

a,fv) as examples, they are defined as:

gsa(f t
a,fa) =

T∑

t=1

wsa
t f t

a = softmax(
f t

af
′
a√

d
)fa , (3)

gca(f t
a,fv) =

T∑

t=1

wca
t f t

v = softmax(
f t

af
′
v√

d
)fv , (4)
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Fig. 4. Attentive MMIL Pooling. For event category c, temporal and audio-visual atten-
tion mechanisms will adaptively select informative event predictions crossing temporal
and modality axes, respectively, for predicting whether there is an event at the category.

where the scaling factor d is equal to the audio/visual feature dimension and (·)′

denotes the transpose operator. Clearly, the self-attention and cross-modal atten-
tion functions in HAN will assign large weights to snippets, which are similar to
the query snippet containing the same video events within the same modality and
cross different modalities. The experimental results show that the HAN mod-
eling unimodal temporal recurrence, multimodal temporal co-occurrence, and
audio-visual temporal asynchrony can well capture unimodal and cross-modal
temporal contexts and improves audio-visual video parsing performance.

5.3 Attentive MMIL Pooling

To achieve audio-visual video parsing, we predict all event labels for audio and
visual snippets from temporal aggregated features: {f̂ t

a, f̂ t
v}T

t=1. We use a shared
fully-connected layer to project audio and visual features to different event label
space and adopt a sigmoid function to output probability for each event category:

pt
a = sigmoid(FC(f̂ t

a)) , (5)

pt
v = sigmoid(FC(f̂ t

v)) , (6)

where pt
a and pt

v are predicted audio and visual event probabilities at timestep
t, respectively. Here, the shared FC layer can implicitly enforce audio and visual
features into a similar latent space. The reason to use sigmoid to output an event
probability for each event category rather than softmax to predict a probability
distribution over all categories is that a single snippet may have multiple labels
rather than only a single event as assumed in Tian et al. [55].

Since audio-visual events only occur when sound sources are visible and their
sounds are audible, the audio-visual event probability pt

av can be derived from
individual audio and visual predictions: pt

av = pt
a ∗ pt

v. If we have direct supervi-
sions for all audio and visual snippets from different time steps, we can simply
learn the audio-visual video parsing network in a fully-supervised manner. How-
ever, in this MMIL problem, we can only access a video-level weak label ȳ for
all audio and visual snippets: {At, Vt}T

t=1 from a video. To learn our network
with weak labels, as illustrated in Fig. 4, we propose a attentive MMIL pooling
method to predict video-level event probability: p̄ from {pt

a, pt
v}T

t=1. Concretely,
the p̄ is computed by:
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p̄ =
T∑

t=1

M∑

m=1

(Wtp � Wav � P )[t,m, :] , (7)

where � denotes element-wise multiplication; m is a modality index and M =
2 refers to audio and visual modalities; Wtp and Wav are temporal attention
and audio-visual attention tensors predicted from {f̂ t

a, f̂ t
v}T

t=1, respectively, and
P is the probability tensor built by {pt

a, pt
v}T

t=1 and we have P (t, 0, :) = pt
a and

P (t, 1, :) = pt
v. To compute the two attention tensors, we first compose an input

feature tensor F , where F (t, 0, :) = f̂ t
a and F (t, 1, :) = f̂ t

v. Then, two different
FC layers are used to transform the F into two tensors: Ftp and Fav, which has
the same size as P . To adpatively select most informative snippets for predicting
probabilities of different event categories, we assign different weights to snippets
at different time steps with a temporal attention mechanism:

Wtp[:,m, c] = softmax(Ftp[:,m, c]) , (8)

where m = 1, 2 and c = 1, . . . , C. Accordingly, we can adaptively select most
informative modalities with the audio-visual attention tensor:

Wav[t, :, c] = softmax(Fav[t, :, c]) , (9)

where t = 1, . . . , T and c = 1, . . . , C. The snippets within a video from dif-
ferent temporal steps and different modalities may have different video events.
The proposed attentive MMIL pooling can well model this observation with the
tensorized temporal and multimodal attention mechanisms.

