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Abstract. Large facial variations are the main challenge in face recog-
nition. To this end, previous variation-specific methods make full use of
task-related prior to design special network losses, which are typically
not general among different tasks and scenarios. In contrast, the existing
generic methods focus on improving the feature discriminability to min-
imize the intra-class distance while maximizing the inter-class distance,
which perform well on easy samples but fail on hard samples. To improve
the performance on hard samples, we propose a novel Distribution Dis-
tillation Loss to narrow the performance gap between easy and hard
samples, which is simple, effective and generic for various types of facial
variations. Specifically, we first adopt state-of-the-art classifiers such as
Arcface to construct two similarity distributions: a teacher distribution
from easy samples and a student distribution from hard samples. Then,
we propose a novel distribution-driven loss to constrain the student dis-
tribution to approximate the teacher distribution, which thus leads to
smaller overlap between the positive and negative pairs in the student
distribution. We have conducted extensive experiments on both generic
large-scale face benchmarks and benchmarks with diverse variations on
race, resolution and pose. The quantitative results demonstrate the supe-
riority of our method over strong baselines, e.g., Arcface and Cosface.
Code will be available at https://github.com/HuangYG123/DDL.
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1 Introduction

A primary challenge of large-scale face recognition on unconstrained imagery is
to handle the diverse variations on pose, resolution, race and illumination, etc.
While some variations are easy to address, many others are relatively difficult.
As in Fig. 1, State-of-the-Art (SotA) facial classifiers like Arcface [6] well address
images with small variations with tight groupings in the feature space. We denote
these as easy samples. In contrast, images with large variations are usually far
away from the easy ones in the feature space, and are much more difficult to
tackle. We denote these as hard samples. To better recognize these hard samples,
there are usually two schemes: variation-specific and generic methods.
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Fig. 1. Comparisons with Arcface [6] on SCface [10] dataset. T-SNE [21] visu-
alizations on features, where the same color indicates samples of the same subject.
Distance1 (d1) and Distance3 (d3) indicate low-resolution and high-resolution images,
which were captured at distances of 4.2 and 1.0 m, respectively. Each method has two
distributions from d3 and d1, where there are also two distributions from the positive
and negative pairs with a margin indicating the difference of their expectations. With
our distribution distillation loss between the teacher and student distributions, our
method effectively narrows the performance gap between the easy and hard samples,
decreasing the expectation margin from 0.21 (0.52–0.31) to 0.07 (0.56–0.49).

Variation-specific methods are usually designed for a specific task. For
instance, to achieve pose-invariant face recognition, either handcrafted or learned
features are extracted to enhance robustness against pose while remaining dis-
criminative to the identities [33]. Recently, joint face frontalization and disen-
tangled identity preservation are incorporated to facilitate the pose-invariant
feature learning [35,49]. To address resolution-invariant face recognition, a uni-
fied feature space is learned in [16,27] for mapping Low-Resolution (LR) and
High-Resolution (HR) images. The works [4,50] first apply super-resolution on
LR images and then perform recognition on the super-resolved images. However,
the above methods are specifically designed for the respective variations, there-
fore their ability to generalize from one variation to another is limited. Yet, it is
highly desirable to handle multiple variations in real world recognition systems.

Different from variation-specific methods, generic methods focus on improv-
ing the discriminative power of facial features for small intra-class and large inter-
class distances. Basically, the prior works fall into two categories, i.e., softmax
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loss-based and triplet loss-based methods. Softmax loss-based methods regard
each identity as a unique class to train the classification networks. Since the tra-
ditional softmax loss is insufficient to acquire the discriminative features, several
variants [6,18,40,43] are proposed to enhance the discriminability. In contrast,
triplet loss-based methods [23,26] directly learn a Euclidean space embedding
for each face, where faces from the same person form a separate cluster from
faces of other people. With large-scale training data and well-designed network
structures, both types of methods can obtain promising results.

However, the performance of these methods degrades dramatically on hard
samples, such as very large-pose and low-resolution faces. As illustrated in Fig. 1,
the features extracted from HR images (i.e., d3) by the strong face classifier of
Arcface [6] are well separated, but the features extracted from LR images (i.e.,
d1) cannot be well distinguished. From the perspective of the angle distributions
of positive and negative pairs, we can easily observe that Arcface exists more
confusion regions on LR face images. It is thereby a natural consequence that
such generic methods perform worse on hard samples.

