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Abstract. Joint image-text embedding is the bedrock for most Vision-
and-Language (V+L) tasks, where multimodality inputs are simulta-
neously processed for joint visual and textual understanding. In this
paper, we introduce UNITER, a UNiversal Image-TExt Representation,
learned through large-scale pre-training over four image-text datasets
(COCO, Visual Genome, Conceptual Captions, and SBU Captions),
which can power heterogeneous downstream V+L tasks with joint mul-
timodal embeddings. We design four pre-training tasks: Masked Lan-
guage Modeling (MLM), Masked Region Modeling (MRM, with three
variants), Image-Text Matching (ITM), and Word-Region Alignment
(WRA). Different from previous work that applies joint random mask-
ing to both modalities, we use conditional masking on pre-training tasks
(i.e., masked language/region modeling is conditioned on full observa-
tion of image/text). In addition to ITM for global image-text alignment,
we also propose WRA via the use of Optimal Transport (OT) to explic-
itly encourage fine-grained alignment between words and image regions
during pre-training. Comprehensive analysis shows that both conditional
masking and OT-based WRA contribute to better pre-training. We also
conduct a thorough ablation study to find an optimal combination of
pre-training tasks. Extensive experiments show that UNITER achieves
new state of the art across six V+L tasks (over nine datasets), includ-
ing Visual Question Answering, Image-Text Retrieval, Referring Expres-
sion Comprehension, Visual Commonsense Reasoning, Visual Entail-
ment, and NLVR2 (Code is available at https://github.com/ChenRocks/
UNITER.).

1 Introduction

Most Vision-and-Language (V+L) tasks rely on joint multimodal embeddings
to bridge the semantic gap between visual and textual clues in images and text,

Y.-C. Chen, L. Li and L. Yu—Equal contribution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58577-8 7) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12375, pp. 104–120, 2020.
https://doi.org/10.1007/978-3-030-58577-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58577-8_7&domain=pdf
https://github.com/ChenRocks/UNITER
https://github.com/ChenRocks/UNITER
https://doi.org/10.1007/978-3-030-58577-8_7
https://doi.org/10.1007/978-3-030-58577-8_7
https://doi.org/10.1007/978-3-030-58577-8_7


UNITER: UNiversal Image-TExt Representation Learning 105

Fig. 1. Overview of the proposed UNITER model (best viewed in color), consisting of
an Image Embedder, a Text Embedder and a multi-layer Transformer, learned through
four pre-training tasks (Color figure online)

although such representations are usually tailored for specific tasks. For exam-
ple, MCB [8], BAN [14] and DFAF [10] proposed advanced multimodal fusion
methods for Visual Question Answering (VQA) [3]. SCAN [18] and MAttNet [45]
studied learning latent alignment between words and image regions for Image-
Text Retrieval [40] and Referring Expression Comprehension [13]. While each
of these models has pushed the state of the art on respective benchmarks, their
architectures are diverse and the learned representations are highly task-specific,
preventing them from being generalizable to other tasks. This raises a million-
dollar question: can we learn a universal image-text representation for all V+L
tasks?

In this spirit, we introduce UNiversal Image-TExt Representation
(UNITER), a large-scale pre-trained model for joint multimodal embedding.
We adopt Transformer [39] as the core of our model, to leverage its elegant
self-attention mechanism designed for learning contextualized representations.
Inspired by BERT [6], which has successfully applied Transformer to NLP tasks
through large-scale language modeling, we pre-train UNITER through four pre-
training tasks: (i) Masked Language Modeling (MLM) conditioned on image; (ii)
Masked Region Modeling (MRM) conditioned on text ; (iii) Image-Text Match-
ing (ITM); and (iv) Word-Region Alignment (WRA). To further investigate
the effectiveness of MRM, we propose three MRM variants: (i) Masked Region
Classification (MRC); (ii) Masked Region Feature Regression (MRFR); and (iii)
Masked Region Classification with KL-divergence (MRC-kl).

As shown in Fig. 1, UNITER first encodes image regions (visual features
and bounding box features) and textual words (tokens and positions) into a
common embedding space with Image Embedder and Text Embedder. Then,
a Transformer module is applied to learn generalizable contextualized embed-
dings for each region and each word through well-designed pre-training tasks.
Compared with previous work on multimodal pre-training [1,19,20,23,33,37,50]:
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(i) our masked language/region modeling is conditioned on full observation of
image/text, rather than applying joint random masking to both modalities; (ii)
we introduce a novel WRA pre-training task via the use of Optimal Transport
(OT) [5,29] to explicitly encourage fine-grained alignment between words and
image regions. Intuitively, OT-based learning aims to optimize for distribution
matching via minimizing the cost of transporting one distribution to another. In
our context, we aim to minimize the cost of transporting the embeddings from
image regions to words in a sentence (and vice versa), thus optimizing towards
better cross-modal alignment. We show that both conditional masking and OT-
based WRA can successfully ease the misalignment between images and text,
leading to better joint embeddings for downstream tasks.

