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Abstract. Most of the recent deep learning-based 3D human pose
and mesh estimation methods regress the pose and shape parameters
of human mesh models, such as SMPL and MANO, from an input
image. The first weakness of these methods is the overfitting to image
appearance, due to the domain gap between the training data cap-
tured from controlled settings such as a lab, and in-the-wild data in
inference time. The second weakness is that the estimation of the pose
parameters is quite challenging due to the representation issues of 3D
rotations. To overcome the above weaknesses, we propose Pose2Mesh,
a novel graph convolutional neural network (GraphCNN)-based sys-
tem that estimates the 3D coordinates of human mesh vertices directly
from the 2D human pose. The 2D human pose as input provides essen-
tial human body articulation information without image appearance.
Also, the proposed system avoids the representation issues, while fully
exploiting the mesh topology using GraphCNN in a coarse-to-fine man-
ner. We show that our Pose2Mesh significantly outperforms the previ-
ous 3D human pose and mesh estimation methods on various bench-
mark datasets. The codes are publicly available(https://github.com/
hongsukchoi/Pose2Mesh RELEASE).

1 Introduction

3D human pose and mesh estimation aims to recover 3D human joint and mesh
vertex locations simultaneously. It is a challenging task due to the depth and
scale ambiguity, and the complex human body and hand articulation. There have
been diverse approaches to address this problem, and recently, deep learning-
based methods have shown noticeable performance improvement.

Most of the deep learning-based methods rely on human mesh models, such
as SMPL [32] and MANO [48]. They can be generally categorized into a model-
based approach and a model-free approach. The model-based approach trains
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Fig. 1. The overall pipeline of Pose2Mesh.

a network to predict the model parameters and generates a human mesh by
decoding them [4–6,23,27,29,41,42,46]. On the contrary, the model-free app-
roach regresses the coordinates of a 3D human mesh directly [13,28]. Both
approaches compute the 3D human pose by multiplying the output mesh with
a joint regression matrix, which is defined in the human mesh models [32,48].

Although the recent deep learning-based approaches have shown significant
improvement, they have two major drawbacks. First, they cannot benefit from
the train data of the controlled settings [19,22], which have accurate 3D anno-
tations, without image appearance overfitting. This overfitting occurs because
image appearance in the controlled settings, such as monotonous backgrounds
and simple clothes of subjects, is quite different from that of in-the-wild images.
The second drawback is that the pose parameters of the human mesh mod-
els might not be an appropriate regression target, as addressed in Kolotouros
et al. [28]. The SMPL pose parameters, for example, represent 3D rotations in
an axis-angle, which can suffer from the non-unique problem (i.e., periodicity).
While many works [23,29,41] tried to avoid the periodicity by using a rotation
matrix as the prediction target, it still has a non-minimal representation issue.

To resolve the above issues, we propose Pose2Mesh, a graph convolutional
system that recovers 3D human pose and mesh from the 2D human pose, in a
model-free fashion. It has two advantages over existing methods. First, the input
2D human pose makes the proposed system free from the overfitting related to
image appearance, while providing essential geometric information on the human
articulation. In addition, the 2D human pose can be estimated accurately from
in-the-wild images, since many well-performing methods [9,38,52,59] are trained
on large-scale in-the-wild 2D human pose datasets [1,30]. The second advantage
is that Pose2Mesh avoids the representation issues of the pose parameters, while
exploiting the human mesh topology (i.e., face and edge information). It directly
regresses the 3D coordinates of mesh vertices using a graph convolutional neural
network (GraphCNN) with graphs constructed from the mesh topology.

We designed Pose2Mesh in a cascaded architecture, which consists of PoseNet
and MeshNet. PoseNet lifts the 2D human pose to the 3D human pose. MeshNet
takes both 2D and 3D human poses to estimate the 3D human mesh in a coarse-
to-fine manner. During the forward propagation, the mesh features are initially
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processed in a coarse resolution and gradually upsampled to a fine resolution.
Figure 1 depicts the overall pipeline of the system.