To narrow the performance gap between the easy and hard samples, we
propose a novel Distribution Distillation Loss (DDL). By leveraging the best
of both the variation-specific and generic methods, our method is generic and
can be applied to diverse variations to improve face recognition in hard samples.
Specifically, we first adopt current SotA face classifiers as the baseline (e.g.,
Arcface) to construct the initial similarity distributions between teacher (e.g.,
easy samples from d3 in Fig. 1) and student (e.g., hard samples from d1 in Fig. 1)
according to the difficulties of samples, respectively. Compared to finetuning the
baseline models with domain data, our method firstly does not require extra data
or inference time (i.e., simple); secondly makes full use of hard sample mining
and directly optimizes the similarity distributions to improve the performance
on hard samples (i.e., effective); and finally can be easily applied to address
different kinds of large variations in extensive real applications, e.g., women
with makeup in fashion stores, surveillance faces in railway stations, and apps
looking for missing senior person or children, etc.

To sum up, the contributions of this work are three-fold:

– Our method narrows the performance gap between easy and hard samples on
diverse facial variations, which is simple, effective and general.

– To our best knowledge, it is the first work that adopts similarity distribu-
tion distillation loss for face recognition, which provides a new perspective to
obtain more discriminative features to better address hard samples.

– Significant gains compared to the SotA Arcface are reported, e.g., 97.0%
over 92.7% on SCface, 93.4% over 92.1% on CPLFW, 90.7% over 89.9%
(@FAR=1e−4) on IJB-B and 93.1% over 92.1% (@FAR=1e−4) on IJB-C.

2 Related Work

Loss Function in FR. Loss function design is pivotal for large-scale face recog-
nition. Softmax is commonly used for face recognition [30,34,39], which encour-
ages the separability of features but the learned features are not guaranteed to
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Fig. 2. Comparisons among conventional knowledge distillation, self-
distillation and our DDL. The student in KD is usually smaller than the teacher.
{e}n1 and {h}n1 indicate the easy and hard samples, respectively.

be discriminative. To address this issue, contrastive [29] and triplet [23,26] losses
are proposed to increase the margin in the Euclidean space. However, both con-
trastive and triplet losses occasionally encounter training instability due to the
selection of effective training samples. As a simple alternative, center loss and
its variants [7,43,52] are proposed to compress the intra-class variance. More
recently, angular margin-based losses [6,13,18,19,38] facilitate feature discrimi-
nation, and thus lead to larger angular/cosine separability between learned fea-
tures. The above loss functions are designed to apply constraints either between
samples, or between sample and center of the corresponding subject. In contrast,
our proposed loss is distribution driven. While being similar to the histogram
loss [37] that constrains the overlap between the distributions of positive and
negative pairs across the training set, our loss differs in that we first separate
the training set into a teacher distribution (easy samples) and student distribu-
tion (hard samples), and then constrain the student distribution to approximate
the teacher distribution via our novel loss, which narrows the performance gap
between easy and hard samples.

Variation-SpecificFR.Apart fromgeneric solutions [30,34] for face recognition,
there are also many methods designed to handle specific facial variations, such as
resolutions, poses, illuminations, expressions and demographics [8]. For example,
cross-poseFR [33,35,48,54] is very challenging, andpreviousmethodsmainly focus
on either face frontalization or pose invariant representations. Low resolution FR is
also a difficult task, especially in the surveillance scenario. One common approach
is to learn a unified feature space for LR and HR images [11,20,55]. The other way
is to perform super resolution [4,31,32] to enhance the facial identity information.
Differing from the above methods that mainly deal with one specific variation, our
novel loss is a generic approach to improve FR from hard samples, which is appli-
cable to a wide variety of variations.

Knowledge Distillation. Knowledge Distillation (KD) is an emerging topic. Its
basic idea is todistill knowledge froma large teachermodel intoa small oneby learn-
ing the class distributions provided by the teacher via softened softmax [12]. Typi-
cally, Kullback Leibler (KL) divergence [12,53] and Maximum Mean Discrepancy
(MMD) [14] canbeadopted tominimize theposterior probabilities between teacher
and student models. More recently, transferring mutual relations of data exam-
ples from the teacher to the student is proposed [22,36]. In particular, RKD [22]
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Fig. 3. Illustration of our DDL. We sample b positive pairs (i.e., 2b samples) and b
samples with different identities, for both the teacher PE and student PH distributions,
to form one mini-batch (i.e., 6b in total). {(s+

Ei
, s−

Ei
)|i = 1, ..., b} indicates we construct b

positive and negative pairs from PE via Eqs. 1 and 2 respectively to estimate the teacher
distribution. {(s+

Hi
, s−

Hi
)|i = 1, ..., b} also indicates we construct b positive and negative

pairs from PH via Eqs. 1 and 2 respectively to estimate the student distribution.

reported that KD can improve the original performance when the student has the
same structure as the teacher (i.e., self-distillation).

