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Abstract. The quality of image generation and manipulation is reach-
ing impressive levels, making it increasingly difficult for a human to dis-
tinguish between what is real and what is fake. However, deep networks
can still pick up on the subtle artifacts in these doctored images. We seek
to understand what properties of fake images make them detectable and
identify what generalizes across different model architectures, datasets,
and variations in training. We use a patch-based classifier with limited
receptive fields to visualize which regions of fake images are more easily
detectable. We further show a technique to exaggerate these detectable
properties and demonstrate that, even when the image generator is
adversarially finetuned against a fake image classifier, it is still imperfect
and leaves detectable artifacts in certain image patches. Code is available
at https://github.com/chail/patch-forensics.

Keywords: Image forensics · Generative models · Image
manipulation · Visualization · Generalization

1 Introduction

State-of-the-art image synthesis algorithms are constantly evolving, creating a
challenge for fake image detection methods to match the pace of content creation.
It is straightforward to train a deep network to classify real and fake images, but
of particular interest is the ability of fake image detectors to generalize to unseen
fake images. What artifacts do these fake image detectors look at, and which
properties can allow a detector released today to work on novel fake images?

Generalization is highly desired in machine learning, with the hope that
models work not only on training data, but also on related held-out examples as
well. For tasks like object detection and classification, this has been accomplished
with successively deeper and deeper networks that incorporate the context of the
entire image to learn about global semantics and object characteristics. On the
other hand, to learn image manipulation artifacts that are shared across various
image generation pipelines, global content is not the only signal that matters. In
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fact, two identical generators trained on the same training data, differing only
in the random initialization seed, can create differences in content detectable by
a deep network classifier [35]. Instead of these differences, we seek to identify
what image generators have in common, so that training on examples generated
from one model can help us identify fake images from another model.

Across different facial image generators, we hypothesize that global errors
can differ but local errors may transfer: the global facial structure can vary
among different generators and datasets, but local patches of a generated face
are more stereotyped and may share redundant artifacts. Therefore, these local
errors can be captured by a classifier focusing on textures [9] in small patches.
We investigate a fully convolutional approach to training classifiers, allowing us
to limit the receptive field of the model to focus on image patches. Furthermore,
these patch-based predictions offer us a natural way to visualize patterns that
are indicative of a real or fake image.

Using a suite of synthetic face datasets that span fully generative mod-
els [16,17,19,31] and facial manipulation methods [32], we find that more com-
plex patches, such as hair, are detectable across various synthetic image sources
when training on images from a single source. In one of our early experiments,
however, we observed that we could obtain misleadingly high generalization sim-
ply due to subtle differences in image preprocessing – therefore, we introduce
careful preprocessing to avoid simply learning differences in image formatting.

With a fixed classifier, an attacker can simply modify the generator to cre-
ate adversarial examples of fake images, forcing them to become misclassified.
Accordingly, we finetune a GAN to create these adversarial examples. We then
show that a newly trained classifier can still detect images from this modified
GAN, and we investigate properties of these detected patches. Our results here
suggest that creating a coherent fake image without any traces of local arti-
facts is difficult: the modified generator is still unable to faithfully model certain
regions of a fake image in a way that is indistinguishable from real ones.

Detecting fake images is a constant adversarial game with a number of eth-
ical considerations. As of today, no method is completely bulletproof. Better
generators, out-of-distribution images, or adversarial attacks [5,11] can defeat a
fake-image detector, and our approach remains vulnerable to many of these same
shortcomings. Furthermore, we train on widely used standard face datasets, but
these are still images of real individuals. To protect the privacy of people in the
dataset, we blur all real faces and manipulated real faces used in our figures.
Our contributions are summarized as follows:

– To avoid learning image formatting artifacts, we preprocess our images to
reduce formatting differences between real and fake images.

– We use a fully-convolutional patch-based classifier to focus on local patches
rather than global structure, and test on different model resolutions, initial-
ization seeds, network architectures, and image datasets.