To demonstrate the generalizable power of UNITER, we evaluate on six V+L
tasks across nine datasets, including: (i) VQA; (ii) Visual Commonsense Rea-
soning (VCR) [48]; (iii) NLVR2 [34]; (iv) Visual Entailment [42]; (v) Image-Text
Retrieval (including zero-shot setting) [18]; and (vi) Referring Expression Com-
prehension [46]. Our UNITER model is trained on a large-scale V+L dataset
composed of four subsets: (i) COCO [21]; (ii) Visual Genome (VG) [16]; (iii)
Conceptual Captions (CC) [32]; and (iv) SBU Captions [26]. Experiments show
that UNITER achieves new state of the art with significant performance boost
across all nine downstream datasets. Moreover, training on additional CC and
SBU data (containing unseen images/text in downstream tasks) further boosts
model performance over training on COCO and VG only.

Our contributions are summarized as follows: (i) We introduce UNITER, a
powerful UNiversal Image-TExt Representation for V+L tasks. (ii) We present
Conditional Masking for masked language/region modeling, and propose a novel
Optimal-Transport-based Word-Region Alignment task for pre-training. (iii) We
achieve new state of the art on a wide range of V+L benchmarks, outperforming
existing multimodal pre-training methods by a large margin. We also present
extensive experiments and analysis to provide useful insights on the effectiveness
of each pre-training task/dataset for multimodal encoder training.

2 Related Work

Self-supervised learning utilizes original data as its own source of supervision,
which has been applied to many Computer Vision tasks, such as image coloriza-
tion [49], solving jigsaw puzzles [25,38], inpainting [27], rotation prediction [11],
and relative location prediction [7]. Recently, pre-trained language models, such
as ELMo [28], BERT [6], GPT2 [31], XLNet [44], RoBERTa [22] and ALBERT
[17], have pushed great advances for NLP tasks. There are two keys to their
success: effective pre-training tasks over large language corpus, and the use of
Transformer [39] for learning contextualized text representations.

More recently, there has been a surging interest in self-supervised learning for
multimodal tasks, by pre-training on large-scale image/video and text pairs, then
finetuning on downstream tasks. For example, VideoBERT [36] and CBT [35]
applied BERT to learn a joint distribution over video frame features and linguis-
tic tokens from video-text pairs. ViLBERT [23] and LXMERT [37] introduced
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the two-stream architecture, where two Transformers are applied to images and
text independently, which is fused by a third Transformer in a later stage. On the
other hand, B2T2 [1], VisualBERT [20], Unicoder-VL [19] and VL-BERT [33]
proposed the single-stream architecture, where a single Transformer is applied
to both images and text. VLP [50] applied pre-trained models to both image
captioning and VQA. More recently, multi-task learning [24] and adversarial
training [9] were used to further boost the performance. VALUE [4] developed
a set of probing tasks to understand pre-trained models.

Our Contributions. The key differences between our UNITER model and the
other methods are two-fold: (i) UNITER uses conditional masking on MLM and
MRM, i.e., masking only one modality while keeping the other untainted; and
(ii) a novel Word-Region Alignment pre-training task via the use of Optimal
Transport, while in previous work such alignment is only implicitly enforced by
task-specific losses. In addition, we examine the best combination of pre-training
tasks through a thorough ablation study, and achieve new state of the art on
multiple V+L datasets, often outperforming prior work by a large margin.

3 UNiversal Image-TExt Representation

In this section, we first introduce the model architecture of UNITER (Sect. 3.1),
then describe the designed pre-training tasks and V+L datasets used for pre-
training (Sect. 3.2 and 3.3).

3.1 Model Overview

The model architecture of UNITER is illustrated in Fig. 1. Given a pair of image
and sentence, UNITER takes the visual regions of the image and textual tokens
of the sentence as inputs. We design an Image Embedder and a Text Embedder to
extract their respective embeddings. These embeddings are then fed into a multi-
layer Transformer to learn a cross-modality contextualized embedding across
visual regions and textual tokens. Note that the self-attention mechanism in
Transformer is order-less, thus it is necessary to explicitly encode the positions
of tokens and the locations of regions as additional inputs.

