
Learning Canonical Representations for
Scene Graph to Image Generation

Roei Herzig1(B), Amir Bar1, Huijuan Xu2, Gal Chechik3, Trevor Darrell2,
and Amir Globerson1

1 Tel Aviv University, Tel Aviv-Yafo, Israel
2 UC Berkeley, Berkeley, USA

3 Bar-Ilan University, NVIDIA Research, Ramat Gan, Israel

Abstract. Generating realistic images of complex visual scenes becomes
challenging when one wishes to control the structure of the generated
images. Previous approaches showed that scenes with few entities can
be controlled using scene graphs, but this approach struggles as the
complexity of the graph (the number of objects and edges) increases.
In this work, we show that one limitation of current methods is their
inability to capture semantic equivalence in graphs. We present a novel
model that addresses these issues by learning canonical graph representa-
tions from the data, resulting in improved image generation for complex
visual scenes (The project page is available at https://roeiherz.github.
io/CanonicalSg2Im/). Our model demonstrates improved empirical per-
formance on large scene graphs, robustness to noise in the input scene
graph, and generalization on semantically equivalent graphs. Finally, we
show improved performance of the model on three different benchmarks:
Visual Genome, COCO, and CLEVR.

Keywords: Scene graphs · Canonical representations · Image
generation

1 Introduction

Generating realistic images is a key task in computer vision research. Recently, a
series of methods were presented for creating realistic-looking images of objects
and faces (e.g. [3,20,37]). Despite this impressive progress, a key challenge
remains: how can one control the content of images at multiple levels to generate
images that have specific desired composition and attributes. Controlling con-
tent can be particularly challenging when generating visual scenes that contain
multiple interacting objects. One natural way of describing such scenes is via the
structure of a Scene Graph (SG), which contains a set of objects as nodes and
their attributes and relations as edges. Indeed, several studies addressed gener-
ating images from SGs [1,17,25]. Unfortunately, the quality of images generated
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58574-7 13) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12371, pp. 210–227, 2020.
https://doi.org/10.1007/978-3-030-58574-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58574-7_13&domain=pdf
https://roeiherz.github.io/CanonicalSg2Im/
https://roeiherz.github.io/CanonicalSg2Im/
https://doi.org/10.1007/978-3-030-58574-7_13
https://doi.org/10.1007/978-3-030-58574-7_13
https://doi.org/10.1007/978-3-030-58574-7_13

Learning Canonical Representations for Scene Graph to Image Generation 211

Fig. 1. Generation of scenes with many objects. Our method achieves better
performance on such scenes than previous methods. Left: A partial input scene graph.
Middle: Generation using [17]. Right: Generation using our proposed method.

from SGs still lags far behind that of generating single objects or faces. Here
we show that one problem with current models is their failure to capture logical
equivalences, and we propose an approach for overcoming this limitation.

SG-to-image typically involves two steps: first, generating a layout from the
SG, and then generating pixels from the layout. In the first step, the SG does not
contain bounding boxes, and is used to generate a layout that contains bounding
box coordinates for all objects. The transformation relies on geometric properties
specified in the SG such as “(A, right, B)”. Since SGs are typically generated
by humans, they usually do not contain all correct relations in the data. For
example, in an SG with relation (A, right, B) it is always true that (B, left, A),
yet typically only one of these relations will appear.1 This example illustrates
that multiple SGs can describe the same physical configuration, and are thus
logically equivalent. Ideally, we would like all such SGs to result in the same
layout and image. As we show here, this often does not hold for existing models,
resulting in low-quality generated images for large graphs (see Fig. 1).

Here we present an approach to overcome the above difficulty. We first for-
malize the problem as being invariant to certain logical equivalences (i.e., all
equivalent SGs should generate the same image). Next, we propose to replace
any SG with a “canonical SG” such that all logically equivalent SGs are replaced
by the same canonical SG, and this canonical SG is the one used in the layout
generation step. This approach, by definition, results in the same output for all
logically equivalent graphs. We present a practical approach to learning such
a canonicalization process that does not use any prior knowledge about the
relations (e.g., it does not know that “right” is a transitive relation). We show
how to integrate the resulting canonical SGs within a SG-to-image generation
model, and how to learn it from data. Our method also learns more compact
models than previous methods, because the canonicalization process distributes
information across the graph with only few additional parameters.

In summary, our novel contributions are as follows: 1) We propose a model
that uses canonical representations of SGs, thus obtaining stronger invariance
properties. This in turn leads to generalization on semantically equivalent graphs
1 We note that human raters don’t typically include all logically equivalent relations.

We analyzed data and found only small fraction of these are annotated in practice.

212 R. Herzig et al.

and improved robustness to graph size and noise in comparison to existing meth-
ods. 2) We show how to learn the canonicalization process from data. 3) We
use our canonical representations within an SG-to-image model and show that
our approach results in improved generation on Visual Genome, COCO, and
CLEVR, compared to the state-of-the-art baselines.

2 Related Work

Image generation. Earlier work on image generation used autoregressive net-
works [35,36] to model pixel conditional distributions. Recently, GANs [11] and
VAEs [21] emerged as models of choice for this task. Specifically, generation
techniques based on GANs were proposed for generating sharper, more diverse
and better realistic images in a series of works [5,20,26,28,32,40,44,53,60,64].

