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Abstract. Unsupervised image-to-image translation intends to learn a
mapping of an image in a given domain to an analogous image in a
different domain, without explicit supervision of the mapping. Few-shot
unsupervised image-to-image translation further attempts to generalize
the model to an unseen domain by leveraging example images of the
unseen domain provided at inference time. While remarkably successful,
existing few-shot image-to-image translation models find it difficult to
preserve the structure of the input image while emulating the appear-
ance of the unseen domain, which we refer to as the content loss problem.
This is particularly severe when the poses of the objects in the input and
example images are very different. To address the issue, we propose a
new few-shot image translation model, COCO-FUNIT, which computes
the style embedding of the example images conditioned on the input
image and a new module called the constant style bias. Through exten-
sive experimental validations with comparison to the state-of-the-art, our
model shows effectiveness in addressing the content loss problem. Code
and pretrained models are available at https://nvlabs.github.io/COCO-
FUNIT/.

Keywords: Image-to-image translation · Generative Adversarial
Networks

1 Introduction

Image-to-Image translation [18,44] concerns learning a mapping that can trans-
late an input image in one domain into an analogous image in a different domain.
Unsupervised image-to-image translation [5,21,25,26,28,39,47] attempts to
learn such a mapping without paired data. Thanks to the introduction of novel
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Fig. 1. Given as few as one style example image from an object class unseen during
training, our model can generate a photorealistic translation of the input content image
in the unseen domain.

network architectures and learning objective terms, the state-of-the-art has
advanced significantly in the past few years. However, while existing unsuper-
vised image-to-image translation models can generate realistic translations, they
still have several drawbacks. First, they require a large amount of images from
the source and target domains for training. Second, they cannot be used to gen-
erate images in unseen domains. These limitations are addressed in the few-shot
unsupervised image-to-image translation framework [27]. By leveraging example-
guided episodic training, the few-shot image translation framework [27] learns
to extract the domain-specific style information from a few example images in
the unseen domain during test time, mixes it with the domain-invariant content
information extracted from the input image, and generates a few-shot translation
output as illustrated in Fig. 2 (Fig. 1).

However, despite showing encouraging results on relatively simple tasks such
as animal face and flower translation, the few-shot translation framework [27] fre-
quently generates unsatisfactory translation outputs when the model is applied
to objects with diverse appearance, such as animals with very different body
poses. Often, the translation output is not well-aligned with the input image.
The domain invariant content that is supposed to remain unchanged disappears
after translation, as shown in Fig. 3. We will call this issue the content loss prob-
lem. We hypothesize that solving the content loss problem would produce more
faithful and photorealistic few-shot image translation results.

But why does the content loss problem occur? To learn the translation in
an unsupervised manner, Liu et al. [27] rely on inductive bias injected by the
network design and adversarial training [10] to transfer the appearance from the
example images in the unseen domain to the input image. However, as there is no
supervision, it is difficult to control what to be transferred precisely. Ideally, the
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Fig. 2. Few-shot image-to-image translation. Training. The training set consists of
many domains. We train a model to translate images between these domains. Deploy-
ment. We apply the trained model to perform few-shot image translation. Given a
few examples from a test domain, we aim to translate a content image into an image
analogous to the test class.

transferred appearance should contain just the style. In reality, it often contains
other information, such as the object pose.

In this paper, we propose a novel network architecture to counter the con-
tent loss problem. We design a style encoder called the content-conditioned style
encoder, to hinder the transmission of task-irrelevant appearance information
to the image translation process. In contrast to the existing style encoders, our
style code is computed by conditioning on the input content image. We use
a new architecture design to limit the variance of the style code. We conduct
an extensive experimental validation with a comparison to the state-of-the-art
method using several newly collected and challenging few-shot image translation
datasets. Experimental results, including both automatic performance metrics
and user studies, verify the effectiveness of the proposed method in dealing with
the content loss problem.