Specifically, in Image Embedder, we first use Faster R-CNN1 to extract the
visual features (pooled ROI features) for each region. We also encode the location
features for each region via a 7-dimensional vector.2 Both visual and location fea-
tures are then fed through a fully-connected (FC) layer, to be projected into the
same embedding space. The final visual embedding for each region is obtained
by summing up the two FC outputs and then passing through a layer normal-
ization (LN) layer. For Text Embedder, we follow BERT [6] and tokenize the
input sentence into WordPieces [41]. The final representation for each sub-word

1 Our Faster R-CNN was pre-trained on Visual Genome object+attribute data [2].
2 [x1, y1, x2, y2, w, h, w ∗ h] (normalized top/left/bottom/right coordinates, width,

height, and area.).
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token3 is obtained via summing up its word embedding and position embedding,
followed by another LN layer.4

We introduce four main tasks to pre-train our model: Masked Language Mod-
eling conditioned on image regions (MLM), Masked Region Modeling conditioned
on input text (with three variants) (MRM), Image-Text Matching (ITM), and
Word-Region Alignment (WRA). As shown in Fig. 1, our MRM and MLM are
in analogy to BERT, where we randomly mask some words or regions from the
input and learn to recover the words or regions as the output of Transformer.
Specifically, word masking is realized by replacing the token with a special token
[MASK], and region masking is implemented by replacing the visual feature vec-
tor with all zeros. Note that each time we only mask one modality while keeping
the other modality intact, instead of randomly masking both modalities as used
in other pre-training methods. This prevents potential misalignment when a
masked region happens to be described by a masked word (detailed in Sect. 4.2).

We also learn an instance-level alignment between the whole image and the
sentence via ITM. During training, we sample both positive and negative image-
sentence pairs and learn their matching scores. Furthermore, in order to provide a
more fine-grained alignment between word tokens and image regions, we propose
WRA via the use of Optimal Transport, which effectively calculates the minimum
cost of transporting the contextualized image embeddings to word embeddings
(and vice versa). The inferred transport plan thus serves as a propeller for bet-
ter cross-modal alignment. Empirically, we show that both conditional masking
and WRA contributes to performance improvement (in Sect. 4.2). To pre-train
UNITER with these tasks, we randomly sample one task for each mini-batch,
and train on only one objective per SGD update.

3.2 Pre-training Tasks

Masked Language Modeling (MLM). We denote the image regions as v =
{v1, ...,vK}, the input words as w = {w1, ...,wT }, and the mask indices as
m ∈ N

M .5 In MLM, we randomly mask out the input words with probability
of 15%, and replace the masked ones wm with special token [MASK].6 The goal
is to predict these masked words based on the observation of their surrounding
words w\m and all image regions v, by minimizing the negative log-likelihood:

LMLM(θ) = −E(w,v)∼D log Pθ(wm|w\m,v), (1)

3 We use word/sub-word and token interchangeably throughout the rest of the paper.
4 We also use a special modality embedding to help the model distinguish between

textual and visual input, which is similar to the ‘segment embedding’ in BERT. This
embedding is also summed before the LN layer in each embedder. For simplicity, this
modality embedding is omitted in Fig. 1.

5
N is the natural numbers, M is the number of masked tokens, and m is the set of
masked indices.

6 Following BERT, we decompose this 15% into 10% random words, 10% unchanged,
and 80% [MASK].
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where θ is the trainable parameters. Each pair (w,v) is sampled from the whole
training set D.

Image-Text Matching (ITM). In ITM, an additional special token [CLS] is
fed into our model, which indicates the fused representation of both modalities.
The inputs to ITM are a sentence and a set of image regions, and the output is
a binary label y ∈ {0, 1}, indicating if the sampled pair is a match. We extract
the representation of [CLS] token as the joint representation of the input image-
text pair, then feed it into an FC layer and a sigmoid function to predict a score
between 0 and 1. We denote the output score as sθ(w,v). The ITM supervision
is over the [CLS] token.7 During training, we sample a positive or negative pair
(w,v) from the dataset D at each step. The negative pair is created by replacing
the image or text in a paired sample with a randomly-selected one from other
samples. We apply the binary cross-entropy loss for optimization:

LITM(θ) = −E(w,v)∼D[y log sθ(w,v) + (1 − y) log(1 − sθ(w,v))]). (2)

Word-Region Alignment (WRA). We use Optimal Transport (OT) for
WRA, where a transport plan T ∈ R

T×K is learned to optimize the align-
ment between w and v. OT possesses several idiosyncratic characteristics that
make it a good choice for WRA: (i) Self-normalization: all the elements of T
sum to 1 [29]. (ii) Sparsity : when solved exactly, OT yields a sparse solution T
containing (2r − 1) non-zero elements at most, where r = max(K,T ), leading to
a more interpretable and robust alignment [29]. (iii) Efficiency : compared with
conventional linear programming solvers, our solution can be readily obtained
using iterative procedures that only require matrix-vector products [43], hence
readily applicable to large-scale model pre-training.