Conditional image synthesis. Multiple works have explored approaches for
generating images with a given desired content. Conditioning inputs may include
class labels [7,30,34], source images [15,16,27,50,66,67], model interventions
[2], and text [14,38,41,42,47,57,58,61]. Other studies [9,33] focused on image
manipulation using language descriptions while disentangling the semantics of
both input images and text descriptions.

Structured representation. Recent models [14,65] incorporate intermediate
structured representations, such as layouts or skeletons, to control the coarse
structure of generated images. Several studies focused on generating images
from such representations (e.g., semantic segmentation masks [6,16,37,53], lay-
out [62], and SGs [1,17,25]). Layout and SGs are more compact representations
as compared to segmentation masks. While layout [62] provides spatial informa-
tion, SGs [17] provide richer information about attributes and relations. Another
advantage of SGs is that they are closely related to the semantics of the image as
perceived by humans, and therefore editing an SG corresponds to clear changes
in semantics. SGs and visual relations have also been used in image retrieval
[19,46], relationship modeling [23,39,45], image captioning [56] and action recog-
nition [12,29]. Several works have addressed the problem of generating SGs from
text [46,51], standalone objects [55] and images [13].

Scene-graph-to-image generation. Sg2Im [17] was the first to propose an
end-to-end method for generating images from scene graphs. However, as we
note above, the current SG-to-image models [1,8,25,31,52] show degraded per-
formance on complex SGs with many objects. To mitigate this, the authors in [1]
have utilized stronger supervision in the form of a coarse grid, where attributes
of location and size are specified for each object. The focus of our work is to
alleviate this difficulty by directly modeling some of the invariances in SG repre-
sentation. Finally, the topic of invariance in deep architectures has also attracted
considerable interest, but mostly in the context of certain permutation invari-
ances [13,59]. Our approach focuses on a more complex notion of invariance, and
addresses it via canonicalization.

Learning Canonical Representations for Scene Graph to Image Generation 213

Fig. 2. Proposed Scene Graph to Layout architecture. (a) An input scene graph.
(b) The graph is first canonicalized using our WSGC method in Sect. 3.2. Dashed edges
correspond to completed relations that are assigned with weights. (c) A GCN is applied
to the weighted graph, resulting in bounding box coordinates. (d) The GCN outputs
are used to generate the predicted layout.

3 Scene Graph Canonicalization

As mentioned above, the same image can be represented by multiple logically-
equivalent SGs. Next we define this formally and propose an approach to canon-
icalize graphs that enforces invariance to these equivalences. In Sect. 4 we show
how to use this canonical scene graph within an SG-to-image task.

Let C be the set of objects categories and R be the set of possible relations.2

An SG over n objects is a tuple (O,E) where O ∈ Cn is the object categories
and E is a set of labeled directed edges (triplets) of the form (i, r, j) where
i, j ∈ {1, . . . , n} and r ∈ R. Thus an edge (i, r, j) implies that the ith object
(that has category oi) should have relation r with the jth object. Alternatively
the set E can be viewed as a set of |R| directed graphs where for each r the
graph Er contains only the edges for relation r.

Our key observation is that relations in SGs are often dependent, because
they reflect properties of the physical world. This means that for a relation r,
the presence of certain edges in Er implies that other edges have to hold. For
example, assume r is a transitive relation like “left”. Then if i, j ∈ Er and
j, k ∈ Er, it should hold that i, k ∈ Er. There are also dependencies between dif-
ferent relations. For example, if r, r′ are converse relations (e.g., r is “left” and
r′ “right”) then i, j ∈ Er implies j, i ∈ Er′ . Formally, all the above dependencies
are first order logic formulas. For example, r, r′ being converse corresponds to
the formula ∀i, j : r(i, j) =⇒ r′(j, i). Let F denote this set of formulas.

The fact that certain relations are implied by a graph does not mean that
they are contained in its set of relations. For example, E may contain (1, left, 2)
but not (2, right, 1).3 However, we would like SGs that contain either or both
of these relations to result in the same image. In other words, we would like all
logically equivalent graphs to result in the same image, as formally stated next.
2 Objects in SGs also contain attributes but we drop these for notational simplicity.
3 This is because empirical graphs E are created by human annotators, who typically

skip redundant edges that can be inferred from other edges.

214 R. Herzig et al.

Given a scene graph E denote by Q(E) the set of graphs that are logically
equivalent to E.4 As mentioned above, we would like all these graphs to result in
the same image. Currently, SG-to-layout architectures do not have this invariance
property because they operate on E and thus sensitive to whether it has certain
edges or not. A natural approach to solve this is to replace E with a canonical
form C(E) such that ∀E′ ∈ Q(E) we have C(E′) = C(E). There are several
ways of defining C(E). Perhaps the most natural one is the “relation-closure”
which is the graph containing all relations implied by those in E.

Definition 1. Given a set of formulas F , and relations E, the closure C(E) is
the set of relations that are true in any SG that contains E and satisfies F .

We note that the above definition coincides with the standard definition for
closure of relations. Our definition emphasizes the fact that C(E) are relations
that are necessarily true given those in E. Additionally we allow for multiple
relations, whereas closure is typically defined with respect to a single property.
Next we describe how to calculate C(E) when F is known, and then explain
how to learn F from data.

