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Abstract. In many real-world datasets, like WebVision, the perfor-
mance of DNN based classifier is often limited by the noisy labeled data.
To tackle this problem, some image related side information, such as
captions and tags, often reveal underlying relationships across images.
In this paper, we present an efficient weakly-supervised learning by using
a Side Information Network (SINet), which aims to effectively carry out a
large scale classification with severely noisy labels. The proposed SINet
consists of a visual prototype module and a noise weighting module.
The visual prototype module is designed to generate a compact rep-
resentation for each category by introducing the side information. The
noise weighting module aims to estimate the correctness of each noisy
image and produce a confidence score for image ranking during the train-
ing procedure. The propsed SINet can largely alleviate the negative
impact of noisy image labels, and is beneficial to train a high perfor-
mance CNN based classifier. Besides, we released a fine-grained prod-
uct dataset called AliProducts, which contains more than 2.5 million
noisy web images crawled from the internet by using queries generated
from 50,000 fine-grained semantic classes. Extensive experiments on sev-
eral popular benchmarks (i.e. Webvision, ImageNet and Clothing-1M)
and our proposed AliProducts achieve state-of-the-art performance. The
SINet has won the first place in the 5000 category classification task
on WebVision Challenge 2019, and outperforms other competitors by a
large margin.

Keywords: Weakly supervised learning · Noisy labels · Side
information · Large scale web images

1 Introduction

In recent years, the computer vision community has witnessed the significant
success of Deep Neural Networks (DNNs) on several benchmark datasets of image
classification, such as ImageNet [1] and MS-COCO [22]. However, obtaining
large-scale data with clean and reliable labels is expensive and time-consuming.
c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12375, pp. 306–321, 2020.
https://doi.org/10.1007/978-3-030-58577-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58577-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-58577-8_19


Weakly Supervised Learning with Side Information for Noisy Labeled Images 307

When noisy labels are introduced in training data, it is widely known that the
performance of a deep model can be significantly degraded [2,3,23,36], which
prevents deep models from being quickly employed in real-world noisy scenarios.

A common solution is to collect a large amount of image related side infor-
mation (e.g. surrounding texts, tags and descriptions) from the internet, and
directly take them as the ground-truth for model training. Though this solution
is more efficient than manual annotation, the obtained labels usually contain
noise due to the heterogeneous sources. Therefore, improving the robustness of
deep learning models against noisy labels has become a critical issue.

To estimate the noise in labels, some works propose new layers [26,27] or
loss functions [18,28–30] to correct the noisy label during training. However,
these works rely on a strict assumption that there is a single transition prob-
ability between the noisy labels and the ground-truth labels. Owning to this
assumption, these methods may show good performance on hand-crafted noisy
datasets but are inefficient on real noisy datasets such as Clothing1M [36]. In
some situations, it is possible to annotate a small fraction of training samples
as additional supervision. By using additional supervision, works like [11,31,32]
could improve the robustness of deep networks against label noises. But still,
the requirement on clean samples make them less flexible to apply in large scale
real-world scenarios.

Many data cleaning algorithms [33–35] are developed to discard those sam-
ples with wrong label ahead of the training procedure. The major difficulty of
these algorithms is how to distinguish informative hard samples from harmful
mislabeled ones. CleanNet [11] achieves state-of-the-art performance on the real-
world noisy dataset Clothing1M [36]. CleanNet generates a single representative
sample (class prototype) for each class and uses it to estimate the correctness of
sample labels. With the observation that samples have wide-spread distribution
in noisy classes, SMP [20] takes multiple prototypes to represent a noisy class
instead of single prototype in CleanNet. In both CleanNet and SMP, extra clean
supervision is required to train models.