Specifically, (w,v) can be considered as two discrete distributions μ,ν, for-
mulated as μ =

∑T
i=1 aiδwi

and ν =
∑K

j=1 bjδvj
, with δwi

as the Dirac function
centered on wi. The weight vectors a = {ai}T

i=1 ∈ ΔT and b = {bj}K
j=1 ∈ ΔK

belong to the T - and K-dimensional simplex, respectively (i.e.,
∑T

i=1 ai =
∑K

j=1 bj = 1), as both μ and ν are probability distributions. The OT distance
between μ and ν (thus also the alignment loss for the (w,v) pair) is defined as:

LWRA(θ) = Dot(μ,ν) = min
T∈Π(a,b)

T∑

i=1

K∑

j=1

Tij · c(wi,vj) , (3)

where Π(a,b) = {T ∈ R
T×K
+ |T1m = a,T�1n = b}, 1n denotes an n-

dimensional all-one vector, and c(wi,vj) is the cost function evaluating the
distance between wi and vj . In experiments, the cosine distance c(wi,vj) =

1− w�
i vj

||wi||2||vj ||2 is used. The matrix T is denoted as the transport plan, interpret-
ing the alignment between two modalities. Unfortunately, the exact minimization
7 Performing this during pre-training also alleviates the mismatch problem between

pre-training and downstream finetuning tasks, since most of the downstream tasks
take the representation of the [CLS] token as the joint representation.
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over T is computational intractable, and we consider the IPOT algorithm [43]
to approximate the OT distance (details are provided in the supplementary file).
After solving T, the OT distance serves as the WRA loss that can be used to
update the parameters θ.

Masked Region Modeling (MRM). Similar to MLM, we also sample image
regions and mask their visual features with a probability of 15%. The model
is trained to reconstruct the masked regions vm given the remaining regions
v\m and all the words w. The visual features of the masked region are replaced
by zeros. Unlike textual tokens that are represented as discrete labels, visual
features are high-dimensional and continuous, thus cannot be supervised via
class likelihood. Instead, we propose three variants for MRM, which share the
same objective base:

LMRM(θ) = E(w,v)∼Dfθ(vm|v\m,w). (4)

1) Masked Region Feature Regression (MRFR) MRFR learns to
regress the Transformer output of each masked region v(i)

m to its visual features.
Specifically, we apply an FC layer to convert its Transformer output into a vec-
tor hθ(v

(i)
m ) of same dimension as the input ROI pooled feature r(v(i)

m ). Then
we apply L2 regression between the two: fθ(vm|v\m,w) =

∑M
i=1 ‖hθ(v

(i)
m ) −

r(v(i)
m )‖2

2.
2) Masked Region Classification (MRC) MRC learns to predict the

object semantic class for each masked region. We first feed the Transformer
output of the masked region v(i)

m into an FC layer to predict the scores of K
object classes, which further goes through a softmax function to be transformed
into a normalized distribution gθ(v

(i)
m ) ∈ R

K . Note that there is no ground-
truth label, as the object categories are not provided. Thus, we use the object
detection output from Faster R-CNN, and take the detected object category
(with the highest confidence score) as the label of the masked region, which will
be converted into a one-hot vector c(v(i)

m ) ∈ R
K . The final objective minimizes

the cross-entropy (CE) loss: fθ(vm|v\m,w) =
∑M

i=1 CE(c(v(i)
m ), gθ(v

(i)
m )).

3) Masked Region Classification with KL-Divergence (MRC-kl)
MRC takes the most likely object class from the object detection model as
the hard label (w.p. 0 or 1), assuming the detected object class is the ground-
truth label for the region. However, this may not be true, as no ground-truth
label is available. Thus, in MRC-kl, we avoid this assumption by using soft label
as supervision signal, which is the raw output from the detector (i.e., a dis-
tribution of object classes c̃(v(i)

m )). MRC-kl aims to distill such knowledge into
UNITER as [12], by minimizing the KL divergence between two distributions:
fθ(vm|v\m,w) =

∑M
i=1 DKL(c̃(v(i)

m )||gθ(v
(i)
m )).