The experimental results show that the proposed Pose2Mesh outperforms the
previous state-of-the-art 3D human pose and mesh estimation methods [23,27,
28] on various publicly available 3D human body and hand datasets [19,33,62].
Particularly, our Pose2Mesh provides the state-of-the-art result on in-the-wild
dataset [33], even when it is trained only on the controlled setting dataset [19].

We summarize our contributions as follows.

• We propose a novel system, Pose2Mesh, that recovers 3D human pose and
mesh from the 2D human pose. It is free from overfitting to image appearance,
and thus generalize well on in-the-wild data.

• Our Pose2Mesh directly regresses 3D coordinates of a human mesh using
GraphCNN. It avoids representation issues of the model parameters and lever-
ages the pre-defined mesh topology.

• We show that Pose2Mesh outperforms previous 3D human pose and mesh
estimation methods on various publicly available datasets.

2 Related Works

3D Human Body Pose Estimation. Current 3D human body pose estimation
methods can be categorized into two approaches according to the input type: an
image-based approach and a 2D pose-based approach. The image-based approach
takes an RGB image as an input for 3D body pose estimation. Sun et al. [53]
proposed to use compositional loss, which exploits the joint connection structure.
Sun et al. [54] employed soft-argmax operation to regress the 3D coordinates of
body joints in a differentiable way. Sharma et al. [50] incorporated a generative
model and depth ordering of joints to predict the most reliable 3D pose that
corresponds to the estimated 2D pose.

The 2D pose-based approach lifts the 2D human pose to the 3D space. Mar-
tinez et al. [34] introduced a simple network that consists of consecutive fully-
connected layers, which lifts the 2D human pose to the 3D space. Zhao et al. [60]
developed a semantic GraphCNN to use spatial relationships between joint coor-
dinates. Our work follows the 2D pose-based approach, to make the Pose2Mesh
more robust to the domain difference between the controlled environment of the
training set and in-the-wild environment of the testing set.

3D Human Body and Hand Pose and Mesh Estimation. A model-based
approach trains a neural network to estimate the human mesh model parame-
ters [32,48]. It has been widely used for the 3D human mesh estimation, since
it does not necessarily require 3D annotation for mesh supervision. Pavlakos
et al. [46] proposed a system that could be only supervised by 2D joint coordi-
nates and silhouette. Omran et al. [41] trained a network with 2D joint coor-
dinates, which takes human part segmentation as input. Kanazawa et al. [23]
utilized adversarial loss to regress plausible SMPL parameters. Baek et al. [4]
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trained a CNN to estimate parameters of the MANO model using neural ren-
derer [25]. Kolotouros et al. [27] introduced a self-improving system that consists
of SMPL parameter regressor and iterative fitting framework [5].

Recently, the advance of fitting frameworks [5,44] has motivated a model-
free approach, which estimates human mesh coordinates directly. It enabled
researchers to obtain 3D mesh annotation, which is essential for the model-free
methods, from in-the-wild data. Kolotouros et al. [28] proposed a GraphCNN,
which learns the deformation of the template body mesh to the target body
mesh. Ge et al. [13] adopted a GraphCNN to estimate vertices of hand mesh.
Moon et al. [40] proposed a new heatmap representation, called lixel, to recover
3D human meshes.

Our Pose2Mesh differs from the above methods, which are image-based, in
that it uses the 2D human pose as an input. It can benefit from the data with
3D annotations, which are captured from controlled settings [19,22], without the
image appearance overfitting.

GraphCNN for Mesh Processing. Recently, many methods consider a mesh
as a graph structure and process it using the GraphCNN, since it can fully exploit
mesh topology compared with simple stacked fully-connected layers. Wang et
al. [58] adopted a GraphCNN to learn a deformation from an initial ellipsoid
mesh to the target object mesh in a coarse-to-fine manner. Verma et al. [56]
proposed a novel graph convolution operator and evaluated it on the shape
correspondence problem. Ranjan et al. [47] also proposed a GraphCNN-based
VAE, which learns a latent space of the human face meshes in a hierarchical
manner.

