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Abstract. Learning disentangled representation of data without super-
vision is an important step towards improving the interpretability of
generative models. Despite recent advances in disentangled representa-
tion learning, existing approaches often suffer from the trade-off between
representation learning and generation performance (i.e., improving gen-
eration quality sacrifices disentanglement performance). We propose an
Information-Distillation Generative Adversarial Network (ID-GAN), a
simple yet generic framework that easily incorporates the existing state-
of-the-art models for both disentanglement learning and high-fidelity
synthesis. Our method learns disentangled representation using VAE-
based models, and distills the learned representation with an additional
nuisance variable to the separate GAN-based generator for high-fidelity
synthesis. To ensure that both generative models are aligned to render
the same generative factors, we further constrain the GAN generator to
maximize the mutual information between the learned latent code and
the output. Despite the simplicity, we show that the proposed method
is highly effective, achieving comparable image generation quality to the
state-of-the-art methods using the disentangled representation. We also
show that the proposed decomposition leads to an efficient and stable
model design, and we demonstrate photo-realistic high-resolution image
synthesis results (1024 × 1024 pixels) for the first time using the dis-
entangled representations. Our code is available at https://www.github.
com/1Konny/idgan.

1 Introduction

Learning a compact and interpretable representation of data without supervision
is important to improve our understanding of data and machine learning systems.
Recently, it is suggested that a disentangled representation that represents data
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58574-7 10) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12371, pp. 157–174, 2020.
https://doi.org/10.1007/978-3-030-58574-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58574-7_10&domain=pdf
https://www.github.com/1Konny/idgan
https://www.github.com/1Konny/idgan
https://doi.org/10.1007/978-3-030-58574-7_10
https://doi.org/10.1007/978-3-030-58574-7_10
https://doi.org/10.1007/978-3-030-58574-7_10


158 W. Lee et al.

Fig. 1. Generated images on the CelebA-HQ dataset [35]. The proposed framework
allows synthesizing high-resolution images (1024 × 1204 pixels) using the disentangled
representation learned by VAEs.

using independent factors of variations in data can improve the interpretability
and transferability of the representation [1,5,51]. Among various use-cases of
disentangled representation, we are particularly interested in its application to
generative models, since it allows users to specify the desired output properties
by controlling the generative factors encoded in each latent dimension. There are
increasing demands on such generative models in various domains, such as image
manipulation [21,28,31], drug discovery [16], ML fairness [11,36], etc.(Fig. 1).

Most prior works on unsupervised disentangled representation learning for-
mulate the problem as constrained generative modeling task. Based on well-
established frameworks, such as the Variational Autoencoder (VAE) or the Gen-
erative Adversarial Network (GAN), they introduce additional regularization to
encourage the axes of the latent manifold to align with independent generative
factors in the data. Approaches based on VAE [7,9,18,26] augment its objective
function to favor a factorized latent representation by adding implicit [7,18] or
explicit penalties [9,26]. On the other hand, approaches based on GAN [10] pro-
pose to regularize the generator such that it increases the mutual information
between the input latent code and its output.

One major challenge in the existing approaches is the trade-off between
learning disentangled representations and generating realistic data. VAE-based
approaches are effective in learning useful disentangled representations in var-
ious tasks, but their generation quality is generally worse than the state-of-
the-arts, which limits its applicability to the task of realistic synthesis. On the
other hand, GAN-based approaches can achieve the high-quality synthesis with
a more expressive decoder and without explicit likelihood estimation [10]. How-
ever, they tend to learn comparably more entangled representations than the
VAE counterparts [7,9,18,26] and are notoriously difficult to train, even with
recent techniques to stabilize the training [26,54].

To circumvent this trade-off, we propose a simple and generic framework to
combine the benefits of disentangled representation learning and high-fidelity
synthesis. Unlike the previous approaches that address both problems jointly by
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a single objective, we formulate two separate, but successive problems; we first
learn a disentangled representation using VAE, and distill the learned repre-
sentation to GAN for high-fidelity synthesis. The distillation is performed from
VAE to GAN by transferring the inference model, which provides a meaningful
latent distribution, rather than a simple Gaussian prior and ensures that both
models are aligned to render the same generative factors. Such decomposition
also naturally allows a layered approach to learn latent representation by first
learning major disentangled factors by VAE, then learning missing (entangled)
nuisance factors by GAN. We refer the proposed method as the Information
Distillation Generative Adversarial Network (ID-GAN).