With the predicted video-level event probability p̄ and the ground truth label
ȳ, we can optimize the proposed weakly-supervised learning model with a binary
cross-entropy loss function: Lwsl = CE(p̄, ȳ) = −∑C

c=1 ȳ[c]log(p̄[c]).

5.4 Alleviating Modality Bias and Label Noise

The weakly supervised audio-visual video parsing framework only uses less
detailed annotations without requiring expensive densely labeled audio and
visual events for all snippets. This advantage makes this weakly supervised learn-
ing framework appealing. However, it usually enforces models to only identify
discriminative patterns in the training data, which was observed in previous
weakly-supervised MIL problems [49,50,68]. In our MMIL problem, the issue
becomes even more complicated since there are multiple modalities and dif-
ferent modalities might not contain equally discriminative information. With
weakly-supervised learning, the model tends to only use information from the
most discriminative modality but ignore another modality, which can probably
achieve good video classification performance but terrible video parsing per-
formance on the events from ignored modality and audio-visual events. Since
a video-level label contains all event categories from audio and visual content
within the video, to alleviate the modality bias in the MMIL, we propose to use
explicit supervisions to both modalities with a guided loss:

Lg = CE(p̄a, ȳa) + CE(p̄v, ȳv) , (10)
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where ȳa = ȳv = ȳ, and p̄a =
∑T

t=1(Wtp � P )[t, 0, :] and p̄v =
∑T

t=1(Wtp �
P )[t, 1, :] are video-level audio and visual event probabilities, respectively.

However, not all video events are audio-visual events, which means that an
event occurred in one modality might not occur in another modality and then
the corresponding event label will be label noise for one of the two modalities.
Thus, the guided loss: Lg suffers from noisy label issue. For the example shown
in Fig. 3, the video-level label is {Speech, Dog} and the video-level visual event
label is only {Dog}. The {Speech} will be a noisy label for the visual guided loss.
To handle the problem, we use label smoothing [52] to lower the confidence of
positive labels with smoothing ȳ and generate smoothed labels: ȳa and ȳv. They
are formulated as: ȳa = (1−εa)ȳ+ εa

K and ȳv = (1−εv)ȳ+ εv
K , where εa, εv ∈ [0, 1)

are two confidence parameters to balance the event probability distribution and a
uniform distribution: u = 1

K (K > 1). For a noisy label at event category c, when
ȳ[c] = 1 and real ȳa[c] = 0, we have ȳ[c] = (1−εa)ȳ[c]+εa > (1−εa)ȳ+ εa

K = ȳa[c]
and the smoothed label will become more reliable. Label smoothing technique
is commonly adopted in a lot of tasks, such as image classification [52], speech
recognition [5], and machine translation [58] to reduce over-fitting and improve
generalization capability of deep models. Different from the past methods, we
use smoothed labels to mitigate label noise occurred in the individual guided
learning. Our final model is optimized with the two loss terms: L = Lwsl + Lg.

6 Experiments

6.1 Experimental Settings

Implementation Details. For a 10-second-long video, we first sample video
frames at 8 fps and each video is divided into non-overlapping snippets of the
same length with 8 frames in 1 s. Given a visual snippet, we extract a 512-D
snippet-level feature with fused features extracted from ResNet152 [16] and 3D
ResNet [57]. In our experiments, batch size and number of epochs are set as 16
and 40, respectively. The initial learning rate is 3e-4 and will drop by multiplying
0.1 after every 10 epochs. Our models optimized by Adam can be trained using
one NVIDIA 1080Ti GPU.

Baselines. Since there are no existing methods to address the audio-visual video
parsing, we design several baselines based on previous state-of-the-art weakly-
supervised sound detection [22,62], temporal action localization [28,36], and
audio-visual event localization [27,55] methods to validate the proposed frame-
work. To make [27,55] possible to address audio-visual scene parsing, we add
additional audio and visual branches to predict audio and visual event proba-
bilities supervised with an additional guided loss as defined in Sect. 5.4. For fair
comparisons, the compared approaches use the same audio and visual features
as our method.