– We visualize and categorize the patches that are most indicative of real or
fake images across various test datasets.
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– To visualize detectable properties of fake images, we manipulate the generated
images to exaggerate characteristic attributes of fake images.

– Finetuned generators are able to overcome a fake-image detector, but a sub-
sequent classifier shows that detectable mistakes still occur in certain image
patches.

2 Related Work

Image Manipulation. Verifying image authenticity is not just a modern prob-
lem – historical instances of photo manipulation include a well-known portrait
of Abraham Lincoln1 and instances of image censorship in the former Soviet
Union2. However, recent developments in graphics and deep learning make cre-
ating forged images easier than ever. One of these manipulation techniques is
image splicing, which combines multiple images to form a composite [12]. This
approach is directly relevant to face swapping, where a source face is swapped
and blended onto a target background to make a person appear in a falsified set-
ting. The deep learning analogue of face swapping, Deepfakes [1], has been the
focus of much recent media attention. In parallel, improvements in generative
adversarial networks (GANs) form another threat, as they are now able to create
shockingly realistic images of faces simply from random Gaussian noise [16,17].

Automating Detection of Manipulated Images. Given the ease in creat-
ing manipulated images nowadays and the potential to use them for malicious
purposes, a number of efforts have focused on automating detection of manip-
ulated images. A possible solution involves checking for consistency throughout
the image – examples include predicting metadata [14] or other low-level arti-
facts [27–29], learning similar embeddings for nearby patches [38], or learning
similarity graphs from image patches [25]. Other works have focused on training
classifiers for the detection task, using a deep network either directly on RGB
images [2,4,32] or alternative image representations [7,26]. [30] uses a combi-
nation of both: a CNN to extract features over image patches and a separate
classifier for prediction. Here we also take a patch-wise approach, and we use
these patches to visualize the network decisions.

Can Detectors Generalize? The class of potential manipulations is so large
that it is infeasible to cover all possible cases. Can a detector learn to distin-
guish real and fake images from one source and transfer that knowledge to a
different source? Preprocessing is one way to encourage generalization, such as
using spectral features [37] or adding blur and random noise [34]. [33] generalizes
across a wide variety of datasets simply by adding various levels of augmenta-
tion. Specialized architectures also help generalization: for example [8] uses an
1 https://www.bbc.com/future/article/20170629-the-hidden-signs-that-can-reveal-

if-a-photo-is-fake.
2 https://en.wikipedia.org/wiki/Censorship of images in the Soviet Union.

https://www.bbc.com/future/article/20170629-the-hidden-signs-that-can-reveal-if-a-photo-is-fake
https://www.bbc.com/future/article/20170629-the-hidden-signs-that-can-reveal-if-a-photo-is-fake
https://en.wikipedia.org/wiki/Censorship_of_images_in_the_Soviet_Union
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autoencoder with a bottleneck that encourages different embeddings for real
and fake images. A challenge with generalization is that the classifiers are not
explicitly trained on the domain they are tested on. [22] demonstrates that it
is possible to simulate the domain of manipulated images; by applying warping
to source images, they can detect deepfake images without using manipulated
images in classifier training. [21] further studies generalization across different
facial manipulation techniques also using a simulated domain of blended real
images. However, a remaining question is what features do these models rely
on to transfer knowledge among different domains, which we seek to investigate
here.

Classification with Local Receptive Fields. We use patch-based classifica-
tion to visualize properties that generalize. Small receptive fields encourage the
classifier to focus on local artifacts rather than global semantics, which is also an
approach taken in GAN discriminators to encourage synthesis of realistic detailed
textures [15]. A related concept is the Markovian generative adversarial network
for texture synthesis [20]; the limited receptive field makes the assumption that
only pixels within a certain radius affect the output, and the pixels outside that
radius are independent from the output. [24] demonstrate a method for convert-
ing deep neural classifiers to fully convolutional networks and use patch-wise
training, allowing the model to scale efficiently to arbitrarily-sized inputs, used
for the task of semantic segmentation.