In most of previous works, image related side information or annotations (e.g.
titles and tags) from web are commonly regarded as noisy labels. These works
may not fully take advantage of the side information. Based on our observations,
these image related side information reveal underlying similarity among images
and classes, which has great potential to help tackle label noises. By analyzing the
label structure and text descriptions, we explore an weakly-supervised learning
strategy to deal with noisy samples. For example, the label “apple” may refer
to a fruit or an Apple mobile phone. When acquiring images from web using the
label “apple”, images of apple fruits and Apple mobile phones will be wrongly
put under a same class. Fortunately, titles or text descriptions about the images
could imply the misplacement. In this paper, we propose an efficient weakly-
supervised learning strategy to evaluate the correctness of each image sample in
each class by exploiting the label structure and label descriptions. Moreover, we
release a large scale fine-grained product dataset to facilitate further research
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on visual recognition. To our knowledge, the proposed product dataset contains
the largest number of product categories by now.

phalarope

horseman

candied   
apple

tulipa
gesneriana

correct labels noisy labels

Fig. 1. Images of WebVision 2019 dataset [37] from the categories of phalarope, horse-
man, candied apple, tulipa, gesneriana. The dataset was collected from the Internet by
textual queries generated from 5, 000 semantic concepts in WordNet. Obviously, each
category includes a lot of noisy images as shown above.

Our contributions in this paper are summarized as follows:

1) A weakly supervised learning with side information network (SINet) is pro-
posed for noisy labeled image classification. SINet infers the relationship
between images and labels without any human annotation, and enable us
to train high-performance and robust CNN models against large scale label
noises.

2) A noisy and fine-grained product dataset called AliProducts is released,
which contains more than 2.5 million web images crawled from the Internet
by using queries generated from the 50, 000 fine-grained semantic classes. In
addition, side information (e.g., hierarchical relationships between classes)
are also provided for the convenience of extending research.

3) Extensive experiments are conducted on a number of benchmarks, including
WebVision, ImageNet, Clothing1M and AliProducts, in which the proposed
SINet obtains the state-of-the-art performance. Our SINET also won the
first place on the WebVision Challenge 2019, and outperforms the other
competitors by a large margin.

2 Related Work

Recent studies have shown that the performances of DNNs degraded substan-
tially when training on data with noisy labels [2,3]. To alleviate this problem, a
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number of approaches have been introduced and can be generally summarized
as below.

Some methods design robust loss functions against label noises [4–9]. Zhang
et al. [5] found that the mean absolute error (MAE) is inherently more robust
to label noises than the commonly-used categorical cross entropy (CCE) in
many circumstances. However, MAE performs poorly with DNNs and challeng-
ing datasets due to slow convergence. Generalized Cross Entropy (GCE) loss
[9] applies a Box-Cox transformation to probabilities (power law function of
probability with exponent q) and can be seen as a generalization of MAE and
CCE, thus can be easily applied with existing DNN architecture and yield good
performance in certain noisy datasets.

Re-weighting training samples aims to evaluate the correctness of each sam-
ple on a given label, and has been widely studied in [10–16,21]. In [12], meta
learning paradigm is used to determine the sample weighting factors. [13] takes
open-set noisy labels into consideration and train a Siamese network to detect
noisy labels. In each iteration, sample weighting factors will be re-estimated, and
the classifier will be updated at the same time. [14] also presents a method to
separate clean samples from noisy samples in an iterative fashion. The biggest
challenge encountering these data cleaning algorithms is how to distinguish infor-
mative hard samples from harmful mislabeled ones. To prevent discarding valu-
able hard samples, noisy samples is weighted according to their noisiness level
which is estimated by pLOF [15]. In CleanNet [11], an additional network is
designed to decide whether a sample is mislabelled or not. CleanNet aims to
produce weights of samples during the training procedure. CurriculumNet [16]
designs a learning curriculum by measuring the complexity of data and ranking
samples in an unsupervised manner. However, most of these approaches either
requires extra clean samples as additional information or adopts a complicated
training procedure, making them less suitable for being widely applied in many
real-world scenarios.

Self-learning pseudo-labels has been studied in many scenarios to deal with
noisy labels. Reed et al. [17] propose to jointly train model with both noisy labels
and pseudo-labels. However, [17] over-simplifies the assumption of the noisy label
distribution, which leads to sub-optimal results. In the joint optimization process
of [18], original noisy labels are completely replaced by pseudo-labels. This often
discards some valuable information in the original noisy labels. Li et al. [19]
proposes to simulate actual training by generating synthetic noisy labels, and
train the model such that after one gradient update using each set of synthetic
noisy labels, thus the model does not overfit to the specific noise.