3.1 Calculating Scene Graph Canonicalization

For a general set of formulas, calculating the closure is hard as it is an instance of
inference in first order logic. However, here we restrict ourselves to the following
formulas for which this calculation is efficient:5

– Transitive Relations: We assume a set of relations Rtrans ⊂ R where all
r ∈ Rtrans satisfy the formula ∀x, y, z : r(x, y) ∧ r(y, z) =⇒ r(x, z).

– Converse Relations: We assume a set of relations pairs Rconv ⊂ R×R where
all (r, r′) ∈ Rconv satisfy the formula ∀x, y : r(x, y) =⇒ r′(y, x).

Under the above set of formulas, the closure C(E) can be computed via the
following procedure, which we call Scene Graph Canonicalization (SGC):
Initialization: Set C(E) = E.
Converse Completion: ∀(r, r′) ∈ Rconv, if (i, r, j) ∈ E, add (j, r′, i) to C(E).
Transitive Completion: For each r ∈ Rtrans calculate the transitive closure
of Cr(E) (namely the r relations in C(E)) and add it to C(E). The transitive
closure can be calculated using the Floyd-Warshall algorithm [10].

It can be shown (see Supplementary) that the SGC procedure indeed pro-
duces the closure of C(E).

4 Equivalence of course depends on what relations are considered, but we do not specify
this directly to avoid notational clutter.

5 We note that we could have added an option for symmetric relations, but we do not
include these, as they not exhibited in the datasets we consider.

Learning Canonical Representations for Scene Graph to Image Generation 215

3.2 Calculating Weighted Scene Graph Canonicalization

Thus far we assumed that the sets Rtrans and Rconv were given. Generally, we
don’t expect this to be the case. We next explain how to construct a model
that doesn’t have access to these. In this formulation we will add edges with
weights, to reflect our level of certainty in adding them. These weights will
depend on parameters, which will be learned from data in an end-to-end manner
(see Sect. 5). See Fig. 2 for a high level description of the architecture.

Since we don’t know which relations are transitive or converses, we assign
probabilities to reflect this uncertainty. In the transitive case, for each r ∈ R we
use a parameter θtrans

r ∈ R
|R| to define the probability that r is transitive:

ptrans(r) = σ(θtrans
r) (1)

where σ is the sigmoid function. For converse relations, we let pconv(r′|r) denote
the probability that r′ is the converse of r. We add another empty relation
r′ = φ such that pconv(φ|r) is the probability that r has no converse in R. This
is parameterized via θconv

r,r′ ∈ R
|R|×|R∪φ| which is used to define the distribution:

pconv(r′|r) =
eθconv

r,r′

∑
r̂∈R∪φ eθconv

r,r̂
(2)

Finally, since converse pairs are typically symmetric (e.g.., “left” is the converse
of “right” and vise-versa), for every r, r′ ∈ R×R we set θconv

r,r′ = θconv
r′,r . Our model

will use these probabilities to complete edges as explained next. In Sect. 3.1 we
described the SGC method, which takes a graph E and outputs its completion
C(E). The method assumed knowledge of the converse and transitive relations.
Here we extend this approach to the case where we have weights on the properties
of relations, as per Eq. 1 and 2. Since we have weights on possible completions we
will need to work with a weighted relation graph and thus from now on consider
edges (i, r, j, w). Below we describe two methods WSGC-E and WSGC-S for
obtaining weighted graphs. Section 4 shows how to use these weighted graphs in
an SG to image model.
Exact Weighted Scene Graph Canonicalization (WSGC-E). We describe
briefly a method that is a natural extension of SGC (further details are provided
in the Supplementary). It begins with the user-specified graph E, with weights
of one. Next two weighted completion steps are performed, corresponding to
the SGC steps. Converse Completion: In SGC, this step adds all converse
edges. In the weighted case it makes sense to add the converse edge with its
corresponding converse weight. For example, if the graph E contains the edge
(i, above, j, 1) and pconv(below|above) = 0.7, we add the edge (j,below, i, 0.7).
Transitive Completion: In SGC, all transitive edges are found and added.
In the weighted case, a natural alternative is to set a weight of a path to be
the product of weights along this path, and set the weight of a completed edge
(i, r, j) to be the maximum weight of a path between i and j times the probability
ptrans(r) that the relation is transitive. This can be done in poly-time, but
runtime can be substantial for large graphs. We offer a faster approach next.

216 R. Herzig et al.

Fig. 3. Illustration of WSGC-S. (a) The input graph. (b) Converse edges (brown
arrows) are sampled from pconv and assigned a weight 1 (here two edges were sam-
pled). (c) Transitive edges (green arrows) are completed and assigned a weight ptrans.

Sampling Based Weighted Scene Graph Canonicalization (WSGC-S).
The difficulty in WSGC-E is that the transitivity step is performed on a dense
graph (most weights will be non-zero). To overcome this, we propose to replace
the converse completion step of WSGC-E with a sampling based approach that
samples completed edges, but always gives them a weight of 1 when they are
added. In this way, the transitive step is computed on a much sparser graph with
weights 1. We next describe the two steps for the WSGC-S procedure.
Converse Completion: Given the original user-provided graph E, for each r
and edge (i, r, j, 1) we sample a random variable Z ∈ R ∪ φ from pconv(·|r) and
if Z �= φ, we add the edge (j, Z, i, 1). For example, see Fig. 3b. After sampling
such Z for all edges, a new graph E′ is obtained, where all the weights are 1.6

Transitive Completion: For the graph E′ and for each relation r, calculate
the transitive closure of C(E′

r) and add all new edges in this closure to E′ with
weight ptrans(r). See illustration in Fig. 3c. Note that this can be calculated in
polynomial time using the FW algorithm [10], as in the SGC case.