3 Using Patches for Image Forensics

Rather than training a network to predict a global “real” or “fake” decisions
for an image, we use shallow networks with limited receptive fields that focus
on small patches of the image. This approach allows us to localize regions of
the image that are detected to be manipulated and ensemble the patch-wise
decisions to obtain the overall prediction.

Fig. 1. We use a classifier with small receptive fields to obtain a heatmap over the
patch-wise output. To obtain this patch classifier, we truncate various deep learning
models after an initial sequence of layers.
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3.1 Models for Patch-Based Classification

Modern deep learning architectures typically consist of a series of modular
blocks. By truncating the models after an intermediate block, we can obtain
model predictions based on a local region of the image, where truncating earlier
in the layer sequence results in a smaller receptive field, while truncating after
more layers results in a larger receptive field. We then add a 1× 1 convolution
layer after this truncated backbone to convert the feature representation into a
binary real-or-fake prediction. We experiment with Resnet and Xception as our
model backbones – generally we observe that Xception blocks perform better
than Resnet blocks, however we also report results of the top performing Resnet
block. We provide additional details on the model architecture and receptive
field calculations in Supplementary Material Sect. 2.3.

The truncation operation reduces the size of the model’s receptive field, and
yields a prediction for a receptive-field-sized patch of the input, rather than
the entire image at once. This forces the models to learn local properties that
distinguish between real and fake images, where the same model weights are
applied in a sliding fashion over the entire image, and each output prediction is
only a function of a small localized patch of the image. We apply a cross entropy
loss to each patch; i.e. every real patch should be considered real, and every fake
image patch should be considered fake:

L(x) =
1
|P |

∑

i,j

∑

t

t log f t(xi,j) (1)

where f is the model output after a softmax operation to normalize the logits,
t indexes over the real and fake output for binary classification, (i, j) indexes
over the receptive field patches, and |P | is the total number of patches per
image. We train these models with the Adam optimizer with default learning
rate, and terminate training when validation accuracy does not improve for a
predetermined number of epochs.

By learning to classify patches, we increase the ratio of data points to model
parameters: each patch of the image is treated independently, and the truncated
models are smaller. The final classification output is an ensemble of the individual
patch decisions rather than a single output probability. To aggregate patches at
inference time, we take a simple average after applying a softmax operation to
the patch-wise predictions:

t∗ = arg max
t

⎛

⎝ 1
|P |

∑

i,j

f t(xi,j)

⎞

⎠ (2)

The averaging approach can be applied in both cases where the image is wholly
generated, or when only part of the image is manipulated. For example, when a
generated face is spliced onto a real background, the background patches may
not be predicted as fake; in this case, because the same background is present
in both real and fake examples, the model remains uncertain in these locations.
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Fig. 2. To minimize the effect of image preprocessing artifacts - in which real and fake
images undergo different preprocessing operations – we pass real images through the
same data transform as used to train the generator. We then save the real and fake
images using identical pipelines.

3.2 Dataset Preparation

Image Preprocessing. A challenge with fully generative images, such as those
created by GANs, is that fake images can be saved with arbitrary codecs, e.g.,
we decide whether we want to save the image in JPG or PNG format. However,
the set of real images is saved with a fixed codec when the original dataset is
created. When training a classifier on real and fake images with subtly different
preprocessing pipelines, the classifier can simply learn to detect the differences
in preprocessing. If the test images also have this inconsistency, we would appear
to obtain high accuracy on the test set, even though the classifier is really only
detecting formatting artifacts. One way to mitigate this disparity is to apply
data augmentation to reduce the effect of these differences [33,34].