3 PoseNet

3.1 Synthesizing Errors on the Input 2D Pose

PoseNet estimates the root joint-relative 3D pose P3D ∈ R
J×3 from the 2D

pose, where J denotes the number of human joints. We define the root joint
of the human body and hand as pelvis and wrist, respectively. However, the
estimated 2D pose often contains errors [49], especially under severe occlusions or
challenging poses. To make PoseNet robust to the errors, we synthesize 2D input
poses by adding realistic errors on the ground truth 2D pose, following [38,39],
during the training stage. We represent the estimated 2D pose or the synthesized
2D pose as P2D ∈ R

J×2.

3.2 2D Input Pose Normalization

We apply standard normalization to P2D, following [39,57]. For this, we subtract
the mean from P2D and divide it by the standard deviation, which becomes
P̄2D. The mean and the standard deviation of P2D represent the 2D location
and scale of the subject, respectively. This normalization is necessary because
P3D is independent of scale and location of the 2D input pose P2D.
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Fig. 2. The coarsening process initially generates multiple coarse graphs from GM, and
adds fake nodes without edges to each graph, following [11]. The numbers of vertices
range from 96 to 12288 and from 68 to 1088, for body and hand meshes, respectively.

Fig. 3. The network architecture of MeshNet.

3.3 Network Architecture

The architecture of the PoseNet is based on that of [34,39]. The normalized
2D input pose P̄2D is converted to a 4096-dimensional feature vector through
a fully-connected layer. Then, it is fed to the two residual blocks [18]. Finally,
the output feature vector of the residual blocks is converted to (3J)-dimensional
vector, which represents P3D, by a full-connected layer.

3.4 Loss Function

We train the PoseNet by minimizing L1 distance between the predicted 3D pose
P3D and groundtruth. The loss function Lpose is defined as follows:

Lpose = ‖P3D − P3D∗‖1, (1)

where the asterisk indicates the groundtruth.
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4 MeshNet

4.1 Graph Convolution on Pose

MeshNet concatenates P̄2D and P3D into P ∈ R
J×5. Then, it estimates the root

joint-relative 3D mesh M ∈ R
V ×3 from P, where V denotes the number of human

mesh vertices. To this end, MeshNet uses the spectral graph convolution [7,51],
which can be defined as the multiplication of a signal x ∈ R

N with a filter
gθ = diag(θ) in Fourier domain as follows:

gθ ∗ x = U gθU T x, (2)

where graph Fourier basis U is the matrix of the eigenvectors of the normalized
graph Laplacian L [10], and U T x denotes the graph Fourier transform of x.
Specifically, to reduce the computational complexity, we design MeshNet to be
based on Chebysev spectral graph convolution [11].

Graph Construction. We construct a graph of P, GP = (VP,AP), where VP =
P = {pi}J

i=1 is a set of J human joints, and AP ∈ {0, 1}J×J is an adjacency
matrix. AP defines the edge connections between the joints based on the human
skeleton and symmetrical relationships [8], where (AP)ij = 1 if joints i and j are
the same or connected, and (AP)ij = 0 otherwise. The normalized Laplaican is
computed as LP = IJ − D−1/2

P APD−1/2
P , where IJ is the identity matrix, and

DP is the diagonal matrix which represents the degree of each joint in VP as
(DP)ij =

∑
j(AP)ij . The scaled Laplacian is computed as L̃P = 2LP/λmax − IJ .

Spectral Convolution on Graph. Then, MeshNet performs the spectral graph
convolution on GP, which is defined as follows:

Fout =
K−1∑

k=0

Tk

(
L̃P

)
FinΘk, (3)

where Fin ∈ R
J×fin and Fout ∈ R

J×fout are the input and output feature maps
respectively, Tk

(
x
)

= 2xTk−1

(
x
) − Tk−2

(
x
)

is the Chebysev polynomial [15]
of order k, and Θk ∈ R

fin×fout is the kth Chebysev coefficient matrix, whose
elements are the trainable parameters of the graph convolutional layer. fin and
fout are the input and output feature dimensions respectively. The initial input
feature map Fin is P in practice, where fin = 5. This graph convolution is
K-localized, which means at most K-hop neighbor nodes from each node are
affected [11,26], since it is a K-order polynomial in the Laplacian. Our MeshNet
sets K = 3 for all graph convolutional layers following [13].