3.3 Pre-training Datasets

We construct our pre-training dataset based on four existing V+L datasets:
COCO [21], Visual Genome (VG) [16], Conceptual Captions (CC) [32], and SBU
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Table 1. Statistics on the datasets used for pre-training. Each cell shows #image-text
pairs (#images)

Split In-domain Out-of-domain

COCO captions VG dense captions Conceptual captions SBU captions

train 533K (106K) 5.06M (101K) 3.0M (3.0M) 990K (990K)

val 25K (5K) 106K (2.1K) 14K (14K) 10K (10K)

Captions [26]. Only image and sentence pairs are used for pre-training, which
makes the model framework more scalable, as additional image-sentence pairs
are easy to harvest for further pre-training.

To study the effects of different datasets on pre-training, we divide the four
datasets into two categories. The first one consists of image captioning data
from COCO and dense captioning data from VG. We call it “In-domain” data,
as most V+L tasks are built on top of these two datasets. To obtain a “fair” data
split, we merge the raw training and validation splits from COCO, and exclude
all validation and test images that appear in downstream tasks. We also exclude
all co-occurring Flickr30K [30] images via URL matching, as both COCO and
Flickr30K images were crawled from Flickr and may have overlaps.8 The same
rule was applied to Visual Genome as well. In this way, we obtain 5.6M image-
text pairs for training and 131K image-text pairs for our internal validation,
which is half the size of the dataset used in LXMERT [37], due to the filtering of
overlapping images and the use of image-text pairs only. We also use additional
Out-of-domain data from Conceptual Captions [32] and SBU Captions [26] for
model training.9 The statistics on the cleaned splits are provided in Table 1.

4 Experiments

We evaluate UNITER on six V+L tasks10 by transferring the pre-trained model
to each target task and finetuning through end-to-end training. We report exper-
imental results on two model sizes: UNITER-base with 12 layers and UNITER-
large with 24 layers.11

8 A total of 222 images were eliminated through this process.
9 We apply the same URL matching method, excluding 109 images from training.

10 VQA, VCR, NLVR2, Visual Entailment, Image-Text Retrieval, and Referring
Expression Comprehension. Details about the tasks are listed in the supplementary.

11 UNITER-base: L = 12, H = 768, A = 12, Total Parameters = 86M. UNITER-large:
L= 24, H = 1024, A= 16, Total Parameters= 303M (L: number of stacked Trans-
former blocks; H: hidden activation dimension; A: number of attention heads). 882
and 3645 V100 GPU hours were used for pre-training UNITER-base and UNITER-
large.
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Table 2. Evaluation on pre-training tasks and datasets using VQA, Image-Text
Retrieval on Flickr30K, NLVR2, and RefCOCO+ as benchmarks. All results are
obtained from UNITER-base. Averages of R@1, R@5 and R@10 on Flickr30K for
Image Retrieval (IR) and Text Retrieval (TR) are reported. Dark and light grey colors
highlight the top and second best results across all the tasks trained with In-domain
data

Pre-training Data Pre-training Tasks Meta-Sum VQA
IR

(Flickr)

TR
(Flickr)

NLVR2 Ref-
COCO+

test-dev val val dev vald

None 1 None 314.34 67.03 61.74 65.55 51.02 68.73
Wikipedia +

BookCorpus
2 MLM (text only) 346.24 69.39 73.92 83.27 50.86 68.80

In-domain

(COCO+VG)

3 MRFR 344.66 69.02 72.10 82.91 52.16 68.47
4 ITM 385.29 70.04 78.93 89.91 74.08 72.33
5 MLM 386.10 71.29 77.88 89.25 74.79 72.89
6 MLM + ITM 393.04 71.55 81.64 91.12 75.98 72.75
7 MLM + ITM + MRC 393.97 71.46 81.39 91.45 76.18 73.49
8 MLM + ITM + MRFR 396.24 71.73 81.76 92.31 76.21 74.23
9 MLM + ITM + MRC-kl 397.09 71.63 82.10 92.57 76.28 74.51
10 MLM + ITM + MRC-kl + MRFR 399.97 71.92 83.73 92.87 76.93 74.52
11 MLM + ITM + MRC-kl + MRFR + WRA 400.93 72.47 83.72 93.03 76.91 74.80

12
MLM + ITM + MRC-kl + MRFR

(w/o cond. mask)
396.51 71.68 82.31 92.08 76.15 74.29

Out-of-domain

(SBU+CC)
13 MLM + ITM + MRC-kl + MRFR + WRA 396.91 71.56 84.34 92.57 75.66 72.78

In-domain +

Out-of-domain
14 MLM + ITM + MRC-kl + MRFR + WRA 405.24 72.70 85.77 94.28 77.18 75.31

4.1 Downstream Tasks

In VQA, VCR and NLVR2 tasks, given an input image (or a pair of images)
and a natural language question (or description), the model predicts an answer
(or judges the correctness of the description) based on the visual content in
the image. For Visual Entailment, we evaluate on the SNLI-VE dataset. The
goal is to predict whether a given image semantically entails an input sentence.
Classification accuracy over three classes (“Entailment”, “Neutral” and “Con-
tradiction”) is used to measure model performance. For Image-Text Retrieval,
we consider two datasets (COCO and Flickr30K) and evaluate the model in
two settings: Image Retrieval (IR) and Text Retrieval (TR). Referring Expres-
sion (RE) Comprehension requires the model to select the target from a set of
image region proposals given the query description. Models are evaluated on
both ground-truth objects and detected proposals12 (MAttNet [45]).