Our method is similar to the work of [20], in which each class is represented
by a learnable prototype. For each sample, a similarity is calculated between the
sample and the corresponding prototype to correct its label. A final classifier
is trained by using both the corrected label and the noisy label. However, [20]
only takes visual information into consideration to construct class prototypes.
Our approach integrate visual with side information to generate more reliable
prototype for each class.
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3 Approach

We focus on learning a robust image classifier from large-scale noisy images with
side information. Let D = {(x1, y1), ..., (xN , yN )} be a noisily labeled dataset of
N images. yi ∈ {1, 2, ..., C} is the noisy label corresponding to the image xi, and
C is the number of classes in the dataset.

Fig. 2. Illustration of the framework of SINet on the noisy dataset, which includes three
sub-modules, including Class Relation Graph, Visual Prototype Generation, and Noise
Weighting. First, we construct visual-based and textual-based class relation graph with
representation of image and textual using Inter Class Similarity (ICS), respectively.
Second, we generate a visual prototype for each class using the compliance between
the visual and textual class relations. Finally, Noise Weighting is used to weight all
noisily labeled images with class prototypes before the training procedure.

Training with noisily labeled images, deep neural networks may over-fit these
noisy labels and perform poorly. To alleviate this problem, we introduce a con-
ceptually simple but effective side information network (SINet) for training
against noisy labels. Based on the knowledge of “different classes look differ-
ent” [38], we train the network under the constraint that the produced visual
similarity between classes should have potential relevance with their natural
semantic similarity. The semantic similarity is derived from a class relation graph
constructed with the image related side information such as image titles, long
text descriptions and image tags.

For each class, a prototype vk, k ∈ {1, 2, ..C} is generated from reliable
training samples whose visual similarity graph aligns well with the constructed
Class Relation Graph. Subsequently, we can decide whether an training sample
is mislabeled or not by comparing its visual representation with vk which is
considered as a clean and reliable representation of k-th class. During the training
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phrase, an image is recognized as a noisy sample or not in the light of the distance
of the image feature and the class prototype. Instead of directly discarding noisy
images by a predefined threshold, we assign each image a correctness weight in
a noise weighting module.

Training a deep model G parameterized by θ on the dataset D, the overall
optimization objective is formulated as

θ∗ = argmin

N∑

i=1

wi ∗ L(yi,G(θ, xi)) (1)

where L is a conventional cross entropy loss, and wi is the image weight generated
by the noise weighting module.

In the following sections, we elaborate the proposed SINet that using image
related side information to facilitate a classification task on noisy images. The
SINet comprises three modules, i.e. class relation graph generation, visual proto-
type generation and noise weighting. As shown in Fig. 2, an overview of the SINet
architecture is illustrated. In Sect. 3.1, two kinds of category relation graphs are
constructed using label embeddings and WordNet information, respectively. In
Sect. 3.2, the KL divergence is used to estimated the compliance between the
two kinds of graphs, so as to generate a visual prototype for each class. Given
the class prototypes, a noise weighting module is presented to weight all noisily
labeled images before the training procedure in Sect. 3.3.

3.1 Class Relation Graph

In some classification scenarios, for each class we can obtain both the long-text
description of label and the hierarchical structure of class relationships using
WordNet [40]. Both the label descriptions and WordNet structure reveal rich
semantic information across classes. In this section, we attempt to exploit the
inter-class semantic knowledge by constructing two kinds of class relation graphs.
In the graphs, each node represents a class and the edges between nodes are built
using two different similarity metrics.

Firstly, a straightforward way to build a class relation (marked as Gw) is using
the tree structure of WordNet. In the graph Gw, an edge of two class nodes is
created using the distance of the shortest path in the WordNet tree. Here we
represent the WordNet-based class relation graph Gw as a matrix Sw ∈ RC×C .