4.2 Coarse-to-fine Mesh Upsampling

We gradually upsample GP to the graph of M, GM = (VM,AM), where VM = M =
{mi}V

i=1 is a set of V human mesh vertices, and AM ∈ {0, 1}V ×V is an adjacency
matrix defining edges of the human mesh. To this end, we apply the graph
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coarsening [12] technique to GM, which creates various resolutions of graphs,
{Gc

M = (Vc
M,Ac

M)}C
c=0, where C denotes the number of coarsening steps, following

Defferrard et al. [11]. Figure 2 shows the coarsening process and a balanced
binary tree structure of mesh graphs, where the ith vertex in Gc+1

M is a parent
node of the 2i−1th and 2ith vertices in Gc

M, and 2|Vc+1
M | = |Vc

M|. i starts from 1.
The final output of MeshNet is VM, which is converted from V0

M by a pre-defined
indices mapping. During the forward propagation, MeshNet first upsamples the
GP to the coarsest mesh graph GC

M by reshaping and a fully-connected layer.
Then, it performs the spectral graph convolution on each resolution of mesh
graphs as follows:

Fout =
K−1∑

k=0

Tk

(
L̃c
M

)
FinΘk, (4)

where L̃c
M denotes the scaled Laplacian of Gc

M, and the other notations are defined
in the same manner as Eq. 3. Following [13], MeshNet performs mesh upsampling
by copying features of each parent vertex in Gc+1

M to the corresponding children
vertices in Gc

M. The upsampling process is defined as follows:

Fc = ψ(FT
c+1)

T , (5)

where Fc ∈ R
Vc

M×fc is the first feature map of Gc
M, Fc+1 ∈ R

Vc+1
M ×fc+1 is the last

feature map of Gc+1
M , ψ : Rfc+1×Vc+1

M → R
fc+1×Vc

M denotes a nearest-neighbor
upsampling function, and fc and fc+1are the feature dimensions of vertices in
Fc and Fc+1 respectively. The nearest upsampling function copies the feature
of the ith vertex in Gc+1

M to the 2i − 1th and 2ith vertices in Gc
M. To facilitate

the learning process, we additionally incorporate a residual connection between
each resolution. Figure 3 shows the overall architecture of MeshNet.

4.3 Loss Function

To train our MeshNet, we use four loss functions.

Vertex Coordinate Loss. We minimize L1 distance between the predicted 3D
mesh coordinates M and groundtruth, which is defined as follows:

Lvertex = ‖M − M∗‖1, (6)

where the asterisk indicates the groundtruth.

Joint Coordinate Loss. We use a L1 loss function between the groundtruth
root-relative 3d pose and the 3D pose regressed from M, to train our MeshNet to
estimate mesh vertices aligned with joint locations. The 3D pose is calculated as
J M, where J ∈ R

J×V is a joint regression matrix defined in SMPL or MANO
model. The loss function is defined as follows:

Ljoint = ‖J M − P3D∗‖1, (7)

where the asterisk indicates the groundtruth.
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Surface Normal Loss. We supervise normal vectors of an output mesh sur-
face to be consistent with groundtruth. This consistency loss improves surface
smoothness and local details [58]. Thus, we define the loss function Lnormal as
follows:

Lnormal =
∑

f

∑

{i,j}⊂f

∣
∣
∣
〈 mi − mj

‖mi − mj‖2 , n∗
f

〉∣
∣
∣, (8)

where f and n∗
f denote a triangle face in the human mesh and a groundtruth

unit normal vector of f , respectively. mi and mj denote the ith and jth vertices
in f .