Despite the simplicity, the proposed ID-GAN is extremely effective in
addressing the previous challenges, achieving high-fidelity synthesis using the
learned disentangled representation (e.g., 1024 × 1024 image). We also show
that such decomposition leads to a practically efficient model design, allowing
the models to learn the disentangled representation from low-resolution images
and transfer it to synthesize high-resolution images.

The contributions of this paper are as follows:

– We propose ID-GAN, a simple yet effective framework that combines the
benefits of disentangled representation learning and high-fidelity synthesis.

– The decomposition of the two objectives enables plug-and-play-style adop-
tion of state-of-the-art models for both tasks, and efficient training by learn-
ing models for disentanglement and synthesis using low- and high-resolution
images, respectively.

– Extensive experimental results show that the proposed method achieves state-
of-the-art results in both disentangled representation learning and synthesis
over a wide range of tasks from synthetic to complex datasets.

2 Related Work

Disentanglement Learning. Unsupervised disentangled representation learning
aims to discover a set of generative factors, whose element encodes unique and
independent factors of variation in data. To this end, most prior works based
on VAE [9,18,26] and GAN [10,22,33,34] focused on designing the loss func-
tion to encourage the factorization of the latent code. Despite some encouraging
results, however, these approaches have been mostly evaluated on simple and
low-resolution images [37,41]. We believe that improving the generation quality
of disentanglement learning is important, since it not only increases the practical
impact in real-world applications, but also helps us to better assess the disentan-
glement quality on complex and natural images where the quantitative evalua-
tion is difficult. Although there are increasing recent efforts to improve the gener-
ation quality with disentanglement learning [22,33,34,45], they often come with
the degraded disentanglement performance [10], rely on a specific inductive bias
(e.g., 3D transformation [45]), or are limited to low-resolution images [22,33,34].
On the contrary, our work aims to investigate a general framework to improve
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the generation quality without representation learning trade-off, while being gen-
eral enough to incorporate various methods and inductive biases. We emphasize
that this contribution is complementary to the recent efforts for designing bet-
ter inductive bias or supervision for disentanglement learning [8,38,44,48,53]. In
fact, our framework is applicable to a wide variety of disentanglement learning
methods and can incorporate them in a plug-and-play style as long as they have
an inference model (e.g., nonlinear ICA [25]).

Combined VAE/GAN Models. There have been extensive attempts in literature
toward building hybrid models of VAE and GAN [4,6,20,29,55], which learn to
represent and synthesize data by jointly optimizing VAE and GAN objectives.
Our method is an instantiation of this model family, but is differentiated from
the prior work in that (1) the training of VAE and GAN is decomposed into two
separate tasks and (2) the VAE is used to learn a specific conditioning variable
(i.e., disentangled representation) to the generator while the previous methods
assume the availability of an additional conditioning variable [4] or use VAE
to learn the entire (entangled) latent distribution [6,20,29,55]. Also, extending
the previous VAE-GAN methods to incorporate disentanglement constraints is
not straightforward, as the VAE and GAN objectives are tightly entangled in
them. In the experiment, we demonstrate that applying existing hybrid models
on our task suffers from the suboptimal trade-off between the generation and
disentanglement performance, and they perform much worse than our method.

3 Background: Disentanglement Learning

The objective of unsupervised disentanglement learning is to describe each data
x using a set of statistically independent generative factors z. In this section, we
briefly review prior works and discuss their advantages and limitations.

