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Abstract. We propose novel approaches for simultaneously identify-
ing important weights of a convolutional neural network (ConvNet)
and providing more attention to the important weights during train-
ing. More formally, we identify two characteristics of a weight, its
magnitude and its location, which can be linked with the importance
of the weight. By targeting these characteristics of a weight during
training, we develop two separate weight excitation (WE) mechanisms
via weight reparameterization-based backpropagation modifications. We
demonstrate significant improvements over popular baseline ConvNets
on multiple computer vision applications using WE (e.g. 1.3% accu-
racy improvement over ResNet50 baseline on ImageNet image classifi-
cation, etc.). These improvements come at no extra computational cost
or ConvNet structural change during inference. Additionally, including
WE methods in a convolution block is straightforward, requiring few lines
of extra code. Lastly, WE mechanisms can provide complementary ben-
efits when used with external attention mechanisms such as the popular
Squeeze-and-Excitation attention block.

Keywords: Convolutional neural network · Convolution filter
weights · Weight reparameterization · Attention mechanism

1 Introduction

Convolutional neural networks (ConvNets) are extremely powerful in analyzing
visual imagery and have brought tremendous success in many computer vision
tasks, e.g. image classification [9,29,40], video action and gesture recognition
[14,34], etc. A ConvNet is made up of convolution blocks, each of which consists
of a number of learnable parameters including convolution filter weights. The
effectiveness of training these weights in convolution blocks can depend on the
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ConvNet design, the training data available, choice of optimizer and many other
factors [10,15,19,26,37].

As a ConvNet is trained, some of these weights become less important than
others [18], and removing the less important weights in a ConvNet can often
lead to compressed ConvNets without compromising on accuracy considerably
[6–8,18,22,25]. Recently, Frankle & Carbin [4] hypothesized that an iteratively
pruned network can be retrained from scratch to similar accuracy using its initial
ConvNet parameters, suggesting that some weights may, in fact, start as being
more important than others after random initialization of weights.

Assuming that some convolution kernel weights of a ConvNet are more
important than others during the ConvNet training, we hypothesize that provid-
ing more attention to optimizing the more important weights during ConvNet
training can improve ConvNet performances without the addition of computa-
tion costs or modifications in ConvNet structure during inference. To test this
hypothesis, we implement two novel schemes that simultaneously identify the
importance of weights and provide more attention to training the more important
weights, and investigate their effects on ConvNet performances. The highlights
of our contributions in this paper are:

1. We investigate two characteristics of weights (i.e., their magnitude and loca-
tion in a ConvNet) that could provide indications on how important each
of the weights is. Note that ‘location’ of a weight is defined by the layer the
weight is in, and the input and output channel that the weight is connecting.

2. We propose two novel weight reparameterization mechanisms that target
the identified characteristics of weights in (1) and modify the weights in a
way that enables more attention to optimizing the more important weights
via adjusting the backpropagated gradients. We broadly term such training
mechanisms as Weight Excitation (WE)-based training.

3. We conduct several experiments on image classification (ImageNet [30],
CIFAR100 [16]), semantic segmentation (PASCAL VOC [3], Cityscapes
[2]), gesture recognition (Jester [33]) and action recognition (mini Kinetics
[41]). The ConvNets studied for these tasks have varying types of convolu-
tions (e.g. 2D convolution, 3D convolution, shift-based 3D convolution [20],
etc.). Additionally, we experiment with ConvNets of different structures and
model sizes, hyperparameter settings, normalization approaches, optimizers,
and schedulers.

In all our experiments, WE-based training demonstrates considerable
improvements over popular baseline ConvNets. The accuracy gains with using
WE can be similar to that of adding the popular squeeze-and-excitation (SE)
based attention to a baseline ConvNet [12]. Notably, in contrast to SE, WE-
based training does not require any ConvNet structural changes or added costs at
inference. Additionally, WE-based training complements prior attention mech-
anisms [12,27,35] in terms of improving accuracy. Finally, WE-based training
provides considerably better acceleration and accuracy gains compared to the
other weight reparameterization approaches [24,28,31].
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2 Related Works