For VQA, VCR, NLVR2, Visual Entailment and Image-Text Retrieval, we
extract the joint embedding of the input image-text pairs via a multi-layer per-
ceptron (MLP) from the representation of the [CLS] token. For RE Comprehen-
sion, we use the MLP to compute the region-wise alignment scores. These MLP
layers are learned during the finetuning stage. Specifically, we formulate VQA,
VCR, NLVR2, Visual Entailment and RE Comprehension as classification prob-

12 The evaluation splits of RE comprehension using detected proposals are denoted as
vald, testd, etc.
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lems and minimize the cross-entropy over the ground-truth answers/responses.
For Image-Text Retrieval, we formulate it as a ranking problem. During finetun-
ing, we sample three pairs of image and text, one positive pair from the dataset
and two negative pairs by randomly replacing its sentence/image with others.
We compute the similarity scores (based on the joint embedding) for both posi-
tive and negative pairs, and maximize the margin between them through triplet
loss.

4.2 Evaluation on Pre-training Tasks

We analyze the effectiveness of different pre-training settings through ablation
studies over VQA, NLVR2, Flickr30K and RefCOCO+ as representative V+L
benchmarks. In addition to standard metrics13 for each benchmark , we also use
Meta-Sum (sum of all the scores across all the benchmarks) as a global metric.

Firstly, we establish two baselines: Line 1 (L1) in Table 2 indicates no pre-
training is involved, and L2 shows the results from MLM initialized with pre-
trained weights from [6]. Although MLM trained on text only did not absorb
any image information during pre-training, we see a gain of approximately +30
on Meta-Sum over L1. Hence, we use the pre-trained weights in L2 to initialize
our model for the following experiments.

Secondly, we validate the effectiveness of each pre-training task through a
thorough ablation study. Comparing L2 and L3, MRFR (L3) achieves better
results than MLM (L2) only on NLVR2. On the other hand, when pre-trained
on ITM (L4) or MLM (L5) only, we observe a significant improvement across
all the tasks over L1 and L2 baselines. When combining different pre-training
tasks, MLM + ITM (L6) improves over single ITM (L4) or MLM (L5). When
MLM, ITM and MRM are jointly trained (L7–L10), we observe consistent per-
formance gain across all the benchmarks. Among the three variants of MRM
(L7–L9), we observe that MRC-kl (L9) achieves the best performance (397.09)
when combined with MLM + ITM, while MRC (L7) the worst (393.97). When
combining MRC-kl and MRFR together with MLM and ITM (L10), we find
that they are complimentary to each other, which leads to the second highest
Meta-Sum score. The highest Meta-Sum Score is achieved by MLM + ITM +
MRC-kl + MRFR + WRA (L11). We observe significant performance improve-
ments from adding WRA, especially on VQA and RefCOCO+. It indicates the
fine-grained alignment between words and regions learned through WRA during
pre-training benefits the downstream tasks involving region-level recognition or
reasoning. We use this optimal pre-training setting for the further experiments.

Additionally, we validate the contributions of conditional masking through a
comparison study. When we perform random masking on both modalities simul-
taneously during pre-training, i.e., w/o conditional masking (L12), we observe a
decrease in Meta-Sum score (396.51) compared to that with conditional masking
(399.97). This indicates that the conditional masking strategy enables the model
to learn better joint image-text representations effectively.

13 Details about the metrics are listed in the supplementary.
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Lastly, we study the effects of pre-training datasets. Our experiments so far
have been focused on In-domain data. In this study, we pre-train our model
on Out-of-domain data (Conceptual Captions + SBU Captions). A performance
drop (396.91 in L13) from the model trained on In-domain data (COCO + Visual
Genome) (400.93 in L11) shows that although Out-of-domain data contain more
images, the model still benefits more from being exposed to similar downstream
images during pre-training. We further pre-train our model on both In-domain
and Out-of-domain data. With doubled data size, the model continues to improve
(405.24 in L14).