Finally, we note that if all assigned weights are discrete, both the WSGC-E
and WSGC-S are identical to SGC.

4 Scene Graph to Image Using Canonicalization

Thus far we showed how to take the original graph E and complete it into a
weighted graph E′, using the WSGC-S procedure. Next, we show how to use E′

to generate an image, by first mapping E′ to a scene layout (see Fig. 2), and then
mapping the layout to an image (see AttSPADE Figure in the Supplementary).
The following two components are variants of previous SG to image models
[1,17,48], and thus we describe them briefly (see Supplementary for details).

From Weighted SG to Layout: A layout is a set of bounding boxes for
the nodes in the SG. A natural architecture for such graph-labeling problems is
a Graph Convolutional Network (GCN) [22]. Indeed, GCNs have recently been
used for the SG to layout task [1,17,25]. We also employ this approach here, but
modify it to our weighted scene graph. Namely, we modify the graph convolution

6 We could sample multiple times and average, but this is not necessary in practice.

Learning Canonical Representations for Scene Graph to Image Generation 217

layer such that the aggregation step of each node is set to be a weighted average
where the weights are those in the canonical SG.

From Layout to Image: We now need to transform the obtained layout
in Sect. 4 to an actual image. Several works have proposed models for this step
[49,63], where the input was a set of bounding boxes and their object categories.
We follow this approach, but extend it so that attributes for each object (e.g.,
color, shape and material, as in the CLEVR dataset) can be specified. We achieve
this via a novel generative model, AttSPADE, that supports attributes. More
details are in Supplementary. Figure 4 shows an example of the model trained
on CLEVR and applied to several SGs. Finally, our experiments on non CLEVR
datasets simply we use a pre-trained LostGAN [48] model.

5 Losses and Training

Thus far we described a model that starts with an SG and outputs an image,
using the following three steps: SG to canonical weighted SG (Sect. 3.2), weighted
SG to layout (Sect. 4) and finally layout to image (Sect. 4). In this section we
describe how the parameters of these steps are trained in an end-to-end manner.
We focus on training with the WSGC-S, since this is what we use in most of our
experiments. See Supplementary for Training with WSGC-E.

Below we describe the loss for a single input scene graph E and its ground
truth layout Y . The parameters of the model are as follows: θg are the parameters
of the GCN in Sect. 4, θtrans are the parameters of the transitive probability (Eq.
1), and θconv are those of the converse probability (Eq. 2). Let θ denote the set of
all parameters. Recall that in the first step Sect. 3.2, we sample a set of random
variables Z̄ and use these to obtain a weighted graph WSGCZ̄(E; θtrans). Denote
the GCN applied to this graph by Gθg (WSGCZ̄(E; θtrans)).

We use the L1 loss between the predicted and ground truth bounding boxes
Y . Namely, we wish to minimize the following objective:

L(θ) = EZ̄�q(θconv)

∥
∥Y − Gθg (WSGCZ̄(E; θtrans))

∥
∥
1

(3)

where Z̄ = {Ze|e ∈ E} is a set of independent random variables each sam-
pled from pconv(r′|r(e); θconv) (see Eq. 2 and the description of WSGC-E), and
q(θconv) denotes this sampling distribution.

The gradient of this loss with respect to all parameters except θconv can be
easily calculated. Next, we focus on the gradient with respect to θconv. Because
the sampling distribution depends on θconv it is natural to use the REINFORCE
algorithm [54] in this case, as explained next. Define:

R(Z̄; θg, θtrans) = ‖Y − Gθg (WSGCZ̄(E; θtrans))‖1. Then Eq. 3 is:
L(θconv) = EZ̄�q(θconv) R(Z̄; θg, θtrans).

The key idea in REINFORCE is the observation that:

∇θconvL(θ) = EZ̄�q(θconv) ∇θconvR(Z̄; θg, θtrans) log pconv
θ (Z̄)

Thus, we can approximate ∇θconvL(θ) by sampling Z̄ and averaging the above.7

7 We sample just one instantiation of Z̄ per image, since this works well in practice.

218 R. Herzig et al.

Fig. 4. Demonstration of the AttSPADE generator for scene graphs with varying
attributes. Top row shows SGs where each column modifies one attribute. Bottom
row is the images generated by AttSPADE.

For the layout-to-image component, most of our experiments use a pre-
trained LostGAN model. For CLEVR (Fig. 4) we train our AttSPADE model
which is a variant of SPADE [37] and trained similarly (see Supplementary).

6 Experiments

To evaluate our proposed WSGC method, we test performance on two tasks.
First, we evaluate on the SG-to-layout task (the task that WSGC is designed
for. See Sect. 3.2). We then further use these layouts to generate images and
demonstrate that improved layouts also yield improved generated images.