Compared to the above distillation methods, our DDL differs in several aspects
(see Fig. 2): 1) KD has at least two networks, a teacher and a student, while DDL
only learns one network. Although in KD the student may have the same struc-
ture as the teacher (e.g., self-distillation), they have different parameters in train-
ing. 2) KD uses sample-wise, Euclidean distance-wise or angle-wise constraints,
while DDL proposes a novel cosine similarity distribution-wise constraint which
is specifically designed for face recognition. 3) To our best knowledge, currently
no KD methods outperform SotA face classifiers on face benchmarks, while DDL
consistently outperforms the SotA Arcface classifier.

3 TheProposedMethod

Figure 3 illustrates the framework of our DDL. We separate the training set into
two parts, i.e., E for easy samples and H for hard samples to form the teacher and
student distributions, respectively. In general, for each mini-batch during training,
we sample from both parts. To ensure a good teacher distribution, we use the SotA
FR model [6] as our initialization. The extracted features are used to construct the
positive and negative pairs (Sect. 3.1), which are further utilized to estimate the
similarity distributions (Sect. 3.2). Finally, based on the similarity distributions,
the proposed DDL is utilized to train the classifier (Sect. 3.3).

3.1 Sampling Strategy from PE and PH

First, we introduce the details on how we construct the positive and negative pairs
in one mini-batch during training. Given two types of input data from both PE and
PH, each mini-batch consists of four parts, two kinds of positive pairs (i.e., (x1, x2)
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∼ PE and (x1, x2) ∼ PH), and two kinds of samples with different identities (i.e., x
∼ PE and x ∼ PH). To be specific, we on one hand construct b positive pairs (i.e.,
2b samples), and on the other hand b samples with different identities from PE and
PH. As the result, there are 6b = (2b+ b) ∗ 2 samples in each mini-batch (see Fig. 3
for more details).

PositivePairs.Thepositive pairs are constructed offline in advance, and eachpair
consist of two samples with the same identity. As shown in Fig. 3, samples of each
positive pair are arranged in order. After embedding data into a high-dimensional
feature space by a deep network F , the similarity of a positive pair s+ can be
obtained as follows:

s+
i =< F(xposi1),F(xposi2) >, i = 1, ..., b (1)

where xposi1 , xposi2 are the samples of one positive pair. Note that positive pairs
with similarity less than 0 are usually outliers, which are deleted as a practical set-
ting since our main goal is not to specifically handle noise.

Negative Pairs. Different from the positive pairs, we construct negative pairs
online from the samples with different identities via hard negative mining, which
selects negative pairs with the largest similarities. To be specific, the similarity of
a negative pair s− is defined as:

s−
i = max

j

(
{s−

ij =< F
(
xnegi

)
,F(xnegj ) > |j = 1, ..., b}

)
, (2)

where xnegi , xnegj are from different subjects. Once the similarities of positive and
negative pairs are constructed, the corresponding distributions can be estimated,
which is described in the next subsection.

3.2 Similarity Distribution Estimation

The process of similarity distribution estimation is similar to [37], which is per-
formed in a simple and piece-wise differentiable manner using 1D histograms with
soft assignment. Specifically, two samples xi, xj from the same person form a pos-
itive pair, and the corresponding label is denoted as mij = +1. In contrast, two
samples from different persons form a negative pair, and the label is denoted as
mij = −1. Then, we obtain two sample sets S+ = {s+ = 〈F(xi),F(xj)〉|mij =
+1} and S− = {s− = 〈F(xi),F(xj)〉|mij = −1} corresponding to the similarities
of positive and negative pairs, respectively.