Identifying Important ConvNet Parameters: Identifying important
parameters and then removing unimportant parameters is common in ConvNet
pruning approaches [6–8,18,25]. Two common criteria for identifying important
ConvNet parameters are - (1) higher minimal increase in training error when a
parameter is removed corresponding to the parameter being of higher importance
[8,18], and (2) higher magnitude parameter corresponding to higher importance
(e.g. [22,25]). A less explored characteristic of a weight that can be linked to
its importance is its location in a ConvNet. One evidence that the location of
a weight could be important is in an ablation study in [12]. The ablation study
shows that earlier layers in SE-added ConvNets tend to put more attention
or importance on some activation map output channels than others regardless
of the inputs to those layers [12], suggesting that the convolution filter weights
involved in calculating those activation map output channels are more important
than others. In this work, we use novel weight reparameterization approaches to
provide more attention to training important weights identified using their mag-
nitude and location characteristics.

Applying Attention on Weights: In prior works, attention mechanisms in
ConvNets have been applied to activation maps [11,12,27,35]. Such activation
map-based attention methods do not have fine-grained control on providing more
attention to a particular weight in a convolution filter kernel - for example, in
SE ConvNets [12], during a backpropagation through an excited activation map
channel, attention is provided to all the weights that contributed to generating
that activation map channel. In contrast, weight reparameterization-based WE
methods can provide fine-grained weight-wise attention to the weights during
backpropagation.

3 Technical Approach

We begin by investigating the relationship between the importance of a weight
and its magnitude/location properties (Fig. 1a, Fig. 2) (Sect. 3.1). Next, we
implement a weight reparameterization approach that simultaneously identi-
fies important weights via location characteristics and provides more attention
to them (Fig. 1c, Fig. 3a) (Sect. 3.2). We call this method location-based WE
(LWE). We then implement another WE method that targets magnitude prop-
erty of a weight for identifying its importance (Fig. 1b, Fig. 3b) (Sect. 3.3). We
call this second method magnitude-based WE (MWE).

3.1 Investigating the Importance of Weights

To investigate the importance of weights, we systematically decimate the effects
of weights (i.e., by making them zeroes) that exhibit certain characteristics in a
ConvNet and investigate the resulting decrease in ConvNet performance. This
approach is similar to finding the importance of a ConvNet parameter in [8,18].
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We study two separate characteristics of a weight in a ConvNet - the magnitude
and the location of a weight. For these investigations, we use a ResNet50 [9]
ConvNet pretrained on the ImageNet [30] since it is popularly and variously
used in computer vision research (e.g. [12,21]).

Weight Magnitude and Importance: To study this relationship, we do the
following: (1) sort weights in each convolution layer in ascending order of abso-
lute values of weights, (2) make the bth percentile position (b ∈ {1,2,3,4, . . . ,
100}) weight of the sorted absolute weights of each layer zero and record the
decrease in performance D (Fig. 1a). Figure 1a shows our findings on decrease
in performance D when a weight at position b is zeroed. For higher b, D progres-
sively increases (Fig. 1a), suggesting that importance increases with magnitude.

Fig. 1. (a) Higher magnitude weights correspond to larger D, and therefore are more
important. To focus on optimizing more important weights, higher gain is provided
to the more important weights via weight reparameterization. This reparameterization
can be based on magnitude-importance relationship of each weight (b) (Sect. 3.3) or
can be based on location-importance relationship of all weights along each of the input
channels (c) (Sect. 3.2).

Weight Location and Importance: To study this relationship, we do the
following: (1) select all the L convolutional blocks having 3 × 3 filters in the
pretrained ResNet50 (L = 16 for ResNet50), (2) for each selected 3 × 3 con-
volution block (e.g. Fig. 3) (Sl, l ∈ {1, . . . , L}), select N1 output channels
(Sl,Oj

, j ∈ {1, . . . , N1}) equidistant from each other, (3) for each Sl,Oj
, select

N2 input channels (Sl,Oj ,Ii , i ∈ {1, . . . , N2}) equidistant from each other, and
then (4) zero each of the weights in Sl,Oj ,Ii and record the decrease in perfor-
mance DSl,Oj,Ii

. In this paper, we consider N1 = N2 = 5. This results in 5×5 D

values for each layer of the pretrained ResNet50 (Fig. 2). Higher D values cor-
respond to 3 × 3 filters that are more important to retaining the performances
of the ResNet50. We notice larger fluctuations in D in the early layers, and the
fluctuations in D tend to fade away in deeper layers, though some variations
in D still remain at the deepest layer (Fig. 2). This suggests that the impor-
tance of weights in different locations of a ConvNet can be different and that
the difference in importance is more obvious in the ConvNet’s earlier layers.
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Fig. 2. Decrease in performance map (or importance map) of sampled 3×3 convolution
kernels in various layers of the pretrained ResNet50. Here, (a) corresponds to the first
convolution layer in the ConvNet that consists of 3 × 3 convolution kernels, and (b)
to (p) correspond to progressively deeper layers containing 3 × 3 kernels. Early layers
exhibit larger variation in 3 × 3 kernel importance than deeper layers.