Secondly, we learn a label embedding for each class node with the text
description of label from WordNet. For instance, a label description Manx cat:
A short-haired tailless breed of cat believed to originate on the Isle of Man pro-
vides rich semantic knowledge of the corresponding class. Moreover, these text
descriptions reveal underlying relationship across classes from the perspective of
natural language. To obtain a semantic representation of each class, we use a
BERT [39] language model to learn a sequence of word embeddings from text
description of each class label. We then feed them into a bidirectional LSTM
module to achieve a class label level embedding (called label embedding). Please
note that the number of label text descriptions available for training is too small,
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so we use a pretrained BERT and freeze it in the training procedure, and only
finetune the LSTM module. Meanwhile, the number of trainable parameters is
significantly reduced.

We then build a graph Gl based on the label embeddings, in which the set
of nodes is V = {v1,v2, ...,vC}, and vi ∈ Rd represents the label embedding of
the i-th class. We then calculate the cosine similarity between all pairs of label
embeddings to build edges of the graph Gl. For convenience, the graph Gl is
formulated as a inter-class similarity (ICS) matrix Sl ∈ RC×C as below.

Sij
l =

vT
i vj

||vi||2 ||vj ||2
(2)

Then Sij
l is regarded as a kind of similarity between two class embeddings vi

and vj . Larger Sij
l indicates higher similarity between the classes i and j.

Eventually, we blend the two class relation graphs Gw and Gl generated using
two kinds of semantic knowledge, and obtain a hybrid graph Gt, formulated as
below.

St = Sl + Sw (3)

3.2 Visual Prototype Generation

This section introduce an effective visual prototype generation module for train-
ing robust CNNs with noisy images. The key idea of visual prototype module is
to generate a clean visual prototype vk, k ∈ {1, 2, ..C} for each class. The visual
prototype vk can be interpreted as a reliable and effective representation of k-th
class, and can be used to identify the reliability of all training data.

In order to generate visual prototype vk, we need to obtain some reliable
images from k-th class, and evaluate their contributions to vk. Since noisy images
is ubiquitous within each class, it is an intractable problem to directly collect
reliable images. In this paper, we resort to the class relation graph Gt constructed
in Sect. 3.1 to help this collection. Intuitively, the inter-class relation in visual
representation space for reliable images should be closely related to that in class
relation graph. For example, the k nearest classes of siamese cat in class relation
graph are persian cat, tiger cat, manx cat, etc. If the k nearest classes of an image
in visual representation space are also the same, then this image is probably
reliable, and should contribute to the generation of visual prototype in a high
confidence.

To be specific, we consider an image sample xi and its current labelled class c.
The semantic similarity vector of class c can be obtained from the class relation
graph Gt, and is denoted as a vector si

t of length C. To compute the visual
similarity vector between xi and all C classes, it is required to generate an
initial prototype for each class first. We first extract visual features from all
images using the CNN model in the proposed SINet. Then for each class, top-
k ranked image features according to their classification confidence score are
averaged to generate initial class prototype. Then the visual similarity vector
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of xi is computed as the cosine similarity score of the CNN feature gi with all
initial class prototypes, which is denoted a vector si

v of length C. Finally the
consistence score pi of image sample xi is estimated based on KL divergence
between si

t and si
v.

pi =
1

(KL
(
ψ(si

t), ψ(si
v)

)
+ ε)γ

(4)

where ψ is a normalize function, e.g. L2 norm or softmax, γ is used to control
the “contrast” of two similarity vectors, and ε is a small positive constant to
prevent the denominator going to zero.

Eventually, we generate a visual prototype vc for class c by using the weighted
sum of the image features, as formulated in Eq. (5):

vc =
∑N

i=1 gipi∑N
i=1 pi

(5)

where the gi is the visual CNN feature of image xi in the base model.
As the training proceeds, the visual prototype for each class will be updated

iteratively, then more reliable samples could contribute to train the CNN model
better.

3.3 Noise Weighting

In this section, we use the class prototypes generated above to weight noisily
labelled images before training. Considering an image xi and its current labelled
class c, we estimate an importance weight wi,c by calculating the Euclidean
distance of the visual feature gi of image xi and the prototype vc. As formulated
in Eq. (6), the importance weight wi,c is computed with two hyper-parameters
α and β to control the shift and contrast of different visual features.

wi,c = max{0, [α − ||vc − gi||2]β} (6)

We finally use a weighted cross entropy loss for model training as shown in
Equ.(7).