2 Related Works

Image-to-Image Translation. Most of the existing models are based on the
Generative Adversarial Network (GAN) [10] framework. Unlike unconditional
GANs [10,12,19,20,30], which learn to map random vectors to images, exist-
ing image-to-image translation models are mostly based on conditional GANs
where they learn to generate a corresponding image in the target domain condi-
tioned on the input image in the source domain. Depending on the availability of
paired input and output images as supervision in the training dataset, image-to-
image translation models can be divided into supervised [4,18,29,33,35,40,41,
43,44,46,48,49] or unsupervised [1,3,5,9,16,21,23,25,26,28,34,37,39,47]. Our
work falls in the category of unsupervised image-to-image translation. However,
instead of learning a mapping between two specific domains, we aim at learning
a flexible mapping that can be used to generate images in many unseen domains.
Specifically, the mapping is only determined at test time, via example images.
When using example images from a different unseen domain, the same model
can generate images in the new unseen domain.
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Fig. 3. Illustration of the content loss problem. The images generated by the base-
line [27] fail to preserve domain invariant appearance information in the content image.
The animals’ bodies are sometimes merged with the background (column 3, & 4), scales
of the generated body parts are sometimes inconsistent with the input (column 5), and
some body parts absent in the content image show up (column 1 & 2). Our proposed
method solves this “content loss” problem.

Multi-domain Image Translation. Several works [2,5,6,17] extend the unsu-
pervised image translation to multiple domains. They learn a mapping between
multiple seen domains, simultaneously. Our work differs from the multi-domain
image translation works in that we aim to translate images to unseen domains.

Few-Shot Image Translation. Several few-shot methods are proposed to gen-
erate human images [13,38,41,42], scenes [41], or human faces [11,42,45] given a
few instances and semantic layouts in a test time. These methods operate in the
supervised setting. During training, they assume access to paired input (layout)
and output data. Our work is most akin to the FUNIT work [27] as we aim to
learn to generalize the translation to unseen domain without paired input and
output data. We build on top of the FUNIT work where we first identify the
content loss problem and then address it with a novel content-conditioned style
encoder architecture.

Example-Guided Image Translation refers to methods that generate a
translation of an input conditioning on some example images. Existing works
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in this space [16,27,33] use a style encoder to extract style information from the
example images. Our work is also an example-guided image translation method.
However, unlike the prior works where the style code is computed independent of
the input image, our style code is computed by conditioning on the input image,
where we normalize the style code using the content to prevent over-transmission
of the style information to the output.

Neural Style Transfer studies approaches to transfer textures from a paint-
ing to a real photo. While existing neural style transfer methods [8,15,24] can
generalize to unseen textures, they cannot generalize to unseen shapes, neces-
sary for image-to-image translation. Our work is inspired by these works, but we
focus on generalizing the generation of both unseen shapes and textures, which
is essential to few-shot unsupervised image-to-image translation.

3 Method

In this section, we start with a brief explanation of the problem setup, introduce
the basic architecture, and then describe our proposed architecture. Throughout
the paper, the two words, “class” and “domain”, are used interchangeably since
we treat each object class as a domain.

Problem Setting. Figure 2 provides an overview of the few-shot image trans-
lation problem [27]. Let X be a training set consists of images from K different
domains. For each image in X, the class label is known. Note that we oper-
ate in the unsupervised setting where corresponding images between domains
are unavailable. The few-shot image-to-image translation model learns to map
a “content” image in one domain to an analogous image in the domain of the
input “style” examples. In the test phase, the model sees a few example images
from an unseen domain and performs the translation.

During training, a pair of content and style images xc, xk is randomly sam-
pled. Let xk denote a style image in domain k. The content image xc can be
from any domains in K. The generator G translates xc into an image of class k
(x̄k) while preserving the content information of xc.

x̄k = G(xc, xk) (1)

In the test phase, the generator takes style images from a domain unseen
during training, which we call the target domain. The target domain can be any
related domain, not included in K.

FUNIT Baseline. FUNIT uses an example-guided conditional generator archi-
tecture as illustrated in the top-left of Fig. 4. It consists of three modules, 1) con-
tent encoder Ec, 2) style encoder Es, and 3) image decoder F . Ec takes content
image xc as input and outputs content embedding zc. Es takes style image xs

as input and output style embedding zs. Then, F generates an image using zc
and zs, where zs is used to generate the mean and scale parameters of adaptive
instance normalization (AdaIN) layers [15] in F . The AdaIN design is based on
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Fig. 4. Top. The FUNIT baseline [27] vs. our COCO-FUNIT. To highlight, we use
a novel style encoder called the content-conditioned style encoder where the content
image is also used in computing the style code for few-shot unsupervised image-to-
image translation. Bottom. Detail design of the content-conditioned style encoder.
Please refer to the main text for more details.

the assumption that the domain-specific information can be governed by the
first and second order statistics of the activation and has been used in several
GAN frameworks [16,20,27]. We further note that when multiple example/style
images are present. FUNIT extracts a style code from each image and uses the
average style code as the final input to F . To sum up, in FUNIT the image
translation is formalized as follows,

zc = Ec(xc), zs = Es(xs), x̄ = F (zc, zs). (2)