3.2 Location-Based Weight Excitation

As we see in Sect. 3.1, importance of weight kernels can vary depending on
where they are located (Fig. 2). Therefore, for weights W having dimensions
Out×In×h×w in a convolutional layer that connects In input channels to Out
output channels (e.g. Fig. 3a where h = 3 and w = 3), importance of each h×w
weight kernels can vary. To provide separate attention to each of the Out × In
weight kernels, an Out × In-sized location-importance multiplier map (m ∈ R :
m ∈ [0, 1]) can be multiplied to each of the h×w weight kernels separately. This
will result in larger backpropagated gradients through weight kernels that were
multiplied with larger m values. To find the multiplier map m, a simple approach
could be to instantiate Out×In-sized learnable parameters that are dynamically
trained during training; however, this results in drastically increased ConvNet
parameters (e.g. around 60% increase in parameters for ResNet50 [9]). Instead,
we propose to use a simple subnetwork that takes in In × h × w weights and
generates In sized importance map values. The same subnetwork is re-used for
all the Out pathways in W to generate m. While this subnetwork could have
many different structures, we chose the SE block [12] for its efficient design - a
small artificial neural network comprising of only two fully connected layers and
some activation functions. The subnetwork (Fig. 3a) is defined as:

mj = A2(FC2(A1(FC1(Avg(Wj))))) (1)

where Wj is the weights across the jth output channel [28], Avg is an average
pooling operation that averages every h×w to one averaged value, A1 and A2 are
two activation functions (instantiated as ReLU and Sigmoid, respectively), FC1
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and FC2 are two fully connected layers. To extend this formulation to 1D and
3D convolution layer, Avg is modified to average over w for a 1D convolution and
over t × h × w in a 3D convolution. Finally, mj is expanded by value replication
to a In × h × w, and multiplied elementwise to Wj (Fig. 3a). Repeating this
across all output channels result in LWE transformed weights WLWE (Fig. 3a).

Fig. 3. (a) Outline of our LWE method that identifies location-wise importance map m,
and then provides more attention to important locations via elementwise multiplication.
(b) Outline of our MWE method that uses the fA activation function to provide more
attention to higher magnitude weights. This behavior is seen for all fA under different
εA values, with lower εA increasing this effect of attention. As εA value is increased, fA
behaves closer to an identity line (blue line). (Color figure online)

3.3 Magnitude-Based Weight Excitation

Our magnitude-based weight mechanism (MWE) is a novel activation function
fA(ω) that takes in a weight ω of W , and provides relatively larger gains to
ω if it has a relatively larger magnitude among all weights of W . Additionally,
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fA(ω) is differentiable and avoids vanishing and exploding gradient problems.
We define fA(ω) which transforms ω to ωMWE as:

ωMWE = fA(W ) = MA × 0.5 × ln
1 + ω/MA

1 − ω/MA
, (2)

where MA = (1+ εA)×M , M is the maximum magnitude of a weight in W and
εA is a hyperparameter with a small value greater than 0 (e.g. 0 < εA < 0.2).
The gradient for ω (i.e., �ω) becomes:

�ω = MA
2/(MA

2 − ω2) × �ωMWE
. (3)

For εA > 0, ω < MA and the denominator of MA
2/(MA

2 − ω2) remains numer-
ically stable. Minimum value of MA

2/(MA
2 − ω2) is 1 when ω has a zero mag-

nitude. As magnitude of ω increases, MA
2/(MA

2 − ω2) progressively increases
upto a maximum value defined by εA (e.g. maximum of 5.76 when εA = 0.1) for
ω that has the highest magnitude in W . Thus, more attention or gain is pro-
vided to backpropagated gradients corresponding to higher magnitude weights.
For larger values of εA, fA becomes closer to an identity line, whereas smaller
values of εA increases the level of attention provided via MWE (Fig. 3b).