Datasets. We consider the following three datasets: COCO-stuff [4], Visual
Genome (VG) [24] and CLEVR [18]. We also created a synthetic dataset to
quantify the performance of WSGC in a controlled setting.
Synthetic dataset. To test the contribution of learned transitivity to layout
prediction, we generate a synthetic dataset. In this dataset, every object is a
square with one of two possible sizes. The set of relations includes: Above (tran-
sitive), Opposite Horizontally and XNear (non-transitive). To generate train-
ing and evaluation data, we uniformly sample coordinates of object centers and
object sizes and automatically compute relations among object pairs based on
their spatial locations. See Supplementary file for further visual examples.
COCO-Stuff 2017 [4]. Contains pixel-level annotations with 40K train and 5K
validation images with bounding boxes and segmentation masks for 80 thing cat-
egories, and 91 stuff categories. We use the standard subset proposed in previous
works [17], which contains ∼25K training, 1024 validation, and 2048 in test. We
use an additional subset we call Packed COCO, containing images with at least
16 objects, resulting in 4, 341 train images, 238 validation, and 238 test.
Visual Genome (VG) [24]. Contains 108, 077 images with SGs. We use the
standard subset [17]: 62K training, 5506 validation and 5088 test images. We

Learning Canonical Representations for Scene Graph to Image Generation 219

Fig. 5. Examples of image generation for CLEVR where the Sg2Im baseline and our
WSGC model were trained on images with a maximum of 10 objects but tested on
scenes with 16+ objects. Shown are three examples where: Top row: our WSGC gen-
eration (with boxes and without). Bottom row: Sg2Im generation (with boxes and
without).

use an additional subset we call Packed VG, containing images with at least 16
objects, resulting in 6341 train images, 809 validation, and 809 test images.
CLEVR [18]. A synthetic dataset based on scene-graphs with four spatial rela-
tions: left, right, front and behind, as well as attributes shape, size, material
and color. It has 70k training images and 15k for validation and test.

6.1 Scene-Graph-to-layout Generation

We evaluate the SG-to-layout task using the following metrics: 1) mIOU : the
mean IOU value. 2) R@0.3 and R@0.5: the average recall over predictions with
IOU greater than 0.3 and 0.5 respectively. We note our WSGC model is iden-
tical to the Sg2Im baseline in the SG-to-layout module in all aspects that are
not related to canonicalization. This provides a well-controlled ablation showing
that canonicalization improves performance.
Testing Robustness to Number of Objects. Scenes can contain a variable
number of objects, and SG-to-layout models should work well across these. Here
we tested how different models perform as the number of objects is changed in
the synthetic dataset. We compared the following models a) A “Learned Tran-
sitivity” model that uses WSGC to learn the weights of each relation. b) A
“Known Transitivity” model that is given the transitive relations in the data, and
performs hard SGC completion (see Sect. 3.1). Comparison between “Learned
Transitivity” and “Known Transitivity” is meant to evaluate how well WSGC
can learn which relations are transitive. c) A baseline model Sg2Im [17] that
does not use any relation completion, but otherwise has the same architecture.

We train these models with two and four GCN layers for up to 32 objects.
Additionally, to evaluate generalization to a different number of objects at test
time, we train models with eight GCN layers on 16 objects and test on up to 128
objects. Results are shown in Fig. 6a-b. First, it can be seen that the baseline
performs significantly worse than transitivity based models. Second, “Learned
Transitivity” closely matches “Known Transitivity” indicating that the model

220 R. Herzig et al.

(a) 2 GCN Layers (b) 4 GCN Layers (c) Trained on 16 objects

Fig. 6. Synthetic dataset results. (a-b) The effect of the number of GCN layers on
accuracy. Curves denote IOU performance as a function of the number of objects.
Each point is a model trained and tested on a fixed number of objects given by the
x axis. (c) Out of sample number of objects. The model is trained on 16 objects and
evaluated on up to 128 objects.

Table 1. Accuracy of predicted bounding boxes. We consider two different data set-
tings: “Standard” and “Packed”. (a) Standard: Training and evaluation is on VG
images with 3 to 10 objects, and COCO images with 3 to 8 objects. (b) Packed:
Training and evaluation is on images with 16 or more objects.

Standard Packed

Method mIOU R@0.3 R@0.5 mIOU R@0.3 R@0.5

COCO VG COCO VG COCO VG COCO VG COCO VG COCO VG

Sg2Im [17] 5 GCNa - - 52.4 21.9 32.2 10.6 - - - - - -

Sg2Im [17] 5 GCNb 41.7 16.9 62.6 24.7 37.5 9.7 35.8 25.4 56.0 36.2 25.3 15.8

Sg2Im [17] 8 GCNb 41.5 18.3 62.9 26.2 38.1 10.6 37.2 25.8 58.6 36.9 26.4 15.9

Sg2Im [17] 16 GCNb 40.8 16.4 61.4 23.3 36.6 7.8 37.7 27.1 60.3 39.0 26.6 17.0

WSGC 5 GCN (ours) 41.9 18.0 63.3 25.9 38.2 10.6 39.3 28.5 62.6 42.4 30.1 18.3
a Results copied from manuscript.
b Our implementation of [17]. This is the same as our model without WSGC.

successfully learned which relations are transitive (we also manually confirmed
this by inspecting θtrans). Third, the baseline model requires more layers to cor-
rectly capture scenes with more objects, whereas our model performs well with
two layers. This suggests that WSGC indeed improves generalization ability by
capturing invariances. Figure 6c shows that our model also generalizes well when
evaluated on a much larger set of objects than what it has seen at training time,
whereas the accuracy of the baseline severely degrades in this case.
Layout Accuracy on Packed Scenes. Layout generation is particularly chal-
lenging in packed scenes. To quantify this, we evaluate on the Packed COCO and
VG datasets. Since Sg2Im [17], PasteGAN [25], and Grid2Im [1] use the same
SG-to-layout module, we compare WSGC only to Sg2Im [17]. We test Sg2Im
with 5,8 and 16 GCN layers to test the effect of model capacity. The Packed
setting in Table 1 shows that WSGC improves layout on all metrics.