Let p+ and p− denote the two probability distributions of S+ and S−, respec-
tively. As in cosine distance-based methods [6], the similarity of each pair is
bounded to [−1, 1], which is demonstrated to simplify the task [37]. Motivated by
the histogram loss, we estimate this type of one-dimensional distribution by fit-
ting simple histograms with uniformly spaced bins. We adopt R-dimensional his-
tograms H+ and H−, with the nodes t1 = −1, t2, · · · , tR = 1 uniformly filling
[−1, 1] with the step � = 2

R−1 . Then, we estimate the value h+
r of the histogram

H+ at each bin as:
h+
r =

1

|S+|
∑

(i,j):mij=+1

δi,j,r, (3)
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Fig. 4. Illustration of the effects of our order loss. Similarity distributions are con-
structed by Arcface [6] on SCface, in which we have 2 kinds of order distances formed
from both of the teacher and student distributions according to Eq. 6.

where (i, j) spans all the positive pairs. Different from [37], the weights δi,j,r are
chosen by an exponential function as:

δi,j,r = exp(−γ(sij − tr)
2), (4)

where γ denotes the spread parameter of Gaussian kernel function, and tr denotes
the rth node of histograms. We adopt the Gaussian kernel function because it is
the most commonly used kernel function for density estimation and robust to the
small sample size. The estimation of H− proceeds analogously.

3.3 Distribution Distillation Loss

We make use of SotA face recognition engines like [6], to obtain the similarity dis-
tributions from two kinds of samples: easy and hard samples. Here, easy samples
indicate that the FR engine performs well, in which the similarity distributions of
positive and negative pairs are clearly separated (see the teacher distribution in
Fig. 4), while hard samples indicate that the FR engine performs poorly, in which
the similarity distributions may be highly overlapped (see the student distribution
in Fig. 4).

KLDivergenceLoss.To narrow the performance gap between the easy and hard
samples, we constrain the similarity distribution of hard samples (i.e., student dis-
tribution) to approximate the similarity distribution of easy samples (i.e., teacher
distribution). The teacher distribution consists of two similarity distributions of
both positive and negative pairs, denoted as P+ and P−, respectively. Similarly,
the student distribution also consists of two similarity distributions, denoted asQ+

and Q−. Motivated by the previous KD methods [12,53], we adopt the KL diver-
gence to constrain the similarity between the student and teacher distributions,
which is defined as follows:

LKL = λ1DKL(P+||Q+) + λ2DKL(P −||Q−)

= λ1

∑

s

P+(s) log
P+(s)

Q+(s)
︸ ︷︷ ︸

KL loss on pos. pairs

+ λ2

∑

s

P −(s) log
P −(s)

Q−(s)
︸ ︷︷ ︸

KL loss onneg. pairs

, (5)

where λ1, λ2 are the weight parameters.
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OrderLoss.However, only usingKL loss does not guarantee goodperformance. In
fact, the teacher distribution may choose to approach the student distribution and
leads to more confusion regions between the distributions of positive and negative
pairs, which is the opposite of our objective (seeFig. 4).To address this problem,we
design a simple yet effective term named order loss, which minimizes the distances
between the expectations of similarity distributions from the negative and positive
pairs to control the overlap. Our order loss can be formulated as follows:

Lorder = −λ3

∑

(i,j)∈(p,q)

(E[S+
i ] − E[S−

j ]), (6)

whereS+
p andS−

p denote the similarities of positive andnegativepairs of the teacher
distribution; S+

q and S−
q denote the similarities of positive and negative pairs of the

student distribution; and λ3 is the weight parameter.
In summary, the entire formulation of our distribution distillation loss is:

LDDL = LKL + Lorder. DDL can be easily extended to multiple student distri-
butions varied from one specific variation as follows:

LDDL =

K∑

i=1

DKL(P ||Qi) − λ3

∑

i,j∈(p,q1...qK)

(E[S+
i ] − E[S−

j ]), (7)

where K is the number of student distributions. Further, to maintain the perfor-
mance on easy samples, we incorporate the loss function of Arcface [6], and thus
the final loss is:

L(Θ) = LDDL + LArcface, (8)

where Θ denotes the parameter set. Note that LArcface can be easily replaced by
any kind of popular losses in FR.

3.4 Generalization on Various Variations

Next, we discuss the generalization of DDL on various variations, which defines
our application scenarios and how we select easy/hard samples. Basically, we can
distinguish the easy and hard samples according to whether the image contains
large facial variations thatmayhinder the identity information, e.g., low-resolution
and large pose variation.