Content Loss. As illustrated in Fig. 3, the FUNIT method suffers from the
content loss problem—the translation result is not well-aligned with the input
image. While a direct theoretical analysis is likely elusive, we conduct an empir-
ical study, aiming at identify the cause of the content loss problem. As shown
in Fig. 5, we compute different translation results of a content image based on
a different style image where each of the style images is cropped from the same
original style image. In the plot, we show variations of the deviation of the
extracted style code due to different crops. Ideally, the plot should be constant
as long as the crop covers sufficient appearance signature of the target class
since that should be all required to generate a translation in the unseen domain.
However, the FUNIT style encoder produces very different style codes as using
different crops. Clearly, the style code contains other information about the style
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image such as the object pose. We hypothesize this is the cause of the content
loss problem and revisit the translator network design for addressing it.

Content-Conditioned Style Encoder (COCO). We hypothesize that the
content loss problem can be mitigated if the style embedding is more robust to
small variations in the style image. To this end, we design a new style encoder
architecture, called the COntent-COnditioned style encoder (COCO). There are
several distinctive features in COCO. The most obvious one is the conditioning
in the content image as illustrated in the top-right of Fig. 4. Unlike the style
encoder in FUNIT, COCO takes both content and style image as input. With this
content-conditioning scheme, we create a direct feedback path during learning
to let the content image influence how the style code is computed. It also helps
reduce the direct influence of the style image to the extract style code.

The bottom part of Fig. 4 details the COCO architecture. First, the content
image is fed into encoder ES,C to compute a spatial feature map. This content
feature map is then mean-pooled and mapped to a vector ζc. Similarly, the style
image is fed into encoder ES,S to compute a spatial feature map. The style
feature map is then mean-pooled and concatenated with an input-independent
bias vector, which we refer to as the constant style bias (CSB). Note that while
the regular bias in deep networks is added to the activations, in CSB, the bias is
concatenated with the activations. The CSB provides a fixed input to the style
encoder, which helps compute a style code that is less sensitive to the variations
in the style image. In the experiment section, we show that the CSB can also
be used to control the type of appearance information that is transmitted from
the style image. When the CSB is activated, mostly texture-based appearance
information is transferred. Note that the dimension of the CSB is set to 1024
through the paper.

The concatenation of the style vector and the CSB is mapped to a vector
ζs via a fully connected layer. We then perform an element-wise product opera-
tion to ζc and ζs, which is our final style code. The style code is then mapped
to produce the AdaIN parameters for generating the translation. Through this
element-wise product operation, the resulting style code is heavily influenced by
the content image. One way to look at this mechanism is that it produces a
customized style code for the input content image.

We use the COCO as a drop-in replacement for the style encoder in FUNIT.
Let φ denote the COCO mapping. The translation output is then computed via

zc = Ec(xc), zs = φ(Es,s(xs), Es,c(xc)), x̄ = F (zc, zs). (3)

As shown in Fig. 5, the style code extracted by the COCO is more robust to
variations in the style image. Note that we set ES,C ≡ EC to keep the number
of parameters in our model similar to that in FUNIT.

We note that the proposed COCO architecture shows only one way to gener-
ate the style code conditioned on the content and to utilize the CSB. Certainly,
there exist other design choices that could potentially lead to better translation
performance. However, since this is the first time these two components are used
for the few-shot image-to-image translation task, we focus on analyzing their
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contribution in one specific design, i.e., our design. An exhaustive exploration is
beyond the scope of the paper and is left for future work.

Fig. 5. We compare variations of the computed style codes due to variations in the
style images for different methods. Note that for a fair comparison, in addition to the
original FUNIT baseline [27], we create an improved FUNIT method by using our
improved design for the content encoder, image decoder, and discriminator, which is
termed “Ours w/o COCO”. “Ours” is our full algorithm where we use COCO as a
drop-in replacement for the style encoder in the FUNIT framework. In the bottom
part of the figure, we plot the variations of the style code due to using different crops
of a style image. Specifically, the style code for each style image is first extracted for
each method. We then compute the mean of the style codes for each method. The
magnitudes of the deviations from the mean style code are then plotted. Note that
to calibrate the network weights in different methods, all the style codes are first
normalized by the mean extracted from 500 style images for each method. As shown
in the figure, “Ours” produces more consistent translation outputs, which is a direct
consequence of a more consistent style code extraction mechanism.