We preprocess the images to make our real and fake dataset as similar as
possible, in an effort to isolate fake image artifacts and minimize the possibility
of learning differences in preprocessing. We create the “real” dataset by passing
the real images through the generator’s data loading pipeline (e.g. resizing) and
saving the real images after this step in lossless PNG format (Fig. 2). We save
the fake images in PNG format from the generator output, so the remaining
differences between real and fake images are due to artifacts of the generator. We
then resize all images to the same size using Lanczos interpolation before saving
to file. Additional details are provided in Supplementary Material Sect. 2.1.

We take these precautions because any minor difference in preprocessing
is easily learnt by the fake-image classifier and leads to an illusion of increased
generalization capacity (for example, differences in the image codec leads to per-
fect average precision across various test datasets; see Supplementary Material
Sect. 2.1). This approach allows us to focus on the inherent differences between
real images and generated ones to minimize any potential confounders due to
preprocessing. In the remainder of this section, we briefly detail the image gen-
eration and manipulation methods that we investigate in our experiments.

Fully Generative Models. The first class of models we consider are fully gen-
erative models which map a random sample from a known distribution (e.g. a
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multivariate Gaussian) to an image. Progressive GAN (PGAN) [16] is one recent
example, which uses a progressive training schedule to increase the output res-
olution of images during training. We use the publicly available PGAN model
trained on the CelebA-HQ face dataset. We also train several other PGANs to
various smaller resolutions and on the more diverse FFHQ face dataset. Style-
GAN (SGAN) [17] introduces an alternative generator architecture which incor-
porates the latent code into intermediate layers of the generator, resulting in
unsupervised disentanglement of high-level attributes, e.g., hair and skin tone.
We use the public versions of StyleGAN on the CelebA-HQ and FFHQ datasets,
and StyleGAN2 [18] on the FFHQ dataset. In additional to PGAN and SGAN,
we also consider the Glow generator [19], a flow-based model using modified
1× 1 invertible convolutions that optimizes directly for log-likelihood rather than
adversarial loss. We use the public Glow generator trained on CelebA-HQ faces.
Finally, we also include a face generator based on a Gaussian Mixture Model
(GMM) rather than convolutional layers [31]; the GMM uses low-rank plus diag-
onal Gaussians to efficiently model covariance in high-dimensional outputs such
as images. We train the GMM model on the CelebA [23] dataset using default
parameters.

Facial Manipulation Models. We use the FaceForensics++ dataset [32],
which includes methods for identity manipulation and expression transfer. Iden-
tity manipulation approaches, such as FaceSwap, paste a source face onto a
target background; specifically, FaceSwap fits detected facial landmarks to 3D
model and then projects the face onto the target scene. The deep learning ana-
logue to FaceSwap is the Deepfake technique, which uses a pair of autoencoders
with a shared encoder to swap the source and target faces. On the other hand,
expression transfer maps the expression of a source actor onto the face of a tar-
get. Face2Face achieves this by tracking expression parameters of the face in a
source video and applying them to a target sequence. Neural Textures uses deep
networks to learn a texture map and a neural renderer to modify the expression
of the target face.

3.3 Baseline Models

We train and evaluate full MesoInception4 [2], Resnet [13], and Xception [6]
models on the same datasets that we use to train the truncated classifiers. Fol-
lowing [2], we train MesoInception4 using squared error loss. For the Resnet
model and the Xception model, also used in [32], we train with standard two-
class cross entropy loss. We train these models from scratch as they are not
initially trained for this classification task. Finally, we also compare to a model
trained to detect CNN artifacts via blurring and compression augmentations [33].
For this model, we finetune at a learning rate of 1e-6 using similar augmentation
parameters as the original paper to improve its performance specifically on face
datasets. We use the same stopping criteria based on validation accuracy for all
baseline models as we use for the truncated models.
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4 Experiments

4.1 Classification via Patches

Nowadays with access to public source code, it becomes easy for anyone to
train their own image generators with slight modifications. We conduct two
experiments to test generalization across simple changes in (1) generator size
and (2) the weight initialization seed. In addition to the public 1024px PGAN,
we train PGANs for 512, 256, and 128px resolutions on the CelebA-HQ dataset
and sample images from each generator. We then train a classifier using only
images from the 128px generator.