Observation fromDifferentVariations.Ourmethodassumes that twoormore
distributions, each computed fromasubset of trainingdata, havedifferences among
themselves,which is apopularphenomenon in face recognitionand is demonstrated
in Fig. 5. It shows similarity distributions of normal and challenging samples based
on Arcface [6] trained on CASIA except CFP, which is trained on VGGFace2. As
we can see, 1) since CASIA is biased to Caucasian, Mongolian samples in COX are
more difficult and thus relatively regarded as the hard samples, 2) different varia-
tions share a common observation that the similarity distributions of challenging
samples are usually different from those of easy samples, 3) variationswith different
extents may have different similarity distributions (e.g., H1 and H2 in Fig. 5(c)).
In summary, when a task satisfies that the similarity distributions differ between
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Fig. 5. Similarity distribution differ-
ences between easy and hard samples on
various variations, including race on COX,
pose on CFP, and resolution on SCface
respectively. (·,·) indicates the mean and
standard deviation.

Fig. 6. Effects of number of train-
ing subjects on COX. Compared to
Arcface-FT, DDL achieves comparable
results with only half the number of
training subjects.

easy and hard samples, our method is a good solution and one can enjoy the per-
formance improvement by properly constructing the positive and negative pairs,
as validated in Sect. 4.3.

PerformanceBalanceBetweenEasyandHardSamples. Improving theper-
formance on hard samples while maintaining the performance on easy samples is a
trade-off. Two factors in our method help maintain performance on easy samples.
First, we incorporate the SotA Arcface loss [6] to maintain feature discriminability
on easy samples. Second, our order loss minimizes the distance between the expec-
tations of similarity distributions from the negative and positive pairs, which helps
control the overlap between positive and negative pairs.

Discussions onMixtureVariations. As shown in Eq. 7, our method can be eas-
ily extended tomultiple variations for one task (e.g., low resolution, largepose, etc).
An alternative is to mix the variations with different extents from one task into one
student distribution, which, as shown in Sect. 4.2, is not good enough to specifically
model the different extents and tends to lead to lower performance. As for different
variations from different tasks, one may also construct multiple teacher-student
distribution pairs to address the corresponding task respectively, which can be a
good future direction.

4 Experiments

4.1 Implementation Details

Datasets. We separately employ SCface [10], COX [15], CASIA-WebFace [47],
VGGFace2 [3] and the refined MS1M [6] as our training data to conduct fair com-
parisons with other methods. We extensively test our method on benchmarks with
diverse variations, i.e., COX on race, SCface on resolution, CFP and CPLFW on
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Pose, as well as generic large-scale benchmarks IJB-B and IJB-C. For COX, the
data are collected from two races: Caucasian and Mongolian. Since no race label is
given, we manually label 428 Mongolians and 572 Caucasians to conduct experi-
ments, in which half of both races are used for finetuning and the others for testing.
For SCface, following [20], 50 subjects are used for finetuning and 80 subjects are
for testing. In the testing stage, we conduct face identification, where HR image is
used as the gallery and LR images with three different resolutions form the probe.
Specifically, the LR images are captured at three distances: 4.2 m for d1, 2.6 m for
d2 and 1.0 m for d3. We split easy and hard samples according to the main varia-
tion in each dataset. For race, since the dataset on which the model is pre-trained
is biased to Caucasian, Mongolian samples on COX are more difficult and thus rel-
atively regarded as the hard samples. For pose, we estimate the pose of each image
[25] on VGGFace2, and images with yaw < 10◦ and yaw > 45◦ are used as easy and
hard samples respectively. For resolution, images captured under d3 and d1/d2 are
used as easy and hard samples respectively on SCface.

Training Setting. We follow [6,40] to generate the normalized faces (112 × 112)
with five landmarks [51]. For the embedding network, we adopt ResNet50 and
ResNet100 as in [6]. Our work is implemented in Tensorflow [1]. We train models
on 8 NVIDIA Tesla P40 GPUs. On SCface, we set the number of positive/negative
pairs as b = 16, thus the batch size on one GPU is 3b × 3 = 144, including
one teacher distribution and two student distributions (see Fig. 5(c)). On other
datasets, we set b to 32, thus the batch size per GPU is 3b × 2 = 192. The numbers
of iterations are 1K, 2K and 20K on SCface, COX and VGGFace2, respectively.
The models are trained with SGD, with momentum 0.9 and weight decay 5e−4.
The learning rate is 1e−3, and is divided by 10 at half of iterations. All of the weight
parameters are consistent across all the experiments. λ1, λ2 and λ3 are set to 1e−1,
2e−2 and 5e−1, respectively.