In addition to the COCO, we also improve the design of the content encoder,
image decoder, and discriminator in the FUNIT work [27]. For the content
encoder and image decoder, we find that replacing the vanilla convolutional
layers in the original design with residual blocks [14] improves the performance
so does replacing the multi-task adversarial discriminator with the project-based
discriminator [32]. In Appendix D of our full technical report [36], we report their
individual contribution to the few-shot image translation performance.
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Learning. We train our model using three objective terms. We use the GAN
loss (LGAN(D,G)) to ensure the realism of the generated images given the class
of the style images. We use the image reconstruction loss (LR(G)) to encourage
the model to reconstruct images when both the content and the style are from
the same domain. We use the discriminator feature matching loss (LFM(G)) to
minimize the feature distance between real and fake samples in the discriminator
feature space, which has the effect of stabilizing the adversarial training and
contributes to generating better translation outputs as shown in the FUNIT
work. In Appendix B of our full technical report [36], we detail the computation
of each loss. Overall the objective is

min
D

max
G

LGAN(D,G) + λRLR(G) + λFLFM(G), (4)

Fig. 6. Results on one-shot image-to-image translation. Column 1 & 2 are from the
Carnivores dataset. Column 3 & 4 are from the Birds dataset. Column 5 & 6 are from
the Mammals dataset. Column 7 & 8 are from the Motorbikes dataset.

Table 1. Results on the benchmark datasets.

Dataset Method mFID ↓ PAcc ↑ mIoU ↑ User style User content

Preference ↑ Preference ↑
Carnivores FUNIT 147.8 59.8 44.6 16.5 11.9

Ours 107.8 66.5 52.1 83.5 88.1

Mammals FUNIT 245.8 35.3 23.3 23.6 27.8

Ours 109.3 48.8 35.5 76.4 72.2

Birds FUNIT 89.2 52.4 37.2 38.5 37.5

Ours 74.6 53.3 38.3 61.5 62.5

Motorbikes FUNIT 275.0 85.6 73.8 17.8 17,4

Ours 56.2 94.6 90.3 82.2 82.6
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where λR and λF denote trade-off parameters for two losses. We set λR 0.1 and
λF 1.0 in all of the experiments.

Fig. 7. Two-shot image translation results on the Carnivores dataset.

Fig. 8. Two-shot image translation results on the Birds dataset.
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4 Experiments

We evaluate our method on challenging datasets that contain large pose varia-
tions, part variations, and category variations. Unlike existing few-shot image-to-
image translation works, which focus on translations between reasonably-aligned
images or simple objects, our interest is in the translations between likely mis-
aligned images of highly articulate objects. Throughout the experiments, we use
256 × 256 as our default image resolution for both inputs and outputs.

Fig. 9. Two-shot image translation results on the Mammals dataset.

Implementation. We use Adam [22] with lr = 0.0001, β1 = 0.0, and β2 = 0.999
for all methods. Spectral normalization [31] is applied to the discriminator. The
final generator is a historical average version of the intermediate generators [19]
where the update weight is 0.001. We train the model for 150,000 iterations
in total. For every competing model, we compute the scores every 10,000 iter-
ations and report the scores of the iteration that achieves the smallest mFID.
Each training batch consists of 64 content images, which are evenly distributed
on a DGX machine with 8 V100 GPUs, each with 32 GB RAM.

Datasets. We benchmark our method using 4 datasets. Each of the dataset
contains objects with diverse poses, parts, and appearances.

• Carnivores. We build the dataset using images from the ImageNet dataset[7].
We pick up images from the 149 carnivorous animals and used 119 as the
source/seen classes and 30 as the target/unseen classes.
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Table 2. Ablation study on the Carnivores and Birds dataset. “Ours w/o CC” repre-
sents a baseline where the content conditioning part in COCO is removed. “Ours w/o
CSB” represents a baseline where the CSB is removed. Detailed architecture of these
baselines are given in Appendix A of our full technical report [36].

Method Carnivores Birds

mFID↓ PAcc↑ mIou ↑ mFID↓ PAcc↑ mIou ↑
Ours w/o COCO 99.6 62.5 47.8 68.8 52.8 37.9

Ours w/o CSB 107.1 61.8 46.9 74.1 52.5 37.7

Ours w/o CC 110.0 66.7 52.1 75.3 52.8 37.9

Ours 107.8 66.5 52.1 74.6 53.3 38.3

• Mammals. We collect 152 classes of herbivore animal images using Google
image search and combine them with the Carnivores dataset to build the
Mammals dataset. Out of the 301 classes, 236 classes are used for the
source/seen and the rest is used for the target/unseen.