The state-of-the-art approaches in unsupervised disentanglement learning are
largely based on the Variational Autoencoder (VAE). They rewrite their original
objective and derive regularizations that encourage the disentanglement of the
latent variables. For instance, β-VAE [18] proposes to optimize the following
modified Evidence Lower-Bound (ELBO) of the marginal log-likelihood:

Ex∼p(x)[log p(x)] ≥ Ex∼p(x)[Ez∼qφ(z|x)[log pθ(x|z)] − β DKL(qφ(z|x)||p(z))], (1)

where setting β = 1 reduces to the original VAE. By forcing the variational
posterior to be closer to the factorized prior (β > 1), the model learns a more
disentangled representation, but with a sacrifice of generation quality, since it
also decreases the mutual information between z and x [9,26]. To address such
trade-off and improve the generation quality, recent approaches propose to grad-
ually anneal the penalty on the KL-divergence [7], or decompose it to isolate the
penalty for total correlation [52] that encourages the statistical independence of
latent variables [1,9,26].

Approaches based on VAE have shown to be effective in learning disen-
tangled representations over a range of tasks from synthetic [41] to complex
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datasets [3,35]. However, their generation performance is generally insufficient
to achieve high-fidelity synthesis, even with recent techniques isolating the fac-
torization of the latent variable [9,26]. We argue that this problem is fundamen-
tally attributed to two reasons: First, most VAE-based approaches assume the
fully-independent generative factors [9,18,26,37,40,51]. This strict assumption
oversimplifies the latent manifold and may cause the loss of useful information
(e.g., correlated factors) for generating realistic data. Second, they typically uti-
lize a simple generator, such as the factorized Gaussian decoder, and learn a
uni-modal mapping from the latent to input space. Although this might be use-
ful to learn meaningful representations [7] (e.g., capturing a structure in local
modes), such decoder makes it difficult to render complex patterns in outputs
(e.g., textures).

Fig. 2. Overall framework of the pro-
posed method (ID-GAN).

Fig. 3. Comparison of disentanglement
vs. generation performance on dSprites
dataset.

4 High-Fidelity Synthesis via Distillation

Our objective is to build a generative model Gω : Z → X that produces high-
fidelity output x ∈ X with an interpretable latent code z ∈ Z (i.e., disentangled
representation). To achieve this goal, we build our framework upon VAE-based
models due to their effectiveness in learning disentangled representations. How-
ever, discussions in the previous section suggest that disentanglement learning
in VAE leads to the sacrifice of generation quality due to the strict constraints
on fully-factorized latent variables and the utilization of simple decoders. We
aim to improve the VAE-based models by enhancing generation quality while
maintaining its disentanglement learning performance.

Our main idea is to decompose the objectives of learning disentangled repre-
sentation and generating realistic outputs into separate but successive learning
problems. Given a disentangled representation learned by VAEs, we train another
network with a much higher modeling capacity (e.g., GAN generator) to decode
the learned representation to a realistic sample in the observation space.

Figure 2 describes the overall framework of the proposed algorithm. Formally,
let z = (s, c) denote the latent variable composed of the disentangled variable c
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and the nuisance variable s capturing independent and correlated factors of vari-
ation, respectively. In the proposed framework, we first train VAE (e.g., Eq. (1))
to learn disentangled latent representations of data, where each observation x
can be projected to c by the learned encoder qφ(c|x) after the training. Then in
the second stage, we fix the encoder qφ and train a generator Gω(z) = Gω(s, c)
for high-fidelity synthesis while distilling the learned disentanglement by opti-
mizing the following objective:

min
G

max
D

LGAN(D,G) − λRID(G), (2)

LGAN(D,G) = Ex∼p(x)[log D(x)] + Es∼p(s),c∼qφ(c)[log (1 − D(G(s, c)))], (3)

RID(G) = Ec∼qφ(c),x∼G(s,c)[log qφ(c|x)] + Hqφ
(c), (4)

where qφ(c) = 1
N

∑
i qφ(c|xi) is the aggregated posterior [19,39,50] of the

encoder network1. Similar to [10], Eq. (4) corresponds to the variational lower-
bound of mutual information between the latent code and the generator output
I(c;G(s, c)), but differs in that (1) c is sampled from the aggregated posterior
qφ(c) instead of the prior p(c) and (2) it is optimized with respect to the genera-
tor only. Note that we treat Hqφ

(c) as a constant since qφ is fixed in Eq.(4). We
refer the proposed model as the Information Distillation Generative Adversarial
Network (ID-GAN).