4.2 Ablation Study

Effects ofDistanceMetric onDistributions.We investigate the effects of sev-
eral commonly used distribution metrics to constrain the teacher and student dis-
tributions in our DDL, including KL divergence, Jensen-Shannon (JS) divergence,
and Earth Mover Distance (EMD). Although KL divergence does not qualify as a
statistical metric, it is widely used as a measure of how one distribution is differ-
ent from another. JS divergence is a symmetric version of KL divergence. EMD is
another distance function between distributions on a given metric space and has
seen success in image synthesis [9]. We incorporate our order loss with the above
distance metrics, and report the results in Table 1. We choose KL divergence in
our DDL since it achieves the best performance, which shares similar conclusion
with [53]. To further investigate the effectiveness of each component in our loss, we
train the network with each component separately. As shown in Table 1, only KL
or only Order does not guarantee satisfying performance, while using both compo-
nents leads to better results.
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Table 1.Extensive ablation studies onSCface dataset.Allmethods are trained
on CASIA with a ResNet50 backbone. Each color corresponds to a type of ablation
study experimental setting.

EMD JS KL order Random hard mining Mixture specific d1 d2 d3 Avg.

Arcface-FT 67.3 93.5 98.0 86.3

Distance metric

� � � � 78.0 97.8 96.8 90.5

� � � � 83.0 98.3 99.0 93.4

� � � 76.0 94.3 98.5 89.6

� � � 80.8 97.5 99.0 92.4

Mining strategy � � � � 80.3 96.3 95.3 90.6

Mixture training � � � � 81.5 97.0 97.8 92.1

DDL (ours) � � � � 86.8 98.3 98.3 94.4

Effects of Random vs. Hard Mining. To investigate the effect of hard sample
mining in our method, we train models on SCface with the corresponding strat-
egy (i.e., negative pairs with the largest similarity are selected), and without the
strategy by randomly selecting the negative pairs, respectively. The comparative
results are reported in Table 1. Comparing with the results of “Random” selecting,
it is clear that our hard mining version outperforms the one without.

Effects of Mixture vs. Specific training. As mentioned in Sect. 3.4, we basi-
cally construct different student distributions for samples with different extents
of variations on SCface. Here, we mix two variations from d1 and d2 into one stu-
dent distribution.The comparison between our specific andmixture training is also
shown in Table 1. As we expected, the mixture version is worse than the specific
version, but is still better than the conventional finetuning (i.e., Avg. being 86.3),
which indicates that properly constructing different hard samples for the target
tasks may maximize the advantages of our method.

Effects of Number of Training Subjects. Here, we conduct tests on COX
dataset to show the effects of using different numbers of training subjects. Specif-
ically, we adopt 10%, 30%, 50%, 70%, 90% and 100% of training subjects, respec-
tively. A pre-trained Arcface on CASIA is used as the baseline. For fair comparison,
we also compare our method against Arcface with conventional finetuning (i.e.,
Arcface-FT). From Fig. 6 we see that: 1) Compared to Arcface-FT, our method
clearly boosts the performance on Mongolian-Mongolian verification tests with
comparable training data. 2) Our method can have comparable performance with
the only half of the entire training subjects, which demonstrate the superiority of
utilizing the global similarity distributions.

4.3 Comparisons with SotA Methods

Resolution on SCface. SCface mimics the real-world surveillance watch-list
problem, where the gallery contains HR faces and the probe consists of LR faces
captured from surveillance cameras. We compare our method with SotA low-
resolution face recognition methods in Table 2. Most results are directly cited
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Table 2. Rank-1 performance
(%) of face identification on
SCface testing set. ‘-FT’ repre-
sents finetuning with training set
from SCface.

Distance → d1 d2 d3 Avg.

LDMDS [46] 62.7 70.7 65.5 66.3

Center Loss [43] 36.3 81.8 94.3 70.8

Arcface (CASIA+R50) 48.0 92.0 99.3 79.8

Arcface (MS1M+R100) 58.9 98.3 99.5 85.5

Center Loss-FT 54.8 86.3 95.8 79.0

DCR-FT [20] 73.3 93.5 98.0 88.3

Histogram

(CASIA+R50)-FT [37]

74.3 95.0 97.3 88.8

OHEM

(CASIA+R50)-FT [28]

82.5 97.3 97.5 92.7

Focal

(CASIA+R50)-FT [17]

76.8 95.5 96.8 89.7

Triplet

(CASIA+R50)-FT [6]

84.2 97.2 99.2 93.5

Arcface

(CASIA+R50)-FT

67.3 93.5 98.0 86.3

Arcface

(MS1M+R100)-FT

80.5 98.0 99.5 92.7

Ours (CASIA+R50) 86.8 98.3 98.3 94.4

Ours (MS1M+R100) 93.2 99.2 98.5 97.0

Table 3. Verification comparisons with
SotA methods on LFW and two popu-
lar pose benchmarks, including CFP-FP and
CPLFW.