Note that, before feeding W as input for LWE or MWE, we can normalize W
similar to normalizing an input before being fed to a neural network. We do this
by standardizing W across each jth output channel similar to [28]. Using nor-
malized weight Wn instead of W as input results in additional small performance
improvements on most ConvNets.

4 Experiments and Results

4.1 Experimental Setup

We test effectiveness of our proposed WE methods on image classification (Ima-
geNet [30], CIFAR100 [16]), and semantic segmentation (PASCAL VOC [3]).
Additionally, we test WE methods on a standard 3D convolution-based Con-
vNet [34] for action recognition on the Mini-Kinetics dataset [41], and on a
temporal shift convolution-based 3D ConvNet [20] for gesture recognition on
Jester dataset [33]. In all experiments, we modify all convolution blocks such
that WE methods are added to the convolution blocks during training only, so
no ConvNet structural change or additional cost is required at inference. We
use normalized weights as inputs for WE methods, except when WE methods
are used on depthwise convolutions. This exception is because ConvNet per-
formances deteriorate when weights are normalized in depthwise convolutions
[39].

4.2 ImageNet Image Classification

ImageNet is a large-scale standard dataset containing around 1.28 million train-
ing and 50K validation images [30]. For experiments on ImageNet, we used a
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standard data augmentation and training recipe as described in [42]. We adopt
the data augmentation used in [9], and adopt the standard single-crop evaluation
for testing [12,35]. We used a batch size of 128 for ResNet152 [9] and a batch size
of 256 for all other ConvNets, and optimized with stochastic gradient descent
(SGD) with backpropagation [17] having momentum 0.9 and a decay of 10−4.
Each of the ConvNets were trained for 100 epochs. Learning rate was initialized
at 0.1 and reduced by a factor of 10−1 at 30th, 60th and 90th epochs. We used
MWE with εA = 0.1 in all convolution blocks. Since our LWE outperforms our
MWE method, we primarily investigate efficacy of LWE on different ConvNets
(Table 1).

Additionally, we conduct a series of ablation studies on the ImageNet image
classification dataset [30]: (1) compare performance gains achieved with LWE
against performance gains with activation map-based attention (or external
attention) based approaches [12,27,35], (2) compare convergence speed with
LWE-based training against convergence speeds with popular weight normal-
izing reparameterization approaches [24,28,31], (3) study effectiveness of LWE
for different normalization approaches, optimizers and schedulers, (4) compare
utility of LWE against that of MWE, (5) check validity of learned attention
multiplier in LWE, and (6) study hyperparameter sensitivity.

WE Improves Accuracy on Baseline ConvNets: LWE-based training on
popular baseline ConvNets of varying parameter sizes (e.g. MobileNetV2 [32],
ResNet50 [9], ResNeXt50 (32 × 4d) [40], ResNet152-SE [12], Wide ResNet50-
2 [43]) provides significant accuracy gains over baseline ConvNets (Table 1,
Fig. 4a). MWE-based training also provides considerable accuracy gain on
ResNet50 [9]; however, this accuracy gain is much lower than that with LWE.
To provide perspective on the accuracy gains achieved with WE-based training,
we compare them with the accuracy gains obtained using the popular SE blocks
[12]. We find the two sets of accuracy gains to be similar (Table 1), except for
MobileNetV2 [32] where SE [12] provides better accuracy gain. This exception is
likely due to LWE’s inability in providing excitations on depthwise convolution
blocks that have a size of Out × In × h × w where In = 1. In such a case, we
conjecture that any excitation provided by LWE’s importance map m of sized
Out × 1 likely gets absorbed by the following batch normalization (BN) that
also has a Out × 1 learnable scaling paramter. This limitation of LWE in depth-
wise convolution is not shared by MWE - adding MWE on depthwise convolu-
tions of MobileNetV2 provides improved performance gain (MobileNetV2-WE
in Table 1).