We also evaluate on the “standard” COCO/VG setting, which contain rel-
atively few objects, and we therefore do not expect WSGC to improve there.
Results in Table 1 show comparable performance to the baselines. In addition,
manual inspection revealed that the learned pconv and ptrans are overall aligned

Learning Canonical Representations for Scene Graph to Image Generation 221

Table 2. Evaluating the robustness of the learned canonical representation for models
which were trained on Packed COCO. For each SG, a semantically equivalent SG
is sampled and evaluated at test time. Additionally, models are evaluated on Noisy
SGs, for which edges contain 10% randomly chosen relations.

Method Semantically Equivalent Noisy SGs

mIOU R@0.3 R@0.5 mIOU R@0.3 R@0.5

Sg2Im [17] 5 GCNb 21.8 29.5 10.7 29.4 42.9 17.8

Sg2Im [17] 8 GCNb 23.6 33.2 11.4 29.9 43.7 18.8

Sg2Im [17] 16 GCNb 21.6 29.0 10.1 28.7 41.8 17.7

WSGC 5 GCN (ours) 35.3 53.2 25.7 31.8 46.6 21.9
b Our implementation of [17]. This is the same as our model without WSGC.

Table 3. Results for SG-to-image on Packed datasets (16+ objects). For VG and
COCO we use the layout-to-image architecture of LostGAN [48] and test the effect
of different SG-to-layout models. For CLEVR, we use our AttSPADE generator.

Method Inception Human

COCO VG CLEVR

Sg2Im [17] 5.4 ± 0.3 7.6 ± 1.0 3.2%

WSGC (ours) 5.6 ± 0.1 8.0 ± 1.1 96.8%

GT Layout 5.5 ± 0.4 8.2 ± 1.0 -

with expected values (See Supplementary). Finally, the results in the standard
setting also show that increasing GCN size for Sg2Im [17] results in overfitting.

Generalization on Semantically Equivalent Graphs. A key advan-
tage of WSGC is that it produces similar layouts for semantically equivalent
graphs. This is not true for methods that do not use canonicalization. To test
the effectiveness of this property, we modify the test set such that input SGs
are replaced with semantically equivalent variations. For example if the original
SG was (A, right, B) we may change it to (B, left, A). To achieve this, we gen-
erate a semantically equivalent SG by randomly choosing to include or exclude
edges which do not change the semantics of the SG. We evaluate on the Packed
COCO dataset. Results are shown in Table 2 and qualitative examples are shown
in Fig. 7. It can be seen that WSGC significantly outperforms the baselines.

Testing Robustness to Input SGs. Here we ask what happens when input
SGs are modified by adding “noisy” edges. This could happen due to noise in
the annotation process or even adversarial modifications. Ideally, we would like
the generation model to be robust to small SG noise. We next analyze how such
modifications affect the model by randomly modifying 10% of the relations in
the COCO data. As can be seen in Table 2, the WSGC model can better handle
noisy SGs than the baseline. We further note that our model achieves good
results on the VG dataset, which was manually annotated, suggesting it is robust
to annotation noise. The results in Table 2 also show the Sg2Im generalization

222 R. Herzig et al.

Fig. 7. Generalization from Semantically Equivalent Graphs. Each input SG is changed
to a semantically equivalent SG at test time. The layout-to-image model is LostGAN
[48] and different SG-to-layout models are tested. (a) Original SG (partial). (b) A
modified semantically equivalent SG (partial). (c) GT image. (d-e) Sg2Im [17] and
WSGC for the original SG. (f-g) Sg2Im [17] and WSGC for the modified SG.

deteriorates when growing from 8 to 16 layers, suggesting that the effect of
canonicalization cannot be achieved by just increasing model complexity.

6.2 Scene-graph-to-image Generation

To test the contribution of our proposed Scene-Graph-to-layout approach to
the overall task of SG-to-image generation, we further test it in an end-to-end
pipeline for generating images. For Packed COCO and Packed VG, we com-
pare our proposed approach with Sg2Im [17] using a fixed pre-trained LostGAN
[49] as the layout-to-image generator. For CLEVR, we use WSGC and our own
AttSPADE generator (see Sect. 4). We trained the model on images with a
maximum of 10 objects and tested on larger scenes with 16+ objects.

We evaluate performance using Inception score [44] and a study where Ama-
zon Mechanical Turk raters were asked to rank the quality of two images: one
generated using our layouts, and the other using SG2Im layouts.8 Results are
provided in Table 3. For COCO and VG it can be seen that WSGC improves
the overall quality of generated images. In CLEVR, Table 3, WSGC outper-
forms Sg2Im in terms of IOU. In 96.8% of the cases, our generated images were
ranked higher than SG2Im. Finally, Figs. 5 and 8 provide qualitative examples
and comparisons of images generated based on CLEVR and COCO. More gen-
eration results on COCO and VG can be seen in the Supplementary.