We test the classifier on generated images from the remaining resolutions,
using average precision (AP) as a metric (Table 1; left). Here, the full-model
baselines tend to perform worse on the unseen test resolutions compared to the
truncated models. However, adding blur and JPEG augmentations in [33] helps
to overcome the full-model limitations, likely hiding the resizing artifacts. Of the
truncated models, the AP tends to decrease on the unseen test images as the
receptive field increases, although there is a slight decline when the receptive field
is too small with the Xception Block 1 model. On average across all resolutions,
the Xception Block 2 model obtains highest AP.

Table 1. Average precision across PGANs trained to different resolutions or with
different random initialization seeds. The classifier is trained on a fake images from a
128px GAN and real images at 128px resolution. AP on the test set corresponding to
training images is colored in gray.

Model depth Resolution Model seed

128 256 512 1024 0 1 2 3

Resnet Layer 1 100.0 99.99 99.60 96.95 100.0 100.0 100.0 100.0

Xception Block 1 100.0 100.0 99.87 98.53 100.0 100.0 100.0 100.0

Xception Block 2 100.0 100.0 100.0 99.98 100.0 100.0 100.0 100.0

Xception Block 3 100.0 100.0 100.0 99.92 100.0 100.0 100.0 100.0

Xception Block 4 100.0 100.0 99.92 99.34 100.0 100.0 100.0 100.0

Xception Block 5 100.0 100.0 98.90 91.18 100.0 100.0 100.0 100.0

[2] MesoInception4 100.0 99.59 98.15 87.00 100.0 99.99 99.82 99.95

[13] Resnet-18 99.99 96.85 91.75 80.17 99.99 98.41 95.20 95.02

[6] Xception 100.0 99.94 99.84 97.28 100.0 100.0 99.99 100.0

[33] CNN (p = 0.1) 100.0 99.99 99.97 99.78 100.0 100.0 100.0 100.0

[33] CNN (p = 0.5) 100.0 100.0 99.99 99.83 100.0 100.0 100.0 100.0
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Next, we train four PGANs to 128px resolution with different weight ini-
tialization seeds. We train the classifier using fake images drawn from one of
the generators, and test on the remaining generators (Table 1; right). Surpris-
ingly, even when the only difference between generators is the random seed, the
full Resnet-18 model makes errors when classifying fake images generated by the
three other GANs. This suggests that fake images generated by different PGANs
differ slightly between the different initialization seeds (as also noted in [35]).
The MesoInception4 and Xception architectures are more robust to model seed,
and so is blur/JPG augmentation. The truncated models with reduced receptive
field are also robust to model seed differences.

Table 2. Average precision on different model architectures and an alternative dataset
(FFHQ). The classifier is trained on 1024px PGAN random samples and reprojected
PGAN images on the CelebA-HQ dataset. For the Glow model (*) we observe better
performance when classifier training does not include reprojected images for the trun-
cated models; additional results in Supplementary Material Sect. 2.4. AP on the test
set corresponding to training images is colored in gray.