Comparing LWE with Activation Map-Based Attention Mechanisms:
LWE-based built-in weight attention mechanism brings large accuracy gains
on baseline ConvNets similar to popular attention methods such as SE [12]
(Table 1); however, in contrast to prior attention approaches [12,27,35] LWE
does not burden the baseline ConvNets with any structural changes or any added
computation costs at inference. Also, training costs with LWE methods are lower
than prior attention approaches such as SE [12] since LWE is applied on weights
whereas prior attention approaches are applied on considerably larger activation
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maps (e.g. lower training memory with LWE, see Table 1). Finally, LWE-based
attention is applied on each of the In input filter kernels separately for each out-
put channel j (Fig. 3), which is complementary to prior attention methods that
provide attention to only the output channels separately [12,27,35]. We conjec-
ture that, due to this complementary attention mechanism, consistent accuracy
gains (Table 1) and speed in convergence (Fig. 4b) are observed when LWE is
used with other attention methods [12,35]. Overall, the utility of LWE is in its
ability to provide considerable accuracy gains that are comparable to SE [12]
with lower training costs than SE and without addition of inference costs, and
in LWE’s complementary nature to prior attention approaches.

Fig. 4. (a) When LWE-based training (red lines) is applied on baseline ConvNets, con-
sistent gains in performance are sustained throughout the training process. (b) Using
LWE with other baseline activation map-based attention methods provide further per-
formance gains. (c) Compared with weight normalizing reparameterization approaches
that can speed up training convergence, LWE demonstrates faster convergence and
better accuracy gains. (Color figure online)

Comparing LWE with Weight Normalizing Approaches: Weight nor-
malizing reparameterization approaches have shown promise in speeding Con-
vNet training and in providing accuracy gains to baseline ConvNets [24,28,31].
We compare accuracy gains and speed of convergence of LWE-based training
with three weight normalizing reparameterization approaches [24,28,31] for the
ResNet50 [9] ConvNet. We find that LWE-based training outperforms all weight
normalizing reparameterizing approaches by a considerable margin in terms of
accuracy gain (Table 2) and speed of convergence (Fig. 4c). Taking training time
into consideration, since LWE-based training adds around 7% training time com-
pared to baseline ResNet50, we conservatively reduce total training epochs of
LWE from 100 to 90 (with learning rate decays at 27th, 54th and 81st epochs),
and still find improvements over other approaches (Table 2).

Applicability to Group Normalization, AdamW and Cosine Learning
Rate: As a preliminary study to identify whether LWE retains its beneficial
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Table 1. Validation accuracy of different baseline ConvNet architectures without and
with WE-based training on the ImageNet image classification task. Memory require-
ments for training and inference are shown for batch size of 128. LWE consistently
provides considerable accuracy gains that are comparable to accuracy gains achieved
when SE blocks [12] are used with baseline ConvNet. In contrast to SE [12], WE meth-
ods do not add inference costs or ConvNet structural changes. Also, training with WE
in baseline ConvNets require relatively small extra training memory compared to the
extra memory requirement of SE (extra memory with WE around 1/3 to 2/3 of the
extra memory with SE). LWE also complements different attention methods [12,27,35]
in improving accuracy.

Method Train

Param.

(M)

Train

Mem.

(GB)

Inference

Param.

(M)

Inference

Mem.

(GB)

GFLOPs Top-1 Acc.

(%)

Top-5 Acc.

(%)