Evaluation Metrics. To comprehensively measure the performance of differ-
ent methods, we evaluate them on parsing all types of events (individual audio,
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Table 1. Audio-visual video parsing accuracy (%) of different methods on the LLP
test dataset. These methods all use the same audio and visual features as inputs for a
fair comparison. The top-1 results in each line are highlighted.

Event type Methods Segment-level Event-level

Audio Kong et al. 2018 [22] 39.6 29.1

TALNet [62] 50.0 41.7

AVE [55] 47.2 40.4

AVSDN [27] 47.8 34.1

Ours 60.1 51.3

Visual STPN [36] 46.5 41.5

CMCS [28] 48.1 45.1

AVE [55] 37.1 34.7

AVSDN [27] 52.0 46.3

Ours 52.9 48.9

Audio-Visual AVE [55] 35.4 31.6

AVSDN [27] 37.1 26.5

Ours 48.9 43.0

Type@AV AVE [55] 39.9 35.5

AVSDN [27] 45.7 35.6

Ours 54.0 47.7

Event@AV AVE [55] 41.6 36.5

AVSDN [27] 50.8 37.7

Ours 55.4 48.0

visual, and audio-visual events) under both segment-level and event-level met-
rics. To evaluate overall audio-visual scene parsing performance, we also compute
aggregated results, where Type@AV computes averaged audio, visual, and audio-
visual event evaluation results and Event@AV computes the F-score considering
all audio and visual events for each sample rather than directly averaging results
from different event types as the Type@AV. We use both segment-level and event-
level F-scores [33] as metrics. The segment-level metric can evaluate snippet-wise
event labeling performance. For computing event-level F-score results, we extract
events with concatenating positive consecutive snippets in the same event cate-
gories and compute the event-level F-score based on mIoU = 0.5 as the threshold.

6.2 Experimental Comparison

To validate the effectiveness of the proposed audio-visual video parsing network,
we compare it with weakly-supervised sound event detection methods: Kong
et al. 2018 [22] and TALNet [62] on audio event parsing, weakly-supervised action
localization methods: STPN [36] and CMCS [28] on visual event parsing, and
modified audio-visual event localization methods: AVE [55] and AVSD [27] on
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audio, visual, and audio-visual event parsing. The quantitative results are shown
in Table 1. We can see that our method outperforms compared approaches on all
audio-visual video parsing subtasks under both the segment-level and event-level
metrics, which demonstrates that our network can predict more accurate snippet-
wise event categories with more precise event onsets and offsets for testing videos.

Individual Guided Learning. From Table 2, we observe that the model with-
out individual guided learning can achieve pretty good performance on audio
event parsing but incredibly bad visual parsing results leading to terrible audio-
visual event parsing; w/ only Lg model can achieve both reasonable audio and
visual event parsing results; our model trained with both Lwsl and Lg out-
performs model train without and with only Lg. The results indicate that the
model trained only Lwsl find discriminative information from mostly sounds and
visual information is not well-explored during training and the individual learn-
ing can effectively handle the modality bias issue. In addition, when the network
is trained with only Lg, it actually models audio and visual event parsing as
two individual MIL problems in which only noisy labels are used. Our MMIL
framework can learn from clean weak labels with Lwsl and handle the modality
bias with Lg achieves the best overall audio-visual video parsing performance.
Moreover, we would like to note that the modality bias issue is from audio and
visual data unbalance in training videos, which are originally from an audio-
oriented dataset: AudioSet. Since the issue occurred after just 1 epoch training,
it is not over-fitting.

Attentive MMIL Pooling. To validate the proposed Attentive MMIL Pool-
ing, we compare it with two commonly used methods: Max pooling and Mean
pooling. Our Attentive MMIL Pooling (see Table 2) is superior over the both
compared methods. The Max MMIL pooling only selects the most discriminative
snippet for each training video, thus it cannot make full use of informative audio
and visual content. The Mean pooling does not distinguish the importance of
different audio and visual snippets and equally aggregates instance scores in a
bad way, which can obtain good audio-visual event parsing but poor individual
audio and visual event parsing since a lot of audio-only and visual-only events
are incorrectly parsed as audio-visual events. Our attentive MMIL pooling allows
assigning different weights to audio and visual snippets within a video bag for
each event category, thus can adaptively discover useful snippets and modalities.