Surface Edge Loss. We define edge length consistency loss between predicted
and groundtruth edges, following [58]. The edge loss is effective in recovering
smoothness of hands, feet, and a mouth, which have dense vertices. The loss
function Ledge is defined as follows:

Ledge =
∑

f

∑

{i,j}⊂f

|‖mi − mj‖2 − ‖m∗
i − m∗

j‖2|, (9)

where f and the asterisk denote a triangle face in the human mesh and the
groundtruth, respectively. mi and mj denote ith and jth vertex in f .

We define the total loss of our MeshNet, Lmesh, as a weighted sum of all four
loss functions:

Lmesh = λvLvertex + λjLjoint + λnLnormal + λeLedge, (10)

where λv = 1, λj = 1, λn = 0.1, and λe = 20.

5 Implementation Details

PyTorch [43] is used for implementation. We first pre-train our PoseNet, and then
train the whole network, Pose2Mesh, in an end-to-end manner. Empirically, our
two-step training strategy gives better performance than the one-step training.
The weights are updated by the Rmsprop optimization [55] with a mini-batch size
of 64. We pre-train PoseNet 60 epochs with a learning rate 10−3. The learning
rate is reduced by a factor of 10 after the 30th epoch. After integrating the pre-
trained PoseNet to Pose2Mesh, we train the whole network 15 epochs with a
learning rate 10−3. The learning rate is reduced by a factor of 10 after the 12th
epoch. In addition, we set λe to 0 until 7 epoch on the second training stage,
since it tends to cause local optima at the early training phase. We used four
NVIDIA RTX 2080 Ti GPUs for Pose2Mesh training, which took at least a half
day and at most two and a half days, depending on the training datasets. In
inference time, we use 2D pose outputs from Sun et al. [52] and Xiao et al. [59].
They run at 5 fps and 67 fps respectively, and our Pose2Mesh runs at 37 fps.
Thus, the proposed system can process from 4 fps to 22 fps in practice, which
shows the applicability to real-time applications.
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6 Experiment

6.1 Dataset and Evaluation Metric

Human3.6M. Human3.6M [19] is a large-scale indoor 3D body pose benchmark,
which consists of 3.6M video frames. The groundtruth 3D poses are obtained
using a motion capture system, but there are no groundtruth 3D meshes. As a
result, for 3D mesh supervision, most of the previous 3D pose and mesh estima-
tion works [23,27,28] used pseudo-groundtruth obtained from Mosh [31]. How-
ever, because of the license issue, the pseudo-groundtruth from Mosh is not
currently publicly accessible. Thus, we generate new pseudo-groundtruth 3D
meshes by fitting SMPL parameters to the 3D groundtruth poses using SMPLify-
X [44]. For the fair comparison, we trained and tested previous state-of-the-art
methods on the obtained groundtruth using their officially released code. Fol-
lowing [23,45], all methods are trained on 5 subjects (S1, S5, S6, S7, S8) and
tested on 2 subjects (S9, S11).

We report our performance for the 3D pose using two evaluation metrics. One
is mean per joint position error (MPJPE) [19], which measures the Euclidean
distance in millimeters between the estimated and groundtruth joint coordinates,
after aligning the root joint. The other one is PA-MPJPE, which calculates
MPJPE after further alignment (i.e., Procrustes analysis (PA) [14]). J M is
used for the estimated joint coordinates. We only evaluate 14 joints out of 17
estimated joints following [23,27,28,46].

3DPW. 3DPW [33] is captured from in-the-wild and contains 3D body pose and
mesh annotations. It consists of 51K video frames, and IMU sensors are leveraged
to acquire the groundtruth 3D pose and mesh. We only use the test set of
3DPW for evaluation following [27]. MPJPE and mean per vertex position error
(MPVPE) are used for evaluation. 14 joints from J M, whose joint set follows
that of Human3.6M, are evaluated for MPJPE as above. MPVPE measures the
Euclidean distance in millimeters between the estimated and groundtruth vertex
coordinates, after aligning the root joint.