Methods (%) LFW CFP-FP CPLFW

Triplet Loss (CVPR’15) 98.98 91.90 −
Center Loss

(ECCV’16) [43]

98.75 − 77.48

SphereFace

(CVPR’17) [18]

99.27 − 81.40

DRGAN (CVPR’17) [35] − 93.41 −
Peng et al. (ICCV’17) [24] − 93.76 −
Yin et al. (TIP’17) [48] 98.27 94.39 −
VGGFace2 (FG’18) [3] 99.43 − 84.00

Dream (CVPR’18) [2] − 93.98 −
Deng et al. (CVPR’18) [5] 99.60 94.05 −
SV-Arc-Softmax

(arXiv’19) [42]

99.78 98.28 92.83

CO-Mining

(ICCV’19) [41]

− 95.87 87.31

Arcface (MS1M+R100)-

Official [6]a
99.82 98.37 92.08

Arcface (MS1M+R100) 99.80 98.29 92.52

Arcface (VGG+R100) 99.62 98.30 93.13

Ours (VGG+R100) 99.68 98.53 93.43

a Results are from the official model: https://github.

com/deepinsight/insightface, which is trained on

MS1M and adopts ResNet100 as the backbone.

from [20], while the results of Arcface come from our re-implementation. From
Table 2, we have some observations: 1) The baseline Arcface achieves much bet-
ter results than the other methods without finetuning, especially on the relatively
high-resolution images from d3. 2) Our (CASIA+ResNet50)-FT version already
outperforms all of the other methods, including Arcface (MS1M+ResNet100)-FT,
which uses a larger model that is trained by a much larger dataset. 3) We achieve
significant improvement on d1 setting, which is the hardest. This demonstrates the
effectiveness of our novel loss. 4) Histogram loss performs poorly, which demon-
strates the effects of our constraint between teacher and student distributions.

Moreover, different to the prior hard mining methods [17,26,28] where the hard
samples are mined based on the loss values during the training process, we pre-
define hard samples according to human prior. Penalizing individual samples or
triplets as in previous hard mining methods does not leverage sufficient contextual
insight of the overall distribution. DDL minimizes the difference of global similarity
distributions between the easy and hard samples, which is more robust for tackling
hard samples and against the noisy samples. The word “global” means our method
leverages sufficient contextual insight of the overall distribution in a mini-batch,
rather than focusing on a sample.

https://github.com/deepinsight/insightface
https://github.com/deepinsight/insightface
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Fig. 7. Illustrations of similarity distributions of different SotAmethods, which
are all pre-trained by CASIA with ResNet50 and then finetuned on SCface. The leftmost
and rightmost are the student and teacher distributions estimated fromapre-trainedArc-
face model on d1 and d3 settings, respectively. The similarity distributions in the middle
are obtained by various methods finetuned on SCface. The red number indicates the his-
togram intersection between the estimated similarity distributions from the positive and
negative pairs. (Color figure online)

Figure 7 illustrates the estimated similarity distributions of various SotA
methods. To quantify the differences among these methods, we introduce two
statistics for evaluation, the expectation margin and histogram intersection (i.e.,∑R

r=1 min(h+
r , h−

r ))between the twodistributions frompositiveandnegativepairs.
Typically, smaller histogram intersection and larger expectation margin indicate
better verification/identification performance, since it means more discriminative
embeddings are learned [37]. Our DDL achieves the closest statistics to the teacher
distribution, and thus obtains the best performance.

Pose on CFP-FP and CPLFW. We compare our method with SotA pose-
invariant methods [2,5,24,35,48] and generic solutions [3,6,18,41–43]. Since
VGGFace2 includes comprehensive pose variations, we use it to pre-train a
ResNet100 with Arcface. Next, we construct teacher and student distributions to
finetune the model with our loss. From Table 3, we can see that: 1) Our Arcface re-
implementations achieve comparable results against the official version, with simi-
lar results onLFWandCFP-FP, aswell as better performance onCPLFW.Arcface
is also much better than other methods, including those pose-invariant face recog-
nition methods. 2) Our method achieves the best performance on both pose bench-
marks, while also maintaining the performance on LFW (i.e., 99.68% vs. 99.62%).