4.1 Analysis

In this section, we provide in-depth analysis of the proposed method and its
connections to prior works.

Comparisons to β-VAEs [9,18,26]. Despite the simplicity, the proposed ID-GAN
effectively addresses the problems in β-VAEs with generating high-fidelity out-
puts; it augments the latent representation by introducing a nuisance variable
s, which complements the disentangled variable c by modeling richer generative
factors. For instance, the VAE objective tends to favor representational factors
that characterize as much data as possible [7] (e.g., azimuth, scale, lighting, etc.),
which are beneficial in representation learning, but incomprehensive to model
the complexity of observations. Given the disentangled factors discovered by
VAEs, ID-GAN learns to encode the remaining generative factors (such as high-
frequency textures, face identity, etc.) into nuisance variable s. (Fig. 8). This
process shares a similar motivation with a progressive augmentation of latent
factors [32], but is used for modeling disentangled and nuisance generative fac-
tors. In addition, ID-GAN employs a much more expressive generator than a
simple factorized Gaussian decoder in VAE, which is trained with adversarial
loss to render realistic and convincing outputs. Combining both, our method
allows the generator to synthesize various data in a local neighborhood defined
by c, where the specific characteristics of each example are fully characterized
by the additional nuisance variable s.
1 In practice, we can easily sample c from qφ(c) by c ∼ qφ(c|x)p(x).
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Comparisons to InfoGAN [10]. The proposed method is closely related to
InfoGAN, which optimizes the variational lower-bound of mutual information
I(c;G(s, c)) for disentanglement learning. To clarify the difference between the
proposed method and InfoGAN, we rewrite the regularization for both methods
using the KL divergence as follows:

RInfo(G, q) = −Es∼p(s)[DKL(p(c)||qφ(c|G(s, c)))], (5)
Rours(G, q) = βRVAE(q) + λRID(G), where

RVAE(q) = −Ex∼p(x)[DKL(qφ(c|x)||p(c))], (6)
RID(G) = −Es∼p(s)[DKL(qφ(c)||qφ(c|G(s, c)))], (7)

where Rours summarizes all regularization terms in our method2. See the
Appendix A.1 for detailed derivations.

Equation (5) shows that InfoGAN optimizes the forward KL divergence
between the prior p(c) and the approximated posterior qφ(c|G(s, c)). Due to
the zero-avoiding characteristics of forward KL [43], it forces all latent code c
with non-zero prior to be covered by the posterior qφ. Intuitively, it implies that
InfoGAN tries to exploit every dimensions in c to encode each (unique) factor
of variations. It becomes problematic when there is a mismatch between the
number of true generative factors and the size of latent variable c, which is com-
mon in unsupervised disentanglement learning. On the contrary, VAE optimizes
the reverse KL divergence (Eq. (6)), which can effectively avoid the problem by
encoding only meaningful factors of variation into certain dimensions in c while
collapsing the remainings to the prior. Since the encoder training in our method
is only affected by Eq. (6), it allows us to discover the ambient dimension of
latent generative factors robust to the choice of latent dimension |c|.

In addition, Eq. (5) shows that InfoGAN optimizes the encoder using the
generated distributions, which can be problematic when there exists a sufficient
discrepancy between the true and generated distributions (e.g., mode-collapse
may cause learning partial generative factors.). On the other hand, the encoder
training in our method is guided by the true data (Eq. (6)) together with max-
imum likelihood objective, while the mutual information (Eq. (7)) is enforced
only to the generator. This helps our model to discover comprehensive generative
factors from data while guiding the generator to align its outputs to the learned
representation.

Practical Benefits. The objective decomposition in the proposed method also
offers a number of practical advantages. First, it enables plug-and-play-style
adoption of the state-of-the-art models for disentangled representation learning
and high-quality generation. As shown in Fig. 3, it allows our model to achieve
state-of-the-art performance on both tasks. (Fig. 3). Second, such decomposition
also leads to an efficient model design, where we learn disentanglement from

2 In practice, we learn the encoder qφ and generator G independently by Eq. (6) and
(7), respectively, through two-step training.
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low-resolution images and distill the learned representation to the task of high-
resolution synthesis with a much higher-capacity generator. We argue that it is
practically reasonable in many cases since VAEs tend to learn global structures in
disentangled representation, which can be captured from low-resolution images.
We demonstrate this in the high-resolution image synthesis task, where we use
the disentangled representation learned with 64 × 64 images for the synthesis of
256 × 256 or 1024 × 1024 images.