4.3 Results on Downstream Tasks

Table 3 presents the results of UNITER on all downstream tasks. Both our
base and large models are pre-trained on In-domain+Out-of-domain datasets,
with the optimal pre-training setting: MLM+ITM+MRC-kl+MRFR+WRA.
The implementation details of each task are provided in the supplementary file.
We compare with both task-specific models and other pre-trained models on
each downstream task. SOTA task-specific models include: MCAN [47] for VQA,
MaxEnt [34] for NLVR2, B2T2 [1] for VCR, SCAN [18] for Image-Text Retrieval,
EVE-Image [42] for SNLI-VE, and MAttNet for RE Comprehension (RefCOCO,
RefCOCO+ and RefCOCOg).14 Other pre-trained models include: ViLBERT
[23], LXMERT [37], Unicoder-VL [19], VisualBERT [20] and VLBERT [33].

Results show that our UNITER-large model achieves new state of the art
across all the benchmarks. UNITER-base model also outperforms the others
by a large margin across all tasks except VQA. Specifically, our UNITER-base
model outperforms SOTA by approximately +2.8% for VCR on Q→AR, +2.5%
for NLVR2, +7% for SNLI-VE, +4% on R@1 for Image-Text Retrieval (+15%
for zero-shot setting), and +2% for RE Comprehension.

Note that LXMERT pre-trains with downstream VQA (+VG+GQA) data,
which may help adapt the model to VQA task. However, when evaluated on
unseen tasks such as NLVR2, UNITER-base achieves 3% gain over LXMERT.
In addition, among all the models pre-trained on image-text pairs only, our
UNITER-base outperforms the others by >1.5% on VQA.

It is also worth mentioning that both VilBERT and LXMERT observed
two-stream model outperforms single-stream model, while our results show
empirically that with our pre-training setting, single-stream model can achieve
new state-of-the-art results, with much fewer parameters (UNITER-base: 86M,
LXMERT: 183M, VilBERT: 221M).15

For VCR, we propose a two-stage pre-training approach: (i) pre-train on stan-
dard pre-training datasets; and then (ii) pre-train on downstream VCR dataset.
Interestingly, while VLBERT and B2T2 observed that pre-training is not very

14 MAttNet results are updated using the same features as the others. More details are
provided in the supplementary file.

15 The word embedding layer contains excessive rare words, thus excluded from the
parameter counts.
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Table 3. Results on downstream V+L tasks from UNITER model, compared with
task-specific state-of-the-art (SOTA) and previous pre-trained models. ZS: Zero-Shot,
IR: Image Retrieval and TR: Text Retrieval

Tasks SOTA ViLBERT
VLBERT Unicoder

VisualBERT LXMERT
UNITER

egraLesaBLV-)egraL(

VQA
test-dev 70.63 70.55 71.79 - 70.80 72.42 72.70 73.82
test-std 70.90 70.92 72.22 - 71.00 72.54 72.91 74.02

VCR
Q→A 72.60 73.30 75.80 - 71.60 - 75.00 77.30
QA→R 75.70 74.60 78.40 - 73.20 - 77.20 80.80
Q→AR 55.00 54.80 59.70 - 52.40 - 58.20 62.80

NLVR2 dev 54.80 - - - 67.40 74.90 77.18 79.12
test-P 53.50 - - - 67.00 74.50 77.85 79.98

SNLI-
VE

val 71.56 - - - - - 78.59 79.39
test 71.16 - - - - - 78.28 79.38

ZS IR
(Flickr)

R@1 - 31.86 - 48.40 - - 66.16 68.74
R@5 - 61.12 - 76.00 - - 88.40 89.20
R@10 - 72.80 - 85.20 - - 92.94 93.86

IR
(Flickr)

R@1 48.60 58.20 - 71.50 - - 72.52 75.56
R@5 77.70 84.90 - 91.20 - - 92.36 94.08
R@10 85.20 91.52 - 95.20 - - 96.08 96.76

IR
(COCO)

R@1 38.60 - - 48.40 - - 50.33 52.93
R@5 69.30 - - 76.70 - - 78.52 79.93
R@10 80.40 - - 85.90 - - 87.16 87.95

ZS TR
(Flickr)

R@1 - - - 64.30 - - 80.70 83.60
R@5 - - - 85.80 - - 95.70 95.70
R@10 - - - 92.30 - - 98.00 97.70

TR
(Flickr)

R@1 67.90 - - 86.20 - - 85.90 87.30
R@5 90.30 - - 96.30 - - 97.10 98.00
R@10 95.80 - - 99.00 - - 98.80 99.20

TR
(COCO)