Model PGAN Architectures FFHQ dataset

SGAN Glow* GMM PGAN SGAN SGAN2

Resnet Layer 1 100.0 97.22 72.80 80.69 99.81 72.91 71.81

Xception Block 1 100.0 98.68 95.48 76.21 99.68 81.35 77.40

Xception Block 2 100.0 99.99 67.49 91.38 100.0 90.12 90.85

Xception Block 3 100.0 100.0 74.98 80.96 100.0 92.91 91.45

Xception Block 4 100.0 99.99 66.79 42.82 100.0 95.85 90.62

Xception Block 5 100.0 100.0 60.44 48.92 100.0 93.09 89.08

[2] MesoInception4 100.0 97.90 49.72 45.98 98.71 80.57 71.27

[13] Resnet-18 100.0 64.80 47.06 54.69 79.20 51.15 52.37

[6] Xception 100.0 99.75 55.85 40.98 99.94 85.69 74.33

[33] CNN (p = 0.1) 100.0 98.41 90.46 50.65 99.95 90.48 85.27

[33] CNN (p = 0.5) 100.0 97.34 97.32 73.33 99.93 88.98 84.58

We then test the ability of patch classifiers to generalize to different generator
architectures (Table 2; left). To create a training set of PGAN fake images, we
combine two datasets – random samples from the generator, as well as images
obtained by reprojecting the real images into the GAN following [3]. Intuitively,
this reprojection step creates fake images generated by the GAN that are as close
as possible to their corresponding real images, forcing the classifier to focus on
the remaining differences (also see Supplementary Material Sects. 1.2 and 2.4).
We then test the classifier on SGAN, Glow, and GMM face generators. We
show additional results training on only PGAN fake samples, as well as only on
reprojected images as the fake dataset in Supplementary Material Sect. 2.4 (on
the Glow model, AP is substantially better when trained without the reprojected
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images). Generalizing to the SGAN architecture is easiest, due to the many
similarities between the PGAN and SGAN generators. With the exception of
the Glow generator, the truncated models obtain higher AP compared to the
larger classifiers with a fraction of the number of parameters.

Lastly, we test the classifiers’ ability to generalize to a different face dataset
(Table 2; right). Using the same classifiers trained on CelebA-HQ faces and
PGAN samples and reprojections, we measure AP on real images from the
FFHQ dataset and fake images from PGAN, SGAN, and SGAN2 trained on
FFHQ faces. The truncated classifiers improve AP, particularly on the Style-
based generators. The FFHQ dataset has greater diversity in faces than CelebA-
HQ; however, small patches, such as hair, are likely similar between the two
datasets. Using small receptive fields allows models to ignore global differences
between images from different generators and datasets and focus on shared gen-
erator artifacts, perhaps explaining why truncated classifiers perform better than
full models.

Fig. 3. Heatmaps based on the patch-wise predictions on real and fake examples from
each dataset and fake image generator. We normalize all heatmaps between 0 and 1
and show fake values in blue and real values in red. We also show the average heatmap
over the 100 easiest and fake examples, where red is most indicative of the correct class.

4.2 What Properties of Fake Images Generalize?

What artifacts do classifiers learn that allow them to detect fake images gener-
ated from different models? Since the patch-based classifiers output real-or-fake



What Makes Fake Images Detectable? 113

Fig. 4. We take a pretrained segmentation network to assign the most predictive patch
in real and fake images to a semantic cluster. We find that the fake-image classifier
(which was only trained on the CelebA-HQ dataset with PGAN fake images) relies on
patches such as hair, background, clothing, and mouths to make decisions.

predictions over sliding patches of a query image, we use these patch-wise pre-
dictions to draw heatmaps over the images and visualize what parts of an image
are predicted as more real or more fake (Fig. 3). Using the classifiers trained on
CelebA-HQ PGAN images, we show examples of the prediction heatmaps for the
other face generators and on the FFHQ dataset, using the best performing patch
model for each column in Table 2. We also show an averaged heatmap over the
100 most real and most fake images, where the red areas indicate regions most
indicative of the correct class (Fig. 3; right). The average heatmaps highlight
predominately hair and background areas, indicating that these are the regions
that patch-wise models rely on when classifying images from unseen test sources.

Next, we take a pretrained facial segmentation network to partition each
image into semantic classes. For the most predictive patch in each image, we
assign the patch to a cluster from the segmentation map, and plot the distribu-
tion of these semantic clusters (Fig. 4). We also sample a random patch in each
image and assign it to a semantic cluster for comparison. Using the segmenta-
tion model, the predominant category of patches tends to be hair or background,
with clothes, skin, or brows comprising the third-largest category. Qualitatively,
many of the fake patches contain boundary edges such as those between hair
and background or hair and skin, suggesting that creating a realistic boundary
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Fig. 5. We shift the latent space of the PGAN generator to exaggerate the fake features
of an image, which accentuates the hair and smile of the fake images.

is difficult for image generators to imitate, whereas crisp boundaries naturally
exist in real images.