5 Experiments

In this section, we present various results to show the effectiveness of ID-GAN.
Please find the Appendix for more comprehensive results and figures.

Table 1. Quantitative comparison results on synthetic datasets.

Color-dSprites Scream-dSprites

y-pos

Noisy-dSprites

x-pos

scale

ID-GAN
+β-VAE

y-pos

x-pos

scale

β-VAE

y-pos

x-pos

scale

InfoGAN

Fig. 4. Qualitative results on synthetic datasets. Both β-VAE and ID-GAN share the
same latent code, but ID-GAN exhibits substantailly higher generation quality.
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5.1 Implementation Details

Compared Methods. We compare our method with state-of-the-arts in disen-
tanglement learning and generation. We choose β-VAE [18], FactorVAE [26],
InfoGAN [10], OOGAN [34], and InfoGAN-CR [33] as baselines for disentangle-
ment learning. For fair comparison, we choose the best hyperparameter for each
model via extensive hyper-parameter search. We also report the performance by
training each method over five different random seeds and averaging the results.

Network Architecture. For experiments on synthetic datasets, we adopt the archi-
tecture from [37] for all VAE-based methods (VAE, β-VAE, and FactorVAE).
For GAN-based methods (GAN, InfoGAN, and ID-GAN), we employ the same
decoder and encoder architectures in VAE as the generator and discriminator,
respectively. We set the size of disentangled latent variable to 10 for all methods,
and exclude the nuisance variable in GAN-based methods for a fair comparison
with VAE-based methods. For experiments on complex datasets, we employ the
generator and discriminator in the state-of-the-art GAN [42,47]. For VAE archi-
tectures, we utilize the same VAE architecture as in the synthetic datasets. We
set the size of disentangled and nuisance variables to 20 and 256, respectively.

Evaluation Metrics. We employ three popular evaluation metrics in the litera-
ture: Factor-VAE Metric (FVM) [26], Mutual Information Gap (MIG) [9], and
Fréchet Inception Distance (FID) [17]. FVM and MIG evaluate the disentan-
glement performance by measuring the degree of axis-alignment between each
dimension of learned representations and ground-truth factors. FID evaluates
the generation quality by measuring the distance between the true and the gen-
erated distributions.

5.2 Results on Synthetic Dataset

For quantitative evaluation of disentanglement, we employ the dSprites
dataset [41], which contains synthetic images generated by randomly sampling
known generative factors, such as shape, orientation, size, and x-y position. Due
to the limited complexity of dSprites, we adopt three variants of dSprites, which
are generated by adding color [26] (Color-dSprites) or background noise [37]
(Noisy- and Scream-dSprites).

Table 1 and Fig. 4 summarize the quantitative and qualitative comparison
results with existing disentanglement learning approaches, respectively. First, we
observe that VAE-based approaches (i.e., β-VAE and FactorVAE) achieve the
state-of-the-art disentanglement performance across all datasets, outperform-
ing the VAE baseline and InfoGAN with a non-trivial margin. The qualitative
results in Fig. 4 show that the learned generative factors are well-correlated with
meaningful disentanglement in the observation space. On the other hand, Info-
GAN fails to discover meaningful disentanglement in most datasets. We observe
that information maximization in InfoGAN often leads to undesirable factoriza-
tion of generative factors, such as encoding both shape and position into one
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latent code, but factorizing latent dimensions by different combinations of them
(e.g., Color-dSprites in Fig. 4). ID-GAN achieves state-of-the-art disentangle-
ment through the distillation of the learned latent code from the VAE-based
models. Appendix B.3 also shows that ID-GAN is much more stable to train
and insensitive to hyper-parameters than InfoGAN.