COCO. COCO [30] is an in-the-wild dataset with various 2D annotations such
as detection and human joints. To exploit this dataset on 3D mesh learning,
Kolotouros et al. [27] fitted SMPL parameters to 2D joints using SMPLify [5].
Following them, we use the processed data for training.

MuCo-3DHP. MuCo-3DHP [36] is synthesized from the existing MPI-INF-
3DHP 3D single-person pose estimation dataset [35]. It consists of 200K frames,
and half of them have augmented backgrounds. For the background augmen-
tation, we use images of COCO that do not include humans to follow Moon
et al. [37]. Following them, we use this dataset only for the training.

FreiHAND. FreiHAND [62] is a large-scale 3D hand pose and mesh dataset.
It consists of a total of 134K frames for training and testing. Following Zimmer-
mann et al. [62], we report PA-MPVPE, F-scores, and additionally PA-MPJPE
of Pose2Mesh. J M is evaluated for the joint errors.
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Table 1. The performance comparison between four combinations of regression target
and network design tested on Human3.6M. ‘no. param.’ denotes the number of param-
eters of a network, which estimates SMPL parameters or vertex coordinates from the
output of PoseNet.

Target\Network FC GraphCNN

MPJPE PA-MPJPE no. param MPJPE PA-MPJPE no. param

SMPL param 72.8 55.5 17.3M 79.1 59.1 13.5M

Vertex coord 119.6 95.1 37.5M 64.9 48.7 8.8M

6.2 Ablation Study

To analyze each component of the proposed system, we trained different net-
works on Human3.6M, and evaluated on Human3.6M and 3DPW. The test 2D
input poses used in Human3.6M and 3DPW evaluation are outputs from Inte-
gral Regression [54] and HRNet [52] respectively, using groundtruth bounding
boxes.

Regression Target and Network Design. To demonstrate the effectiveness
of regressing the 3D mesh vertex coordinates using GraphCNN, we compare
MPJPE and PA-MPJPE of four different combinations of the regression target
and the network design in Table 1. First, vertex-GraphCNN, our Pose2Mesh,
substantially improves the joint errors compared to vertex-FC, which regresses
vertex coordinates with a network of fully-connected layers. This proves the
importance of exploiting the human mesh topology with GraphCNN, when esti-
mating the 3D vertex coordinates. Second, vertex-GraphCNN provides better
performance than both networks estimating SMPL parameters, while maintain-
ing the considerably smaller number of network parameters. Taken together,
the effectiveness of our mesh coordinate regression scheme using GraphCNN is
clearly justified.

In this comparison, the same PoseNet and cascaded architecture are employed
for all networks. On top of the PoseNet, vertex-FC and param-FC used a series
of fully-connected layers, whereas param-GraphCNN added fully-connected lay-
ers on top of Pose2Mesh. For the fair comparison, when training param-FC
and param-GraphCNN, we also supervised the reconstructed mesh from the pre-
dicted SMPL parameters with Lvertex and Ljoint. The networks estimating SMPL
parameters incorporated Zhou et al.’s method [61] for continuous rotations fol-
lowing [27].

Coarse-to-Fine Mesh Upsampling. We compare a coarse-to-fine mesh
upsampling scheme and a direct mesh upsampling scheme. The direct upsam-
pling method performs graph convolution on the lowest resolution mesh until
the middle layer of MeshNet, and then directly upsamples it to the highest one
(e.g., 96 to 12288 for the human body mesh). While it has the same number
of graph convolution layers and almost the same number of parameters, our
coarse-to-fine model consumes half as much GPU memory and runs 1.5 times
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Table 2. The performance comparison
on Human3.6M between two upsampling
schems. GPU mem. and fps denote the
required memory during training and fps in
inference time respectively.

Method GPU mem fps MPJPE

Direct 10G 24 65.3

coarse-to-fine 6G 37 64.9

Table 3. The MPJPE comparison
between four architectures tested
on 3DPW.