Lossce =
N∑

i=1

C∑

c=1

wi,c · log(pi,c) (7)

where pi,c is the softmax output of image xi on class c.

3.4 Implementation Details and WebVision Challenge

Implementation Details. The scale of WebVision data is significantly larger than
that of ImageNet, it is important to considering the computational cost when extensive
experiments are conducted in evaluation and comparisons. In our experiments, we
employ the resnext-101 as our standard architecture. The resnext-101 model is trained
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by adopting the proposed SINet. The network weights are optimized with mini-batch
stochastic gradient decent (SGD), where the batch size is set to 2,500. The learning
rate starts from 0.1, and decreases by a factor of 10 at the epochs of 30, 60, 80, 90.
The whole training process stop at 100 epochs. To reduce the risk of over-fitting, we
use common data augmentation technologies which include random cropping, mirror
flip and autoaugment. We also add a dropout operation with a ratio of 0.25 after the
global pooling layer.

Topk Label Smoothing. Since there exists massive noise images in WebVision, if
we directly utilize the one-hot target of ground truth to train CNN, it is inevitable
to over-fit the noisy labels. To alleviate this problem, we proposed Adaptive Label
Smoothing to assist the model training. Specifically, we select a small subset of high
confidence images to train an initial model, and then we use the model to predict
probability distribution of rest images. We use the topk predictions and ground truth
to construct a smoothing label, and use this smoothing label to train the model. The
Adaptive Label Smoothing enhance the tolerance of noisy labels, leading to about 0.2%
performance improvements on top-5 accuracy in WebVision challenge.

Adaptive Spatial Resolution. There exists a lot of fine-grained categories in Web-
Vision, which are hard to distinguish. Many studies have show that high-resolution
images can improve the performance of fine-grained recognition. Inspired by this, we
first train an initial model with fixed image resolution of 224 × 224, and then finetune
the model with large input resolutions, e.g. 256 × 256 and 312 × 312. Specifically, the
adaptive average pooling is used before the classifier layer to keep the feature dimension
unchanged. The large input resolutions enhance the tolerance of noisy labels, leading
to about 0.5% performance improvements on top-5 accuracy in WebVision challenge.

4 Experiments

In this section, we mainly evaluate our SINet on four popular benchmarks for noisy-
labeled visual recognition, i.e., WebVision, ImageNet, Clothing1M and AliProducts.
Particularly, we investigate the learning capability on large-scale web images without
any human annotation.

4.1 Datasets

WebVision 1.0 [37] is an object-centric dataset, which is larger than ImageNet for
object recognition and classification. The images are crawled from both Flickr and
Google images search, by using queries generated from the 1, 000 semantic concepts of
the WordNet. Meta information along with those web images (e.g., title, description,
tags, etc.) are also crawled. The dataset contains 1,000 object categories, including 2.4
millions images in total, but without any human annotation. 50K images with human
annotation are used as validation set, and another 50K images with human annotation
for testing. The evaluation measure is based on top-5 accuracy, where each algorithm
provides a list of at most 5 object categories to match the ground truth.

WebVision 2.0 is similar with WebVision 1.0 [37]. It also contains images crawled
from the Flickr website and Google Images search. The number of visual concepts was
extended from 1,000 to 5,000, and the total number of training images reaches 16
million. It includes massive noisy labels, as shown in Fig. 1. There are 290K images
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Correct Labels Noisy Labels
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Candy

Soap

(a) Fine-grained Categories (b) Noisy Labeled Images

Chips

Diapers

Formulas

Cosmetics

Fig. 3. Image samples of AliProducts, (a) fine-grained categories: from top to bottom
are respectively chips in different flavors , diaper with different sizes, formula with
different stages, cosmetic with different functions, and each column is a fine-grained
category; (b) noisy labeled images: images from coke zero, bbq-flavored chips, milk
candy, soap. As can been see, each category includes massive noisy images.

with human annotation are used as validation set, and another 290K images with
human annotation for testing. The evaluation measure is the same as WebVision 1.0.