In terms of generation quality, VAE-based approaches generally perform
much worse than GAN baseline. This performance gap is attributed to the strong
constraints on the factorized latent variable and weak decoder in VAE, which
limits the generation capacity. This is clearly observed in the results on the
Noisy-dSprites dataset (Fig. 4), where the outputs from β-VAE fail to render
the high-dimensional patterns in the data (i.e., uniform noise). On the other
hand, our method achieves competitive generation performance to the state-of-
the-art GAN using a much more flexible generator for synthesis, which enables
the modeling of complex patterns in data. As observed in Fig. 4, ID-GAN per-
forms generation using the same latent code with β-VAE, but produces much
more realistic outputs by capturing accurate object shapes (in Color-dSprites)
and background patterns (in Scream-dSprites and Noisy-dSprites) missed by
the VAE decoder. These results suggest that our method can achieve the best
trade-off between disentanglement learning and high-fidelity synthesis.

Table 2. Comparison of approaches using a joint and decomposed objective for disen-
tanglement learning and synthesis.

dSprites

FVM (↑) MIG (↑) FID (↓)

β-VAE (reference) 0.65±0.08 0.28±0.09 37.75±24.58

VAE-GAN 0.46±0.18 0.13±0.11 33.54±24.93

ID-GAN (end-to-end) 0.50±0.14 0.13±0.09 3.18±2.38

ID-GAN (two-step) 0.65±0.08 0.28±0.09 2.00±1.74

5.3 Ablation Study

This section provides an in-depth analysis of our method.

Is Two-Step Training Necessary? First, we study the impact of two-stage train-
ing for representation learning and synthesis. We consider two baselines: (1)
VAE-GAN [29] as an extension of β-VAE with adversarial loss, and (2) end-to-
end training of ID-GAN. Contrary to ID-GAN that learns to represent (qφ) and
synthesize (G) data via separate objectives, these baselines learn a single, entan-
gled objective for both tasks. Table 2 summarizes the results in the dSprites
dataset.

The results show that VAE-GAN improves the generation quality of β-VAE
with adversarial learning. The generation quality is further improved in the
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end-to-end version of ID-GAN by employing a separate generator for synthe-
sis. However, the improved generation quality in both baselines comes with the
cost of degraded disentanglement performance. We observe that updating the
encoder using adversarial loss hinders the discovery of disentangled factors, as
the discriminator tends to exploit high-frequency details to distinguish the real
images from the fake images, which motivates the encoder to learn nuisance fac-
tors. This suggests that decomposing the representation learning and generation
objective is important in the proposed framework (ID-GAN two-step), which
achieves the best performance in both tasks.

Is Distillation Necessary? The above ablation study justifies the importance of
two-step training. Next, we compare different approaches for two-step training
that perform conditional generation using the representation learned by β-VAE.

Specifically, we consider two baselines: (1) cGAN and (2) ID-GAN trained
without distillation (ID-GAN w/o distill). We opt to consider cGAN as the
baseline since we find that it implicitly optimizes RID (see Appendix A.2 for the
proof). In the experiments, we train all models in the CelebA 128 × 128 dataset
using the same β-VAE trained on the 64 × 64 resolution, and compare the gen-
eration quality (FID) and a degree of alignment between the disentangled code
c and generator output G(s, c). For comparison of the alignment, we measure
RID (Eq. (7)) and GILBO3 [2], both of which are valid lower-bounds of mutual
information I(c;G(s, c)). Note that the comparison based on the lower-bound is
still valid as its relative order has shown to be insensitive to the tightness of the
bound [2]. Table 3 and Fig. 5 summarize the quantitative and qualitative results,
respectively.

Table 3. Comparison of two-step approaches for generation (FID) and alignment (RID

and GILBO (We report both RID and GILBO without Hqφ(c) to avoid potential error
in measuring qφ(c) (e.g., fitting a Gaussian [2]). Note that it does not affect the relative
comparison since all models share the same qφ)) performance.