Hybrid Attention Network. We compare our HAN with two popular tempo-
ral networks: GRU and Transformer and a base model without temporal mod-
eling in Table 2. The models with GRU and Transformer are better than the
base model and our HAN outperforms the GRU and Transformer. The results
demonstrate that temporal aggregation with exploiting temporal recurrence is
important for audio-visual video parsing and our HAN with jointly exploring
unimodal temporal recurrence, multimodal temporal co-occurrence, and audio-
visual temporal asynchrony is more effective in leveraging the multimodal tem-
poral contexts. Another surprising finding of the HAN is that it actually tends
to alleviate the modality bias by enforcing cross-modal modeling.
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Fig. 5. Potential applications of audio-visual video parsing. (a) Temporally asyn-
chronous visual events detected by audio-visual video parsing highlighted in blue boxes
can provide related visual information to separate Cello sound from the audio mixture
in the red box. (b) Parsed scenes can provide important cues for audio-visual scene-
aware video dense captioning and question answering.

Noisy Label. Table 2 also shows results of our model without handling the
noisy label, with Bootstrap [42] and label smoothing-based method. We can find
that Bootstrap updating labels using event predictions even decreases perfor-
mance due to error propagation. Label smoothing-based method with reducing
confidence for potential false positive labels can help to learn a more robust
model with improved audio-visual video parsing results.

7 Limitation

To mitigate the modality bias issue, the guided loss is introduced to enforce that
each modality should also be able to make the correct prediction on its own.
Then, a new problem appears: the guide loss is not theoretically correct because
some of the events only appear in one modality, so the labels are wrong. Finally,
the label smoothing is used to alleviate the label noise. Although the proposed
methods work at each step, they also introduce new problems. It is worth to
design a one-pass approach. One possible solution is to introduce a new learning
strategy to address the modality bias problem rather than using the guided loss.
For example, we could perform modality dropout to enforce the model to explore
both audio and visual information during training.

8 Conclusion and Future Work

In this work, we investigate a fundamental audio-visual research problem: audio-
visual video parsing in a weakly-supervised manner. We introduce baselines
and propose novel algorithms to address the problem. Extensive experiments
on the newly collected LLP dataset support our findings that the audio-visual
video parsing is tractable even learning from cheap weak labels, and the pro-
posed model is capable of leveraging multimodal temporal contexts, dealing with
modality bias, and mitigating label noise. Accurate audio-visual video parsing
opens the door to a wide spectrum of potential applications, as discussed below.
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Asynchronous Audio-Visual Sound Separation. Audio-visual sound sep-
aration approaches use sound sources in videos as conditions to separate the
visually indicated individual sounds from sound mixtures [8,11–13,65,66]. The
underlying assumption is that sound sources are visible. However, sounding
objects can be occluded or not recorded in videos and the existing methods
will fail to handle these cases. Our audio-visual video parsing model can find
temporally asynchronous cross-modal events, which can help to alleviate the
problem. For the example in Fig. 5(a), the existing audio-visual separation mod-
els will fail to separate the Cello sound from the audio mixture at the time step
t, since the sound source Cello is not visible in the segment. However, our model
can help to find temporally asynchronous visual events with the same semantic
label as the audio event Cello for separating the sound. In this way, we can
improve the robustness of audio-visual sound separation by leveraging tempo-
rally asynchronous visual content identified by our audio-visual video parsing
models.

Audio-Visual Scene-Aware Video Understanding. The current video
understanding community usually focuses on the visual modality and regards
information from sounds as a bonus assuming that audio content should be asso-
ciated with the corresponding visual content. However, we want to argue that
auditory and visual modalities are equally important and most natural videos
contain numerous audio, visual, and audio-visual events rather than only visual
and audio-visual events. Our audio-visual scene parsing can achieve a unified
multisensory perception, therefore it has the potential to help us build an audio-
visual scene-aware video understanding system regarding all audio and visual
events in videos(see Fig. 5(b)).
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