Small sized models

MobileNetV2 [32] 3.5 9.5 3.5 2.9 0.317 66.2 87.1

MobileNetV2-LWE 4.1 9.6 3.5 2.9 0.317 66.5 87.3

MobileNetV2-WE 4.1 9.6 3.5 2.9 0.317 67.0 87.5

MobileNetV2-SE 3.6 9.8 3.6 3.0 0.320 67.3 87.8

MobileNetV2-WE-SE 4.2 9.9 3.6 3.0 0.320 68.1 88.2

ResNet18 11.7 4.9 11.7 2.2 1.80 70.6 89.5

ResNet18-LWE 11.9 5.1 11.7 2.2 1.80 71.0 90.0

ResNet18-SE 11.8 5.4 11.8 2.2 1.81 71.0 90.1

ResNet18-LWE-SE 11.9 5.6 11.8 2.3 1.81 71.7 90.5

Medium sized models

ResNet50 25.6 14.0 25.6 2.6 3.86 75.8 92.8

ResNet50-BAM 25.9 15.8 25.9 2.8 3.94 76.0 92.8

ResNet50-LWE 28.1 14.8 25.6 2.6 3.86 77.1 93.5

ResNet50-SE 28.1 16.7 28.1 2.9 3.87 77.1 93.5

ResNet50-CBAM 28.1 19.3 28.1 3.4 3.87 77.2 93.7

ResNet50-LWE-SE 30.6 17.6 28.1 2.9 3.87 77.5 93.8

ResNet50-LWE-BAM 28.4 16.7 25.9 2.8 3.94 77.4 93.7

ResNet50-LWE-CBAM 30.6 20.2 28.1 3.4 3.87 77.7 93.9

ResNeXt50 25.0 16.8 25.0 2.4 4.24 77.2 93.4

ResNeXt50-LWE 27.9 17.2 25.0 2.4 4.24 77.7 93.8

ResNeXt50-SE 27.5 19.5 27.5 2.9 4.25 77.8 93.9

ResNeXt50-LWE-SE 30.4 20.0 27.5 2.9 4.25 78.1 94.1

Large sized models

WideResNet50-2 68.9 18.3 68.9 5.2 11.46 77.3 93.5

WideResNet50-2-LWE 72.3 20.0 68.9 5.2 11.46 78.3 94.2

WideResNet50-2-SE 71.4 21.2 71.4 5.29 11.48 78.3 94.2

WideResNet50-2-LWE-SE 74.9 22.8 71.4 5.29 11.48 78.6 94.3

ResNet152 60.2 25.8 60.2 3.27 11.30 77.9 93.8

ResNet152-LWE 67.3 29.7 60.2 3.27 11.30 78.6 94.3

ResNet152-SE 66.8 31.4 66.8 3.46 11.32 78.7 94.3

ResNet152-LWE-SE 73.9 35.4 66.8 3.46 11.32 79.0 94.6

properties when different normalizations, optimizers and schedulers are used, we
study the following on ResNet50 [9] baseline - (a) effectiveness of LWE when
used with BN [13] and group normalization (GN) [38] (Fig. 5), and (b) effec-
tiveness of LWE when using AdamW optimzer [23] with initial learning rate
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of 10−3 and weight decay of 0.1, and a cosine learning rate with initial restart
period set as 5 epochs and a restart period multiplier of 1.2 [23], and run for four
cosine annealing cycles (Fig. 5). We find that LWE-based training provides sim-
ilar accuracy gains on ResNet50 [9] ConvNets with both BN [13] and GN [38]
(Table 4) (Fig. 5). We also find that ResNet50-LWE continually shows better
training and validation accuracy compared to baseline ResNet50 and ResNet50-
SE at every epoch for the AdamW and cosine learning rate optimizer/scheduler
setting (accuracy at last epoch: baseline ResNet50 70.9% vs. ResNet50-SE 71.2%
vs. ResNet50-LWE 72.0%) (Fig. 5). Notably, LWE performs considerably better
than SE [12] in this optimizer/scheduler setting. These results provide prelimi-
nary evidence that LWE can be effective in various normalization, optimizer and
learning rate settings.

Fig. 5. (a) LWE-based training improves on baseline ResNet50 with both GN [38]
and BN [13] normalizations. (b) LWE-based training on ResNet50 consistently per-
forms better than baseline ResNet50 or ResNet50-SE for AdamW optimizer and Cosine
annealing scheduler.

Utility of LWE and MWE Methods: While MWE provides a substantial
improvement over baseline ResNet50, LWE causes an even larger improvement
(Table 3). This improved utility of LWE is perhaps because it is based on a
data-dependant learning approach and also because it provides a sense of rela-
tive structural importance (e.g. grouping weights in a 3× 3 filter together, and
comparing relative importance with other groups). Combining LWE and MWE
together did not result in any noticeable accuracy gain (77.07% with LWE vs.
77.09% with LWE+MWE).

While our LWE method outperforms our MWE method, MWE has some
advantages over LWE. First, as explained earlier, MWE is effective on depthwise
convolutions whereas LWE is not (Table 1). Also, since LWE has an effect of
suppressing some input channels, it is detrimental for shift-based convolutions
[20,36] - this is because suppressing an input channel can result in consistently
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Table 2. WE-based weight reparame-
terization provides considerable accu-
racy gains compared to weight repa-
rameterization approaches

Method Top-1
Acc.(%)

Top-5
Acc.(%)

�Top-1

ResNet50 75.8 92.8 +0.0

+WS [28] 76.1 92.9 +0.3
+WN [31] 76.0 92.9 +0.2
+SN [24] 75.7 92.8 -0.1
+MWE 76.5 93.1 +0.7
+LWE,90Epoch 76.9 93.4 +1.1
+LWE 77.1 93.5 +1.3

Table 3. Effectiveness of each WE
processes in improving accuracy from
ResNet50 baseline (�Top-1).