CelebA 128 × 128

FID (↓) RID (↑) GILBO [2] (↑)

ID-GAN w/o distill 5.75 −65.84 −20.40

cGAN 7.07 −17.39 −7.57

ID-GAN 6.61 −10.25 −0.19

As shown in the table, all three models achieve comparable generation per-
formances in terms of FID. However, we observe that their alignments to the
input latent code vary across the methods. The qualitative results (Fig. 5) also
show considerable mismatch between the c and the generated images. Compared

3 GILBO is formulated similarly as RID (Eq. (4)), but optimized over another auxiliary
encoder network different from the one used in RID.
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Fig. 5. Qualitative comparisons of various two-step approaches. All samples share the
same disentangled code c, but different nuisance variable s. (1) First column: output of
β-VAE decoder. (2) Second to fourth columns: images generated by different nuisance
variables s using various methods (rows).

to this, cGAN achieves much higher degree of alignment due to the implicit opti-
mization of RID, but its association is much loose than our method (e.g., changes
in gender and hairstyle). By explicitly constraining the generator to optimize
RID, ID-GAN achieves the best alignment.

5.4 Results on Complex Dataset

To evaluate our method with more diverse and complex factors of variation,
we conduct experiments on natural image datasets, such as CelebA [35], 3D
Chairs [3], and Cars [27]. We first evaluate our method on 64 × 64 images, and
extend it to higher resolution images using the CelebA (256 × 256) and CelebA-
HQ [24] (1024 × 1024) datasets.

Table 4. Quantitative results based on FID (↓).

3D chair Cars CelebA

VAE 116.46 201.29 160.06

βVAE 107.97 235.32 166.01

FactorVAE 123.64 208.60 154.48

GAN 24.17 14.62 3.34

InfoGAN 60.45 13.67 4.93

ID-GAN+βVAE 25.44 14.96 4.08

s
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Fig. 6. Comparisons of latent traversal between GAN-based approaches. Despite the
comparable generation quality, ID-GAN learns much more meaningful disentanglement.

Comparisons to Other Methods. Table 4 summarizes quantitative comparison
results. Since the ground-truth factors are unknown, we report the performance
based on generation quality (FID). As expected, the generation quality of VAEs
is much worse in natural images. GAN-based methods, on the contrary, can
generate more convincing samples although it tends to learn highly-entangled
generative factors in nuisance variable. ID-GAN achieves disentanglement via
disentangled factors learned by VAE, and generation performance on par with
the GAN baseline. To better understand the disentanglement of GAN-based
methods, we present latent traversal results in Fig. 6. We generate samples by
modifying values of each dimension in the disentangled latent code c while fix-
ing the rest. We observe that the InfoGAN fails to encode meaningful factors
into c as the generation is dominated by the nuisance variable z, making all
generated images almost identical. On the contrary, ID-GAN learns meaningful
disentanglement with c and generates reasonable variations.

eyeglassesfringe/cap style

Fig. 7. Comparisons of VAE and ID-GAN outputs (top-rows: VAE, bottom-rows: ID-
GAN). Note that both outputs are generated from the same latent code, but using
different decoders. Both decoders are aligned well to render the same generative factors,
but ID-GAN produces much more realistic outputs.
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Extension to High-Resolution Synthesis. One practical benefit of the proposed
two-step approach is that we can incorporate any VAE and GAN into our
framework. To demonstrate this, we train ID-GAN for high-resolution images
(e.g., 256 × 256 and 1024 × 1024) while distilling the β-VAE encoder learned
with much smaller 64 × 64 images4. This allows us to easily scale up the resolu-
tion of synthesis and helps us to better assess the disentangled factors.

Fig. 8. Analysis on the learned disentangled variables c(m) ∈ R
20 and nuisance vari-

ables s(n) ∈ R
256 of ID-GAN on CelebA (256×256). The samples in the first row are

generated by the β-VAE decoder and the rest are generated by ID-GAN. Each c(m)

captures the most salient factors of variation (e.g.,azimuth) while s(n) contributes to
the local details (e.g.,s(2) and s(3) for curvy and straight hair, respectively).