R@1 50.40 - - 62.30 - - 64.40 65.68
R@5 82.20 - - 87.10 - - 87.40 88.56
R@10 90.00 - - 92.80 - - 93.08 93.76

Ref-
COCO

val 87.51 - - - - 91.64 91.84
testA 89.02 - - - - - 92.26 92.65
testB 87.05 - - - - - 90.46 91.19
vald 77.48 - - - - - 81.24 81.41
testAd 83.37 - - - - - 86.48 87.04
testBd 70.32 - - - - - 73.94 74.17

Ref-
COCO+

val 75.38 - 80.31 - - - 83.66 84.25
testA 80.04 - 83.62 - - - 86.19 86.34
testB 69.30 - 75.45 - - - 78.89 79.75
vald 68.19 72.34 72.59 - - - 75.31 75.90
testAd 75.97 78.52 78.57 - - - 81.30 81.45
testBd 57.52 62.61 62.30 - - - 65.58 66.70

Ref-
COCOg

val 81.76 - - - - - 86.52 87.85
test 81.75 - - - - - 86.52 87.73
vald 68.22 - - - - - 74.31 74.86
testd 69.46 - - - - - 74.51 75.77
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Table 4. Experiments on two-stage pre-training
for VCR. Results are from UNITER-base on
VCR val split. Stage I and Stage II denote first-
stage and second-stage pre-training

Stage I Stage II Q→A QA→ R Q → AR

N N 72.44 73.71 53.52

N Y 73.52 75.34 55.6

Y N 72.83 75.25 54.94

Y Y 74.56 77.03 57.76

Table 5. Experiments on three
modified settings for NLVR2. All
models use pre-trained UNITER-
base

Setting dev test-P

Triplet 73.03 73.89

Pair 75.85 75.80

Pair-biattn 77.18 77.85

helpful on VCR, we find that the second-stage pre-training can significantly
boost model performance, while the first-stage pre-training still helps but with
limited effects (results shown in Table 4). This indicates that the proposed two-
stage approach is highly effective in our pre-trained model over new data that
are unseen in pre-training datasets.

Different from other tasks, NLVR2 takes two images as input. Thus, directly
finetuning UNITER pre-trained with image-sentence pairs might not lead to
optimal performance, as the interactions between paired images are not learned
during the pre-training stage. Thus, we experimented with three modified set-
tings on NLVR2: (i) Triplet : joint embedding of images pairs and query captions;
(ii) Pair : individual embedding of each image and each query caption; and (iii)
Pair-biattn: a bidirectional attention is added to the Pair model to learn the
interactions between the paired images.

Comparison results are presented in Table 5. The Pair setting achieves better
performance than the Triplet setting even without cross-attention between the
image pairs. We hypothesize that it is due to the fact that our UNITER is pre-
trained with image-text pairs. Thus, it is difficult to finetune a pair-based pre-
trained model on triplet input. The bidirectional attention mechanism in the
Pair-biattn setting, however, compensates the lack of cross-attention between
images, hence yielding the best performance with a large margin. This show
that with minimal surgery on the top layer of UNITER, our pre-trained model
can adapt to new tasks that are very different from pre-training tasks.

4.4 Visualization

Similar to [15], we observe several patterns in the attention maps of the UNITER
model, as shown in Fig. 2. Note that different from [15], our attention mechanism
operates in both inter- and intra-modality manners. For completeness, we briefly
discuss each pattern here:

– Vertical: attention to special tokens [CLS] or [SEP];
– Diagonal: attention to the token/region itself or preceding/following

tokens/regions;
– Vertical + Diagonal: mixture of vertical and diagonal;
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(a) Vertical (b) Diagonal (c) Vertical + Diagonal

(d) Block (e) Heterogeneous (f) Reversed Block

Fig. 2. Visualization of the attention maps learned by the UNITER-base model

Fig. 3. Text-to-image attention visualization example

– Block: intra-modality attention, i.e., textual self-attention and visual self-
attention;

– Heterogeneous: diverse attentions that cannot be categorized and is highly
dependent on actual input;

– Reversed Block: inter-modality attention, i.e., text-to-image and image-to-
text attention.

Note that Reversed Block (Fig. 2f) shows cross-modality alignment between
tokens and regions. In Fig. 3, we visualize several examples of text-to-image
attention to demonstrate the local cross-modality alignment between regions
and tokens.

5 Conclusion

In this paper, we present UNITER, a large-scale pre-trained model provid-
ing UNiversal Image-TExt Representations for Vision-and-Language tasks. Four
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main pre-training tasks are proposed and evaluated through extensive ablation
studies. Trained with both in-domain and out-of-domain datasets, UNITER out-
performs state-of-the-art models over multiple V+L tasks by a significant mar-
gin. Future work includes studying early interaction between raw image pixels
and sentence tokens, as well as developing more effective pre-training tasks.
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