Method Top-1
Acc.(%)

Top-5
Acc.(%)

�Top-1

ResNet50 75.83 92.8 +0.00

+MWE 76.52 93.1 +0.69
+LWE 77.07 93.5 +1.24
+LWE+MWE 77.09 93.5 +1.26

Table 4. LWE provides consider-
able accuracy gains with both batch
normalization- [13] and group normali
zation-based [38] ResNet50.

Method Top-1
Acc.(%)

Top-5
Acc.(%)

�Top-1

ResNet50-GN 75.5 92.7 +0.0
ResNet50-GN-WN 75.9 92.9 +0.4
ResNet50-GN-WS 76.0 92.9 +0.5
ResNet50-GN-LWE 76.8 93.3 +1.3

ResNet50-BN 75.8 92.8 +0.0
ResNet50-BN-LWE 77.1 93.5 +1.3

Table 5. Effectiveness of MWE
in improving accuracy over baseline
ResNet50 for different εA.

Method Top-1
Acc.(%)

Top-5
Acc.(%)

�Top-1

ResNet50 75.83 92.8 +0.0

+MWE, εA = 10−3 76.38 93.0 +0.55
+MWE, εA = 0.1 76.52 93.1 +0.69
+MWE, εA = 0.2 76.43 93.0 +0.50

ignoring some parts of the input signal. MWE remains effective for shift-based
convolutions (Sect. 4.6).

Validity of Attention Multiplier of LWE: To verify that LWE’s learned
attention multiplier m provides excitation to the more important channel loca-
tions, we study decrease in performance after channels with the lowest LWE
multiplier are decimated (DL) in each layer and decrease in performance after
channels with the highest LWE multiplier are decimated (DH). As expected,
we find DH > DL (DH − DL = 8.15), meaning that the channels with high
importance multiplier are more important and loss of such channels are more
detrimental to the network. Interestingly, we find DL = −0.03 meaning that
removing the channels with the lowest LWE multiplier in each layer contributes
to small improvement in accuracy, though the difference in accuracy is small
and could turn out to be insignificant after repeated experiments. Investigating
whether some of the channels in a ConvNet are adversarial or detrimental to the
ConvNet’s performance is interesting future work.

Sensitivity to Hyperparameter: We have used εA = 0.1 in MWE. A large
εA makes fA close to an identity line thereby negating any effect that fA may
have, while εA close to 0 can amplify the maximum value in WL towards infinity
thereby causing exploding gradients. We investigate three values of εA: 10−3, 0.1
and 0.2 (Table 5), and find consistent improvements over baseline in all settings,
suggesting that use of εA within a reasonable range (e.g. between 10−3 and 0.2)
may provide consistent performance gains. We also used reduction ratio of 16
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in LWE (Fig. 3a). Similar to [12], reducing this ratio to 8 improved ImageNet
accuracy slightly by 0.05%.

4.3 CIFAR-100 Image Classification

Continuing on our ablation studies on image classification task, we investigate
LWE method applied on some other popular ConvNet architectures, VGG19 [29]
and ResNeXt-29-16x64d [40]), on the standard CIFAR-100 dataset [16]. We used
a batch size of 256, and optimized with SGD with backpropagation [17] having
momentum 0.9 and a decay of 5× 10−4. Learning rate was initialized at 0.1 and
reduced with a factor of 10−1 at 81 and 122 epochs, and training was completed
at 164 epochs. We see consistent improvements when LWE is used with base
ConvNets. LWE improves top-1 accuracy of VGG19 from 73.2% to 73.8%, and
yields a larger top-1 accuracy improvement on ResNeXt-29-16x64d (80.5% with
ResNeXt-29-16x64d vs. 81.5% with ResNeXt-29-16x64d-LWE) (Table 6).

Table 6. Efficacy of WE on different tasks and convolution operations. Superscript *
denotes average result from 5 repeated experiments.