Architecture MPJPE

2D→mesh 101.1

2D→3D→mesh 103.2

2D→3D+2D→mesh 100.5

Table 4. The upper bounds of the two different graph convolutional networks that
take a 2D pose and a 3D pose. Tested on Human3.6M.

Test input Architecture MPJPE PA-MPJPE

2D pose GT 2D→mesh 55.5 38.4

3D pose from [37] 3D→mesh 56.3 43.2

3D pose GT 3D→mesh 29.0 23.0

faster than the direct upsampling method. It is because graph convolution on
the highest resolution takes much more time and memory than graph convo-
lution on lower resolutions. In addition, the coarse-to-fine upsampling method
provides a slightly lower joint error, as shown in Table 2. These results confirm
the effectiveness of our coarse-to-fine upsampling strategy.

Cascaded Architecture Analysis. We analyze the cascaded architecture of
Pose2Mesh to demonstrate its validity in Table 3. To be specific, we construct
(a) a GraphCNN that directly takes a 2D pose, (b) a cascaded network that
predicts mesh coordinates from a 3D pose from pretrained PoseNet, and (c)
our Pose2Mesh. All methods are both trained by synthesized 2D poses. First,
(a) outperforms (b), which implies a 3D pose output from PoseNet may lack
geometry information in the 2D input pose. If we concatenate the 3D pose output
with the 2D input pose as (c), it provides the lowest errors. This explains that
depth information in 3D poses could positively affect 3D mesh estimation.

To further verify the superiority of the cascaded architecture, we explore the
upper bounds of (a) and (d) a GraphCNN that takes a 3D pose in Table 4. To
this end, we fed the groundtruth 2D pose and 3D pose to (a) and (d) as test
inputs, respectively. Apparently, since the input 3D pose contains additional
depth information, the upper bound of (d) is considerably higher than that of
(a). We also fed state-of-the-art 3D pose outputs from [37] to (d), to validate the
practical potential for performance improvement. Surprisingly, the performance
is comparable to the upper bound of (a). Thus, our Pose2Mesh will substantially
outperform (a) a graph convolution network that directly takes a 2D pose, if we
can improve the performance of PoseNet.

In summary, the above results prove the validity of our cascaded architecture
of Pose2Mesh.
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Table 5. The accuracy comparison between state-of-the-art methods and Pose2Mesh
on Human3.6M. The dataset names on top are training sets.

Method Human3.6M Human3.6M + COCO

MPJPE PA-MPJPE MPJPE PA-MPJPE

HMR [23] 184.7 88.4 153.2 85.5

GraphCMR [28] 148.0 104.6 78.3 59.5

SPIN [27] 85.6 55.6 72.9 51.9

Pose2Mesh (Ours) 64.9 48.7 67.9 49.9

Table 6. The accuracy comparison between state-of-the-art methods and Pose2Mesh
on 3DPW. The dataset names on top are training sets.