Note that when using the model pre-trained on MS1M, and finetuning it with
easy/hard samples from VGGFace2, our method can further push the performance
to a higher level (99.06% on CFP-FP and 94.20% on CPLFW), which is the
first method that exceeds 99.0% on CFP-FP and 94.0% on CPLFW using images
cropped by MTCNN. Besides, we also train our DDL on the smaller training set
CASIA with a smaller backbone ResNet50. Again, our DDL outperforms the com-
petitors. Please refer to our supplementary material for details.
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Table 4. 1:1 verification TAR on the IJB-B and IJB-C datasets. All methods are
trained on VGGFace2 with ResNet50.

Methods (%) IJB-B IJB-C

FAR=1e−5 FAR=1e−4 FAR=1e−3 FAR=1e−5 FAR=1e−4 FAR=1e−3

VGGFace2 [3] 67.1 80.0 88.7 74.7 84.1 90.9

MN[45] 70.8 83.1 90.9 77.1 86.2 92.7

DCN [44] − 84.9 93.7 − 88.5 94.7

Arcface [6] 80.5 89.9 94.5 86.1 92.1 96.0

SP [36] 79.4 89.8 94.9 85.9 92.3 96.2

RKD [22] 78.4 89.6 94.7 85.5 92.1 96.1

Ours 83.4 90.7 95.2 88.4 93.1 96.3

Table 5. 1:N (mixed media) Identification on IJB-B/C. All methods are trained on
VGGFace2 with ResNet50. VGGFace2 is cited from the paper, and Arcface is from its
official released model.

Methods (%) IJB-B IJB-C

FPIR=0.01 FPIR=0.1 Rank 1 Rank 5 FPIR=0.01 FPIR=0.1 Rank 1 Rank 5

VGGFace2 [3] 70.6 83.9 90.1 94.5 74.6 84.2 91.2 94.9

Arcface [6] 73.1 88.2 93.6 96.5 79.6 89.5 94.8 96.9

SP [36] 72.4 88.0 93.8 96.6 79.9 89.5 94.7 97.0

RKD [22] 70.6 87.6 93.4 96.5 79.3 89.1 94.6 96.9

Ours 76.3 89.5 93.9 96.6 85.4 91.1 95.4 97.2

Large-Scale Benchmarks: IJB-B and IJB-C. On IJB-B/C datasets, we
employ VGGFace2 with ResNet50 for a fair comparison with recent methods. We
first construct the teacher and student distributions according to the pose of each
image, and then follow the testing protocol in [6] to take the average of the image
features as the corresponding template representation without bells and whistles.
Tables 4 and 5 show the 1:1 verification and 1:N identification comparisons with
the recent SotA methods, respectively. Note that our method is not a set-based
face recognition method, and the experiments on these two datasets are just to
prove that our DDL can obtain more discriminate features than generic methods
like Arcface, even on all-variations-included datasets. Please refer to our supple-
mentary material for the detailed analysis.

Comparisons with SotA KD Methods. We further conduct fair comparisons
between our DDL and the recent SotA KD/self-distillation methods, i.e., SP [36]
and RKD [22]. Note that since both SP and RKD have not reported SOTA results
on face recognition tasks, we re-implement the two methods under the same exper-
imental setting on VGGFace2, using their officially released code. Specifically, we
first train a ResNet50 with Arcface on VGGFace2 as the teacher model, and then
train a studentResNet50via combining theknowledgedistillationmethod (e.g., SP
or RKD) and Arcface loss under the guidance of the teacher model. As in Tables 4
and 5, our DDL outperforms the SotA KD/self-distillation methods, which achieve
similar results to vanilla Arcface.
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5 Conclusion

In this paper, we propose a novel framework Distribution Distillation Loss (DDL)
to improve various variation-specific tasks, which comes from the observations
that state-of-the-art methods (e.g., Arcface) witness significant performance gaps
between easy andhard samples.Thekey idea of ourmethod is to construct a teacher
and a student distribution from easy and hard samples, respectively. Then, the pro-
posed loss drives the student distribution to approximate the teacher distribution
to reduce the overlap between the positive and negative pairs. Extensive experi-
mentsdemonstrate the effectiveness of ourDDLonawide rangeof recognition tasks
compared to the state-of-the-art face recognition methods. In subsequent work, we
can try to extend our method to multiple teacher-student distribution pairs for the
corresponding task respectively.
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