ImageNet. [1] is an image classification dataset, which contains 1000 classes. The
original dataset has been splitted into 1.28 million training images, 50k validation
images. In this paper, we randomly select 40% training images for each category and
assign them with class label uniformly sampled from the rest categories. The generate
new dataset thus have lot of noises which could be used to evaluate the effectiveness
of popular algorithms on noisy image classification.

Clothing1M. [36] is a large-scale fashion dataset, which includes 14 clothes categories.
It contains 1 million noise label images and 74,000 manually annotated images. We
call the annotated images as clean set, which is divided into training data,validation
data and testing data, with numbers of 50,000,14,000, and 10,000 images, respectively.
There are some images overlap between the clean set and the noisy set. The dataset
was designed for learning robust models from noisy data without human supervision.

AliProducts1 is a large-scale noisy and fine-grained product dataset, which includes
50,000 categories. The images are crawled from image search engine and other web
sources by using 50,000 product SKU names. The dataset covers foods, snacks, drinks,
cosmetics and other daily products and the categories are in SKU (Stock Keeping Unit)
level and specific to flavor, capacity, function or even the batch of the production.
Therefore, some of the categories might have great difficulty in visual distinguishing
due to the fine-grained attribute. AliProducts contains 2.5 million training images
without any human annotation, consequently contain massive noisy labels, as show in
Fig. 3. Totally 148K manually annotated images are used as validation set, and another
250K manually annotated images for testing. In addition, we released side information
(e.g., hierarchical relationships between classes) concerning these image data, which
could be exploited to learn better representations and models. The main difference

1 https://tianchi.aliyun.com/competition/entrance/231780/information.

https://tianchi.aliyun.com/competition/entrance/231780/information
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between AliProducts and other noisy datasets (e.g., Clothing 1M and WebVision) is
that AliProducts contains massive fine-grained and real-world noisy images, which is
relatively difficult for robust DNN methods to improve.

Table 1. Top1/Top5 accuracy of three different models with ResNext-101 architecture
on validation set of WebVision.

Method Model-A Model-B Model-C

Top1 51.05% 47.81% 55.57%

Top5 74.94% 72.08% 78.34%

4.2 Experiments on WebVision 2.0

In this subsection, we conduct extensive experiments on WebVision 2.0 dataset to
evaluate and demonstrate the effectiveness of proposed SINet. All experiments are
implemented using ResNext-101 backbone if there is no special instructions.

Training Strategy and Comparison. We conduct three training strategies with a
standard ResNext-101 architecture, resulting in three models, which are described as
follow.

Model-A. The model was trained by directly using all the training data.

Model-B. The model was trained by using the high-confidence images without
reweighting in training loss.

Model-C. The model was trained with proposed training strategy, where the confi-
dence score is multiplied on the loss of corresponding image for reweighting.

The top1/top5 results of three models on the validation set of WebVision are
reported in Table 1. The result shows Model-A with all training data significantly out-
performs the Model-B with subset of clean data, with improvements of 3.24%/2.86% for
top1/top5 accuracy. This is due to that it is hard to distinguish all the clean labeled
samples from those images with heavy noises. In addition, Model-C with our pro-
posed method significantly outperforms Model-A, with improvements of 4.52%/3.40%
on top1/top5 accuracy. It is obviously that our proposed method could better explore
those clean labels from those noise samples. These improvements are significant on
WebVision Challenge with such a large scale noisy dataset, which demonstrate the
effectiveness of our method.