To further understand what makes fake images look fake, we modify the
latent space of the PGAN generator to accentuate the features that the classifier
detects (Fig. 5). We parametrize a shift in latent space by a vector w, and
optimize:

w∗ = arg min
w

Ez [Lfake(G(z − w)) + Lp(G(z), G(z − w))] (3)

where Lfake refers to the classifier loss on fake images [10], and Lp is a perceptual
loss regularizer [36] to ensure that the modified image does not deviate too far
from the original. Applying this vector to latent space samples accentuates hair
and smiling with teeth, which are both complex textures and likely difficult for
generators to recreate perfectly (Fig. 5). By applying the shift in the opposite
direction, G(z + w), we see a reduction these textures, in effect minimizing the
presence of textures that are more challenging for the generator to imitate.

Fig. 6. We finetune the PGAN generator to evade detection by the fakeness classifier.
When we subsequently train a new classifier, we find that the finetuned generator still
has detectable artifacts, but now predominantely less in background patches.

4.3 Finetuning the Generator

With access to gradients from the classifier, an easy adversarial attack is to
modify the generator to evade detection by the classifier. Will this now make the
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previously identified fake patches undetectable? To investigate this, we finetune
a PGAN to create adversarial fake samples that are classified as real. To ensure
that the images remain realistic, we jointly optimize the classifier loss and GAN
loss on the CelebA-HQ dataset:

L = min
G

max
D

[LGAN(G,D) + Lreal(G,C)] ; (4)

i.e., we optimize both the generator and discriminator with the added constraint
that the generator output should be predicted as real by the classifier C. Fine-
tuning the generator does not drastically change the generated output (see Sup-
plementary Material Sect. 2.7), but it decreases the classifier’s accuracy from
100% to below 65% (Fig. 6). Using a variable threshold (AP) is less sensitive
to this adversarial finetuning. We train a second classifier using images from
the finetuned generator, which is able to recover in accuracy. We then compute
the most predictive image patches for the retrained classifier and cluster them
according to semantic category. Compared to the patches captured by the first
classifier, this retrained classifier relies less on background patches and more on
facial features, suggesting that artifacts in typically solid background patches
are easiest for the generator to hide, while artifacts in more textured regions
such as hair still remain detectable.

4.4 Facial Manipulation

Unlike the fully-generative scenario, facial manipulation methods blend content
from two images, hence only a portion of the image is manipulated. Here, we train
on each of the four FaceForensics++ datasets [32], and test generalization to the
remaining three datasets (Table 3). We compare the effect of different receptive
fields using truncated models, and investigate which patches are localized.

In these experiments, training on Face2Face images yields the best general-
ization to remaining datasets. On the other hand, generalization to FaceSwap
images is the hardest – training on the other manipulation methods does not
generalize well to FaceSwap images, and training on FaceSwap does not general-
ize well to other manipulation methods. Compared to the full-model baselines,
we find that truncated patch classifiers tend to generalize when trained on the
Face2Face or Deepfakes domains. Adding augmentations to training [33] can
also boost results in some domains. While we do not use mask supervision dur-
ing training, [21] notes that using this additional supervision signal improves
generalization.

Next, we seek to investigate which patches are identified as predictive using
the truncated classifiers in the facial manipulation setting. Unlike the fully gener-
ative scenario in which the classifiers tend to focus on the background, these clas-
sifiers trained on facial manipulation focus on the face region (without explicit
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supervision of the face location). In particular, when trained on the Face2Face
manipulation method, the classifiers use predominately the mouth region to
classify Deepfakes and NeuralTextures manipulation, with eyes or nose as a
secondary feature depending on the manipulation method (Fig. 7). We show
additional visualizations in Supplementary Material.