Baseline
ConvNet

Convolution
type

Performance
metric

Baseline
perfor-
mance

WE
type

� Perfor-
mance
with WE
added

CIFAR100 image classification

VGG19 2D Accuracy 73.2% LWE +0.6

ResNeXt-29-16x64d 2D Accuracy 80.5% LWE +1.0

PASCAL VOC semantic segmentation

DeepLabv3 (ResNet50) 2D IOU 74.4%* MWE +0.8

DeepLabv3 (ResNet50) 2D IOU 74.4%* LWE +1.3

CityScapes VOC semantic segmentation

DeepLabv3 (ResNet50) 2D IOU 76.0% LWE +0.7

Mini-Kinetics action recognition

R3D-ResNet18 3D Accuracy 43.7% LWE +0.6

Gesture recognition on Jester dataset

TSM-ResNet50 Shift-based 3D Accuracy 96.3% MWE +0.3

4.4 PASCAL VOC and CityScapes Semantic Segmentation

To explore applicability of WE methods for tasks other than image classifica-
tion, we investigate semantic segmentation on the PASCAL VOC 2012 [3] and
CityScapes [2] datasets. For PASCAL VOC, we use the training recipe in [28]
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and use DeepLabv3 with ResNet50 as backbone [1] for its competitive perfor-
mance, and find that MWE improves mean Intersection over Union (IOU) from
74.4% to 75.2% (+0.8% improvement) and LWE improves IOU to 75.7% (+1.3%
improvement) (Table 6). For CityScapes, we also use DeepLabv3 with ResNet50
as backbone [1] and use the training recipe in [5].

4.5 Mini-Kinetics Action Recognition

To show the general applicability of WE mechanisms to improve training of
3D convolution kernels, we use LWE in the 3D convolution blocks of the R3D-
ResNet18 ConvNet [34] and experiment on the Mini-Kinetics action recognition
dataset [41]. We train R3D-ResNet18 on 16 densely sampled frames per video
for 50 epochs using an initial learning rate of 0.02 which later gets reduced twice
with a factor of 10−1 after 20th and 40th epochs. The weights of the network
were randomly initialized, and trained using SGD [17] with momentum of 0.9
and a weight decay of 5 × 10−4. A batch size of 64 was used. Evaluating on
standard single center-crop [20], we find non-trivial accuracy improvement when
LWE is used in R3D-ResNet18 (top-1 accuracy: R3D-ResNet18 at 43.7% vs.
R3D-ResNet18-LWE at 44.3%, Table 6), suggesting LWE can be effective for
ConvNets that use 3D convolution, without adding any computation cost at
inference.

4.6 Gesture Recognition on Jester Dataset

To show applicability in other recognition tasks on video, we experiment with
the Jester dataset for gesture recognition [33]. Here, we choose the TSM [20]
ConvNet as baseline for two reasons: First, TSM [20] uses an efficient shift-based
operation [36] that can be used to reduce complexity of a 3D convolution, and
we want to evaluate effectiveness of using WE in such shift-based convolutions;
second, TSM outperforms most other ConvNets in gesture recognition on the
Jester dataset [20].

TSM’s temporal shift-based convolution operation assigns different temporal
information to different input channels. To train TSM, we use the same training
recipe described in Sect. 4.5 except we use a strided sampling [20]. Implementing
MWE in shift-based convolutions of TSM-ResNet50 [20] yields improved single
center-crop accuracy (96.3% for TSM only vs. 96.6% with TSM+MWE), with
no additional inference cost.

5 Conclusion

In this paper, we proposed novel weight reparameterization mechanisms that
simultaneously identify the relative importance of weights in a convolution
block in a ConvNet, and provide more attention to training the more important
weights. Training a baseline ConvNet using such WE mechanisms can provide
strong performance gains, without adding any additional computational costs or
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ConvNet structural change at inference. We demonstrated this potency of our
WE mechanisms in diverse settings (e.g. varying computer vision tasks, different
baseline ConvNets with and without activation map-based attention methods,
multiple normalization methods, etc.). Finally, WE mechanisms can easily be
implemented in a convolution block with minimal effort, requiring few lines of
extra code. Overall, the diversity on applicability, the complementarity with pre-
vious attention mechanisms and the simplicity in implementation make our WE
mechanisms valuable in variously and popularly used ConvNets in computer
vision research.
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