We first adapt ID-GAN to the 256×256 image synthesis task. To understand
the impact of distillation, we visualize the outputs from the VAE decoder and
the GAN generator using the same latent code as inputs. Figure 7 summarizes
the results. We observe that the outputs from both networks are aligned well
to render the same generative factors to similar outputs. Contrary to blurry
and low-resolution (64 × 64) VAE outputs, however, ID-GAN produces much
more realistic and convincing outputs by introducing a nuisance variable and
employing more expressive decoder trained on higher-resolution (256 × 256).
Interestingly, synthesized images by ID-GAN further clarify the disentangled
factors learned by the VAE encoder. For instance, the first row in Fig. 7 shows
that the ambiguous disentangled factors from the VAE decoder output is clarified
by ID-GAN, which is turned out to capture the style of a cap. This suggests that
ID-GAN can be useful in assessing the quality of the learned representation.

4 We simply downsample the generator output by bilinear sampling to match the
dimension between the generator and encoder.
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To gain further insights on the learned generative factors by our method,
we conduct qualitative analysis on the latent variables (c and s) by generating
samples by fixing one variable while varying another (Fig. 8). We observe that
varying the disentangled variable c leads to variations in the holistic structures
in the outputs, such as azimuth, skin color, hair style, etc., while varying the
nuisance variable s leads to changes in more fine-grained facial attributes, such as
expression, skin texture, identity, etc.It shows that ID-GAN successfully distills
meaningful and representative disentangled generative factors learned by the
inference network in VAE, while producing diverse and high-fidelity outputs
using generative factors encoded in the nuisance variable.

Finally, we further conduct experiments on the challenging task of mega-pixel
image synthesis using CelebA-HQ dataset. We employ the generator architecture
of VGAN [47] and adapt it to synthesize images given factors learned by β-VAE.
Figure 9 presents the results, where we generate images by changing one values
in one latent dimension in c. We observe that ID-GAN produces high-quality
images with nice disentanglement, where it changes one factor of variation in the
data (e.g., azimuth and hair-style) while preserving the others (e.g., identity).

sides brightness

Fig. 9. Results on the CelebA-HQ dataset (1024 × 1024 images).

6 Conclusion

We propose Information Distillation Generative Adversarial Network (ID-GAN),
a simple framework that combines the benefits of the disentanglement repre-
sentation learning and high-fidelity synthesis. It allows us to incorporate the
state-of-the-art for both tasks by decomposing their objectives while constrain-
ing the generator by distilling the encoder. Extensive experiments validate that
the proposed method can achieve the best trade-off between realism and disen-
tanglement, outperforming the existing approaches with substantial margin.
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Disentangling factors of variations using few labels. In: ICLR (2020)

39. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoen-
coders. In: ICLR (2016)

40. Mathieu, E., Rainforth, T., Siddharth, N., Teh, Y.W.: Disentangling disentangle-
ment in variational auto-encoders. In: Bayesian Deep Learning Workshop, NeurIPS
(2018)

41. Matthey, L., Higgins, I., Hassabis, D., Lerchner, A.: dSprites: disentanglement
testing sprites dataset (2017). https://github.com/deepmind/dsprites-dataset/

42. Mescheder, L., Nowozin, S., Geiger, A.: Which training methods for GANS do
actually converge? In: ICML (2018)

43. Minka, T., et al.: Divergence measures and message passing. Technical report,
Technical report, Microsoft Research (2005)

44. Narayanaswamy, S., et al.: Learning disentangled representations with semi-
supervised deep generative models. In: NeurIPS (2017)

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
http://arxiv.org/abs/1907.04809
https://doi.org/10.1007/978-3-030-01246-5_3
https://github.com/deepmind/dsprites-dataset/


174 W. Lee et al.

45. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: Hologan: unsuper-
vised learning of 3D representations from natural images. In: ICCV (2019)

46. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)
47. Peng, X.B., Kanazawa, A., Toyer, S., Abbeel, P., Levine, S.: Variational discrim-

inator bottleneck: improving imitation learning, inverse RL, and GANs by con-
straining information flow. In: ICLR (2019)

48. Ruiz, A., Mart́ınez, O., Binefa, X., Verbeek, J.: Learning disentangled rep-
resentations with reference-based variational autoencoders. arXiv preprint
arXiv:1901.08534 (2019)

49. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR (2016)

50. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders.
In: ICLR (2018)
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