Table 3. Average precision on FaceForensics++ [32] datasets. Each model is trained
on one dataset and evaluated on the remaining datasets.

Model depth Train on Deepfakes Train on Neural Tex.

DF NT F2F FS DF NT F2F FS

Resnet Layer 1 98.97 74.99 71.74 57.15 70.32 86.93 65.04 52.37

Xception Block 1 92.95 70.52 65.94 52.83 66.30 80.72 62.65 52.05

Xception Block 2 98.04 70.28 67.48 56.04 69.61 85.75 64.27 52.70

Xception Block 3 99.41 67.58 63.62 57.97 67.62 85.44 60.71 52.07

Xception Block 4 99.14 68.91 70.36 58.74 73.65 90.97 60.72 52.79

Xception Block 5 99.27 68.25 66.68 43.20 83.52 92.23 63.75 49.94

[2] MesoInception4 97.28 59.27 60.17 47.24 65.75 83.27 62.92 54.03

[13] Resnet-18 93.90 53.22 53.45 53.69 69.98 85.40 54.77 50.89

[32] Xception 98.60 60.15 56.84 46.12 70.07 93.61 56.79 48.55

[33] CNN (p = 0.1) 97.78 60.08 59.73 50.87 68.67 95.16 68.15 47.43

[33] CNN (p = 0.5) 98.16 54.02 56.06 55.99 66.98 95.03 71.50 51.93

Model depth Train on Face2Face Train on FaceSwap

DF NT F2F FS DF NT F2F FS

Resnet Layer 1 84.39 79.72 97.66 60.53 59.49 52.56 62.00 97.13

Xception Block 1 77.65 80.88 93.84 61.62 53.14 49.24 56.89 82.89

Xception Block 2 84.04 79.51 97.40 63.21 58.39 51.65 61.73 92.58

Xception Block 3 76.10 74.77 97.33 63.10 61.77 53.44 61.34 96.06

Xception Block 4 67.18 61.72 97.19 63.04 61.33 52.02 59.45 96.56

Xception Block 5 81.25 61.91 96.45 55.15 57.14 47.39 54.68 95.57

[2] MesoInception4 67.53 55.17 92.27 54.06 50.64 48.87 56.15 93.81

[13] Resnet-18 55.43 52.57 93.27 53.39 61.03 51.66 52.56 91.49

[6] Xception 66.12 56.07 97.41 53.15 53.86 50.00 56.55 96.84

[33] CNN (p = 0.1) 65.76 64.81 98.40 59.48 59.19 53.50 63.07 99.02

[33] CNN (p = 0.5) 65.43 60.36 97.94 63.52 60.19 52.11 59.81 98.25
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Fig. 7. Histograms of the most predictive patches from a classifier trained on Face2Face
and un-manipulated images, and tested on the Neural Textures and Deepfakes manip-
ulation methods. Unlike the fully-generative model setup, the classifier in this case
localizes patches within the face.

5 Conclusion

Identifying differences between real and fake images is a constantly evolving
problem and is highly sensitive to minor preprocessing details. Here, we take
the approach of equalizing the preprocessing of the two classes of images to
focus on the inherent differences between an image captured from a camera
and a doctored image either generated entirely from a deep network, or par-
tially manipulated in facial regions. We investigate using classifiers with limited
receptive fields to focus on local artifacts, such as textures in hair, backgrounds,
mouths, and eyes, rather than the global semantics of the image. Classifying
these small patches allows us to generalize across different model training param-
eters, generator architectures, and datasets, and provides us with a heatmap to
localize the potential areas of manipulation. We show a technique to exaggerate
the detectable artifacts of the fake images, and demonstrate that image genera-
tors can still be imperfect in certain patches despite finetuning against a given
classifier. While progress on detecting fake images inevitably creates a cat-and-
mouse problem of using these results to create even better generators, we hope
that understanding these detectors and visualizing what they look for can help
people anticipate where manipulations may occur in a facial image and better
navigate potentially falsified content in today’s media.
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