Class Relation Graph. We investigate different ways for constructing Class Relation
Graph. (I) Category Name: We use category name, i.e., cat, lion, apple, with BERT
model to extract the word embeddings, then use the similarity comparison of word
embeddings to construct the Class Relation Graph. (II) Category Description: We
use category descriptions in WordNet, i.e., Siamese cat: A slender short-haired blue-
eyed breed of cat having a pale coat with dark ears paws face and tail tip, with BERT
and LSTM to extract the textual embeddings, then use the similarity comparison of
textual embeddings to construct the Class Relation Graph. (III) Hierachical WordNet:
We directly use the prior knowledge of Hierachical WordNet based on the shortest path
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Table 2. Class Relation Graph
construction with different strate-
gies. (I) Category Name (CN) (II)
Category Description (CD) (III)
Hierachical WordNet (HW)

Strategy Top1 Top5

CN 54.18% 76.84%

CD 55.63% 78.15%

HW 55.71% 78.42%

CN+HW 55.79% 78.46%

CD+HW 55.98% 78.62%

Table 3. Visual Prototype Gener-
ation with different strategies. (I)
with Reweighting: Topk matched
images with matching score as
weighting coefficient (II) with-
out Reweighting: Topk matched
images averaged

Strategy Top1 Top5

Constant 55.68% 78.45%

Weighting 55.98% 78.62%

Table 4. The effect of Shift factor
α on the performance of WebVi-
sion validation set.

α Top1 Top5

0.8 53.25% 76.24%

1.0 55.43% 78.31%

1.2 55.98% 78.62%

1.4 55.76% 78.48%

Table 5. The effect of Contrast
factor β on the performance of
WebVision validation set.

β Top1 Top5

1.0 55.68% 78.45%

1.5 55.98% 78.62%

2.0 55.82% 78.56%

2.5 55.35% 78.24%

between two category to establish the Class Relation Graph. Experimental results of
using these three types of class relation graph are shown in Table 2. Obviously, by
introducing these side information, the performance could improve a lot than original
Model-A, which shows the effectiveness of proposed class relation graphs. Also, these
three types of class relation graph are complementary, and combining of them could
also boost the performance.

Visual Prototype. We investigate different ways for visual prototype generation. (I)
Constant: We does not use any weight operations for the images in Visual Prototype
candidates. In this case, the visual prototype representation in Eq. (5) is reduced as
the mean of candidates representations. (II) Weighting: We use the method described
in Eq. (5) as the weighting operation. Since pi is the importance score, we use the
soft weighted representation as the visual prototype. Experiments of using two types
of strategies are shown in Table 3. It shows that when paying more attention on top-
ranked images, the generated visual prototypes are better then simple average all the
feature representations.

Noise Weighting. In this section, we conduct ablation analysis on the hyper-
parameters for our proposed noisy weighting method, and discuss how they affect
the recognition performance. (I) Shift factor α: α controls the amount of noisy data
actually participating in the model training, the weight of images whose Euclid dis-
tance larger than α is 0, that is equivalent to deleting them from the training set,
and only use the images with Euclid distance smaller than α to train the model. (II)
Contrast factor β: We introduce the contrast parameter β to sharpen the differences of
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the scores. Experiments of different α and β are shown in Table 4 and 5, respectively.
Typically, α = 1.2 could keep most of cleaning samples. β = 1.5 is a proper value to
map the score to sampling weight and handle the noise data.

Final Results on the WebVision Challenge. We further evaluate the performance
of our proposed SINet with various networks architectures, including ResNext101, SE-
ResNext101, SE-Net154. Results are reported in Table 6. As can be found, SE-Net154
substantially performs ResNext101 and SE-ResNext101 on WebVision validation set,
with top1/top5 improvements of 1.31%/1.46% and 1.30%/1.27%, while SE-ResNext101
and ResNext101 has similar performance with a marginal performance gain obtained.
Our final results were obtained with ensemble of five models. We had the best perfor-
mance at a Top 5 accuracy of 82.54% on the WebVision challenge 2019.

Table 6. Performance of SINet with various networks on WebVision validation set.

Method ResNext101 SE-ResNext101 SENet154

Top1 55.56% 55.57% 56.87%

Top5 78.15% 78.34% 79.61%

4.3 Comparisons with the State-of-the-Art Methods

To further explore the effectiveness of our proposed SINet, we conduct extensive com-
parisons with recent state-of-the-art approaches developed specifically for learning from
noisy labels, such as CleanNet, MetaCleaner and MentorNet. For fairness, our compar-
isons are based on the same CNN backbone, i.e., ResNet50.