• Birds. We collect 205 classes of bird images using Google image search. 172
classes are used for training and the rest is used for the testing.

• Motorbikes. We also collected 109 classes of motorbike images in the same
way. 92 classes are used as the source and the rest is used for the target.

Evaluation Protocol. For each dataset, we train a model using the source
classes mentioned above and test the performance on the target classes for
each competing methods. In the test phase, we randomly sample 25,000 con-
tent images and pair each of them with a few style images from a target class to
compute the translation. Unless specified otherwise, we use the one-shot setting
for performance evaluation as it is the most challenging few-shot setting. We
evaluate the quality of the translated images using various metrics as explained
below.

Performance Metrics. Ideally, a translated image should keep the structure of
the input content image, such as the pose or scale of body parts, unchanged when
emulating the appearances of the unseen domain. Existing work mainly focused
on the style transfer evaluation because the experiments are performed on well-
aligned images or images of simple objects. To consider both the style translation
and content preservation, we employ the following metrics. First, we evaluate the
style transfer by measuring distance between the distribution of the translated
images and the distribution of the real images in the unseen domain. Second,
the content preservation is evaluated by measuring correspondence between a
content and a translated image. Third, we conduct a user study to compute
human preference scores on both the style transfer and content preservation
of the translation results. The details of the performance metrics are given in
Appendix C of our technical report [36].

Baseline. We compare our method with the FUNIT method because it out-
performs many baselines with a large margin as described in Liu et al. [27].
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Therefore, a direct comparison with this baseline can verify the effectiveness of
the proposed method for the few-shot image-to-image translation task.

Main Results. The comparison results is summarized in Table 1. As shown, our
method outperforms FUNIT by a large margin in all the datasets on both auto-
matic metrics and human preference scores. This validates the effectiveness of
our method for few-shot unsupervised image-to-image translation. Figure 6 and 3
compare the one-shot translation results computed by the FUNIT method and
our approach. We find images generated by the FUNIT method contain many
artifacts while our method can generate photorealistic and faithful translation
outputs. In Fig. 7, 8, and 9, we further visualize two-shot translation results.
More visualization results are provided in the supplementary materials (Fig. 10).

Fig. 10. By changing the amplification factor λ of the CSB, our model generates dif-
ferent translation outputs for the same pair of content and style images.

Fig. 11. We interpolate the style codes from two example images from two different
unseen domains. Our model can generate photorealistic results using these interpolated
style codes. More results are in the supplementary materials.
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Ablation Study. In Table 2, we ablate modules in our architecture and measure
their impact on the few-shot translation performance using the Carnivores and
Birds datasets. Now, let us walk through the results. First, we find using the CSB
improve content preservation scores (“Ours w/o CSB” vs “Ours”), reflected by
the better PAcc and mIoU scores achieved. Second, using content conditioning
improves style transferring (“Ours w/o CC” vs “Ours”), reflected by the better
mFID scores achieved. We also note that despite “Ours w/o COCO” achieves a
better mFID, it is in the expense of large content loss.

Effect of the CSB. We conduct an experiment to understand how the CSB
designed added to our COCO influences the translation results. Specifically,
during testing, we multiply the CSB with a scalar λ. We then change the λ value
to visualize its effect as shown in Fig. reffig:csbspsmanipulation. Interestingly,
different values of λ generate different translation results. When the value is
small, the model mostly changes the texture of the content image. With a large
λ value, both the shape and texture are changed.

Unseen Style Blending. Here, we show an application where we combine
two style images from two unseen domains to create a new unseen domain.
Specifically, we first extract two style codes from two images from two different
unseen domains. We then mix their styles by linear interpolating the style codes.
The results are shown in Fig. 11 where the leftmost image is the content and
row indicated by s1 and s2 are the two style images. We find the intermediate
style codes render plausible translation results.

Failure Cases. While our approach effectively addresses the content loss prob-
lem, it still have several failure modes. We discuss these failure modes in the
supplementary materials.

5 Conclusion

We introduced the COCO-FUNIT architecture, a new style encoder for few-
shot image-to-image translation that extracts the style code from the example
images from the unseen domain conditioning on the input content image and
uses a constant style bias design. We showed that the COCO-FUNIT can effec-
tively address the content loss problem, proven challenging for few-shot image-
to-image-translation.
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