8 We used raters only for the CLEVR data, where no GT images or bounding boxes
are available for 16+ objects, and thus Inception cannot be evaluated.

Learning Canonical Representations for Scene Graph to Image Generation 223

Fig. 8. Selected Scene-graph-to-image generation results on the Packed-COCO dataset.
Here, we fix the layout-to-image model to LostGAN [48], while changing different scene
graph-to-layout models. (a) GT image. (b) Generation from GT layout. (c) Sg2Im [17]
model with LostGAN [48]. (d) Our WSGC model with LostGAN [48].

7 Conclusion

We presented a method for mapping SGs to images that is invariant to a set of
logical equivalences. Our experiments show that the method results in improved
layouts and image quality. We also observe that canonical representations allow
one to handle packed scenes with fewer layers than non-canonical approaches.
Intuitively, this is because the closure calculation effectively propagates infor-
mation across the graph, and thus saves the need for propagation using neural
architectures. The advantage is that this step is hard-coded and not learned,
thus reducing the size of the model. Our results show the advantage of prepro-
cessing an SG before layout generation. Here we studied this in the context of
two types of relation properties. However, it can be extended to more complex
ones. In this case, finding the closure will be computationally hard, and would
amount to performing inference in Markov Logic Networks [43]. On the other
hand, it is likely that modeling such invariances will result in further robustness
of the learned models, and is thus an interesting direction for future work.

Acknowledgments. This project has received funding from the European Research
Council (ERC) under the European Unions Horizon 2020 research and innovation pro-
gramme (grant ERC HOLI 819080). Prof. Darrell’s group was supported in part by

224 R. Herzig et al.

DoD, NSF, BAIR, and BDD. This work was completed in partial fulfillment for the
Ph.D degree of the first author.

References

1. Ashual, O., Wolf, L.: Specifying object attributes and relations in interactive scene
generation. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 4561–4569 (2019)

2. Bau, D., et al.: Gan dissection: Visualizing and understanding generative adver-
sarial networks. In: Proceedings of the International Conference on Learning Rep-
resentations (ICLR) (2019)

3. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity
natural image synthesis. In: International Conference on Learning Representations
(2019)

4. Caesar, H., Uijlings, J.R.R., Ferrari, V.: Coco-stuff: Thing and stuff classes in con-
text. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2018)

5. Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative
adversarial networks. arXiv preprint arXiv:1612.02136 (2016)

6. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement net-
works. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 1511–1520 (2017)

7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan:
Interpretable representation learning by information maximizing generative adver-
sarial nets. In: Advances in neural information processing systems. pp. 2172–2180
(2016)

8. Deng, Z., Chen, J., Fu, Y., Mori, G.: Probabilistic neural programmed networks
for scene generation. In: Advances in Neural Information Processing Systems. pp.
4028–4038 (2018)

9. Dong, H., Yu, S., Wu, C., Guo, Y.: Semantic image synthesis via adversarial learn-
ing. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 5706–5714 (2017)

10. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

12. Herzig, R., et al.: Spatio-temporal action graph networks. In: The IEEE Interna-
tional Conference on Computer Vision (ICCV) Workshops (2019)

13. Herzig, R., Raboh, M., Chechik, G., Berant, J., Globerson, A.: Mapping images
to scene graphs with permutation-invariant structured prediction. In: Advances in
Neural Information Processing Systems (NIPS) (2018)

14. Hong, S., Yang, D., Choi, J., Lee, H.: Inferring semantic layout for hierarchical text-
to-image synthesis. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 7986–7994 (2018)

15. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-
to-image translation. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 172–189 (2018)

16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1125–1134 (2017)

http://arxiv.org/abs/1612.02136

Learning Canonical Representations for Scene Graph to Image Generation 225

17. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

18. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick,
R.: Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In: CVPR (2017)

19. Johnson, J., Krishna, R., Stark, M., Li, L.J., Shamma, D., Bernstein, M., Fei-Fei,
L.: Image retrieval using scene graphs. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 3668–3678 (2015)

20. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4401–4410 (2019)

21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

23. Krishna, R., Chami, I., Bernstein, M.S., Fei-Fei, L.: Referring relationships. ECCV
(2018)

24. Krishna, R., et al.: Visual genome: Connecting language and vision using crowd-
sourced dense image annotations. ArXiv e-prints (2016)

25. Li, Y., Ma, T., Bai, Y., Duan, N., Wei, S., Wang, X.: Pastegan: A semi-parametric
method to generate image from scene graph. In: NeurIPS (2019)

26. Lim, J.H., Ye, J.C.: Geometric gan. arXiv preprint arXiv:1705.02894 (2017)
27. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation net-

works. In: Advances in Neural Information Processing Systems. pp. 700–708 (2017)
28. Mao, X., Li, Q., Xie, H., Lau, Y.R., Wang, Z., Smolley, S.P.: Least squares gener-

ative adversarial networks. In: Proceedings of the IEEE International Conference
on Computer Vision(2017)

29. Materzynska, J., Xiao, T., Herzig, R., Xu, H., Wang, X., Darrell, T.: Something-
else: Compositional action recognition with spatial-temporal interaction networks.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2020)

30. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

31. Mittal, G., Agrawal, S., Agarwal, A., Mehta, S., Marwah, T.: Interactive image
generation using scene graphs. arXiv preprint arXiv:1905.03743 (2019)

32. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: International Conference on Learning Repre-
sentations (2018)

33. Nam, S., Kim, Y., Kim, S.J.: Text-adaptive generative adversarial networks: manip-
ulating images with natural language. In: Advances in Neural Information Process-
ing Systems. pp. 42–51 (2018)

34. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
gans. In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. pp. 2642–2651. JMLR. org (2017)

35. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.:
Conditional image generation with pixelcnn decoders. In: Advances in Neural Infor-
mation Processing Systems. pp. 4790–4798 (2016)

36. Oord, A.v.d., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759 (2016)

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1705.02894
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1905.03743
http://arxiv.org/abs/1601.06759

226 R. Herzig et al.

37. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with
spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 2337–2346 (2019)

38. Qiao, T., Zhang, J., Xu, D., Tao, D.: Mirrorgan: Learning text-to-image generation
by redescription. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1505–1514 (2019)

39. Raboh, M., Herzig, R., Chechik, G., Berant, J., Globerson, A.: Differentiable scene
graphs. In: Winter Conference on Applications of Computer Vision(2020)

40. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

41. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative
adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)

42. Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what
and where to draw. In: Advances in Neural Information Processing Systems. pp.
217–225 (2016)

43. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

44. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. In: Advances in Neural Information Pro-
cessing Systems. pp. 2234–2242 (2016)

45. Schroeder, B., Tripathi, S., Tang, H.: Triplet-aware scene graph embeddings. In:
The IEEE International Conference on Computer Vision (ICCV) Workshops (2019)

46. Schuster, S., Krishna, R., Chang, A., Fei-Fei, L., Manning, C.D.: Generating seman-
tically precise scene graphs from textual descriptions for improved image retrieval.
In: Proceedings of The Fourth Workshop on Vision and Language. pp. 70–80 (2015)

47. Sharma, S., Suhubdy, D., Michalski, V., Kahou, S.E., Bengio, Y.: Chat-
painter: Improving text to image generation using dialogue. arXiv preprint
arXiv:1802.08216 (2018)

48. Sun, W., Wu, T.: Image synthesis from reconfigurable layout and style. In: The
IEEE International Conference on Computer Vision (ICCV) (2019)

49. Sun, W., Wu, T.: Image synthesis from reconfigurable layout and style. In: Proceed-
ings of the IEEE International Conference on Computer Vision. pp. 10531–10540
(2019)

50. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation.
arXiv preprint arXiv:1611.02200 (2016)

51. Tan, F., Feng, S., Ordonez, V.: Text2scene: Generating compositional scenes from
textual descriptions. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 6710–6719 (2019)

52. Tripathi, S., Bhiwandiwalla, A., Bastidas, A., Tang, H.: Heuristics for image gen-
eration from scene graphs. In: ICLR LLD Workshop (2019)

53. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional gans. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion(2018)

54. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

55. Xiaotian, Q., ZHENG, Q., Ying, C., Rynson, W.: Tell me where i am: Object-level
scene context prediction. In: The 32nd meeting of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR 2019). IEEE (2019)

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1605.05396
http://arxiv.org/abs/1802.08216
http://arxiv.org/abs/1611.02200

Learning Canonical Representations for Scene Graph to Image Generation 227

56. Xu, N., Liu, A.A., Liu, J., Nie, W., Su, Y.: Scene graph captioner: Image captioning
based on structural visual representation. J. Vis. Commun. Image Represent. 58,
477–485 (2019)

57. Xu, T., et al.: Attngan: Fine-grained text to image generation with attentional gen-
erative adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1316–1324 (2018)

58. Yin, G., Liu, B., Sheng, L., Yu, N., Wang, X., Shao, J.: Semantics disentangling for
text-to-image generation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2327–2336 (2019)

59. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Advances in Neural Information Processing Systems 30, pp.
3394–3404. Curran Associates, Inc. (2017)

60. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adver-
sarial networks. In: International Conference Machine Learning (2019)

61. Zhang, H., et al.: Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In: Proceedings of the IEEE International Con-
ference on Computer Vision. pp. 5907–5915 (2017)

62. Zhao, B., Meng, L., Yin, W., Sigal, L.: Image generation from layout. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
8584–8593 (2019)

63. Zhao, B., Meng, L., Yin, W., Sigal, L.: Image generation from layout. In: CVPR
(2019)

64. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126 (2016)

65. Zhou, X., Huang, S., Li, B., Li, Y., Li, J., Zhang, Z.: Text guided person image
synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3663–3672 (2019)

66. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 2223–2232 (2017)

67. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in
Neural Information Processing Systems. pp. 465–476 (2017)

http://arxiv.org/abs/1609.03126

	Learning Canonical Representations for Scene Graph to Image Generation
	1 Introduction
	2 Related Work
	3 Scene Graph Canonicalization
	3.1 Calculating Scene Graph Canonicalization
	3.2 Calculating Weighted Scene Graph Canonicalization

	4 Scene Graph to Image Using Canonicalization
	5 Losses and Training
	6 Experiments
	6.1 Scene-Graph-to-layout Generation
	6.2 Scene-graph-to-image Generation

	7 Conclusion
	References