WebVision1.0 and ImageNet. We evaluate our SINet on ImageNet, by adding
40% noise ratio with uniform flip. The top-1 accuracy is 66.47/69.12 for ResNet50
without/with SINet. It further shows the power of SINet for large-scale noisy image
recognition. By following [16], we use the training set of WebVision1.0 to train the
models, and test on the validation sets of WebVision1.0 and ImageNet. Both of them
has same 1000 categories. Full results are presented in Table 7. SINet improves the
performance of our baseline significantly, and our results compare favorably against
recent CurriculumNet, CleanNet and MentorNet with consistent improvements.

Table 7. Comparisons on Webvision1.0 and ImageNet. The models are trained on
WebVision1.0 training set and tested on WebVision1.0 and ImageNet validation sets.

Method WebVision1.0 ImageNet

Top1/Top5 Top1/Top5

Baseline [11] 67.8(85.8) 58.9(79.8)

CleanNet [11] 70.3(87.8) 63.4(84.6)

MentorNet [10] 70.8(88.0) 62.5(83.0)

CurriculumNet [16] 72.1(89.2) 64.8(84.9)

Our Baseline 69.9(87.4) 63.2(83.8)

SINet 73.8(90.6) 66.8(85.9)
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Clothing1M. For Clothing1M, we consider the state of the art results in [21], which
use both noisy and clean set to train the model. Following [21], we conduct two experi-
ments. First we use the 25k clean set to construct the visual prototype and apply noise
weighting to one million noisy data, and then use the images with confidence score
to train the model. Second, we conduct the same experiment, but with all the clean
training set (50k). As shown in Table 8, our SINet outperforms CleanNet, MetaCleaner
and DeepSelf, which demonstrates its effectiveness.

Table 8. Experimental results on Clothing1M. Clean set is used in CleanNet [11] to
obtain the validation set. To keep same data setting, we use the 25k clean images to
construct the visual prototype and use 1M noisy training set with confidence scores to
train our SINet, and then fine-tune it on 25k clean images. Furthermore, we achieve the
state-of-the-art performance on the setting of Noise1M+Clean(50k), which illustrate
the robustness of our SINet on noisy label recognition.

Noise1M+Clean(25k) Method CleanNet [11] MetaCleaner [21] DeepSelf [20] Ours

Accuray 74.69 76.00 76.44 77.26

Noise1M+Clean(50k) Method CleanNet [11] MetaCleaner [21] DeepSelf [20] Ours

Accuray 79.9 80.78 81.16 81.32

AliProducts. The existed benchmarks with noisy labels are relatively small in the
scale of categories or images. To further explore the effectiveness of SINet, we conduct
experiments on our released AliProducts, which is a large-scale product dataset with
noisy labels and the hierarchical category relations is also provided. We use the hier-
archical category relations to construct the class relation graph, and then combine it
with images to construct the visual prototype. Finally, we use the images with confi-
dence scores to train the model. As shown in Table 9, our SINet outperforms all other
approaches, which illustrates that SINet is more robust to noisy labels.

Table 9. Comparison with the state-of-the-art on AliProducts dataset.

Method Baseline CurriculumNet [16] CleanNet [11] MetaCleaner [21] Ours

Accuray 85.35% 85.69% 86.13% 85.92% 86.29%

5 Conclusions

In this paper, we presented a novel method, which can learn to generate a visual
prototype for each category, for training deep CNNs with large-scale real-world noisy
labels. It mainly consists of two submodules. The first module, Visual Prototype can
generate a clean representation from the noisy images for every category by integrate
the noisy images with side information. The second module, namely Noise Weighting,
can estimate the confidence scores of all the noisy images and rank images with confi-
dence scores by analyzing their deep features and Visual Prototype. Via SINet, we can
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train a high-performance CNN model, where the negative impact of noisy labels can
be reduced substantially. We conduct extensive experiments on WebVision, ImageNet,
Clothing1M, as well as collected AliProducts, where it achieves state-of-the-art perfor-
mance on all benchmarks. Future work could aim to train an end-to-end DNNs with
Side Information to handle the noisy label recognition.
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