Method Human3.6M Human3.6M + COCO

MPJPE PA-MPJPE MPVPE MPJPE PA-MPJPE MPVPE

HMR [23] 377.3 165.7 481.0 300.4 137.2 406.8

GraphCMR [28] 332.5 177.4 380.8 126.5 80.1 144.8

SPIN [27] 313.8 156.0 344.3 113.1 71.7 122.8

Pose2Mesh (Simple [59]) 101.8 64.2 119.1 92.3 61.0 110.5

Pose2Mesh (HR [52]) 100.5 63.0 117.5 91.4 60.1 109.3

6.3 Comparison with State-of-the-art Methods

Human3.6M. We compare our Pose2Mesh with the previous state-of-the-art
3D body pose and mesh estimation methods on Human3.6M in Table 5. First,
when we train all methods only on Human3.6M, our Pose2Mesh significantly
outperforms other methods. However, when we train the methods addition-
ally on COCO, the performance of the previous baselines increases, but that
of Pose2Mesh slightly decreases. The performance gain of other methods is a
well-known phenomenon [54] among image-based methods, which tend to gen-
eralize better when trained with diverse images from in-the-wild. Whereas, our
Pose2Mesh does not benefit from more images in the same manner, since it only
takes the 2D pose. We analyze the reason for the performance drop is that the
test set and train set of Human3.6M have similar poses, which are from the same
action categories. Thus, overfitting the network to the poses of Human3.6M can
lead to better accuracy. Nevertheless, in both cases, our Pose2Mesh outperforms
the previous methods in both MPJPE and PA-MPJPE. The test 2D input poses
for Pose2Mesh are estimated by the method of Sun et al. [54] trained on MPII
dataset [2], using groundtruth bounding boxes.

3DPW. We compare MPJPE, PA-MPJPE, and MPVPE of our Pose2Mesh with
the previous state-of-the-art 3D body pose and mesh estimation works on 3DPW,
which is an in-the-wild dataset, in Table 6. First, when the image-based methods
are trained only on Human3.6M, they give extremely high errors. This is because
the image-based methods are overfitted to the image appearance of Human3.6M.
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Table 7. The accuracy comparison between state-of-the-art methods and Pose2Mesh
on FreiHAND.

Method PA-MPVPE PA-MPJPE F@5mm F@15mm

Hasson et al. [16] 13.2 – 0.436 0.908

Boukhayma et al. [6] 13.0 – 0.435 0.898

FreiHAND [62] 10.7 – 0.529 0.935

Pose2Mesh (Ours) 7.8 7.7 0.674 0.969

In fact, since Human3.6M is an indoor dataset from the controlled setting, the
image features from it are very different from in-the-wild image features. On the
other hand, since our Pose2Mesh takes a 2D human pose as an input, it does not
overfit to the particular image appearance. As a result, the proposed system gives
far better performance on in-the-wild images from 3DPW, even when it is trained
only on Human3.6M while other methods are additionally trained on COCO. By
utilizing accurate 3D annotations of the lab-recorded 3D datasets [19] without
image appearance overfitting, Pose2Mesh does not require 3D data captured
from in-the-wild. This property can reduce data capture burden significantly
because capturing 3D data from in-the-wild is very challenging. The test 2D
input poses for Pose2Mesh are estimated by HRNet [52] and Simple [59] trained
on COCO, using groundtruth bounding boxes. The average precision (AP) of [52]
and [59] are 85.1 and 82.8 on 3DPW test set, 72.1 and 70.4 on COCO validation
set, respectively.

FreiHAND. We present the comparison between our Pose2Mesh and other
state-of-the-art 3D hand pose and mesh estimation works in Table 7. The
proposed system outperforms other methods in various metrics, including PA-
MPVPE and F-scores. The test 2D input poses for Pose2Mesh are estimated
by HRNet [52] trained on FreiHAND [62], using bounding boxes from Mask
R-CNN [17] with ResNet-50 backbone [18].

Comparison with Different Train Sets. We report MPJPE and PA-MPJPE
of Pose2Mesh trained on Human3.6M, COCO, and MuCo-3DHP, and other
methods trained on different train sets in Table 8. The train sets include
Human3.6M, COCO, MPII [2] , LSP [20], LSP-Extended [21], UP [29], and
MPI-INF-3DHP [35]. Each method is trained on a different subset of them.
In the table, the errors of [23,27,28] decrease by a large margin compared to
the errors in Table 5 and 6. Although this shows that the image-based meth-
ods can improve the generalizability with weak-supervision on in-the-wild 2D
pose datasets, Pose2Mesh still provides the lowest errors in 3DPW, which is the
in-the-wild benchmark. This suggests that avoiding the image appearance over-
fitting while benefiting from the accurate 3D annotations from the controlled
setting datasets is important. We measured the PA-MPJPE of Pose2Mesh on
Human3.6M by testing only on the frontal camera set, following the previous
works [23,27,28].



782 H. Choi et al.

Table 8. The accuracy comparison between state-of-the-art methods and Pose2Mesh
on Human3.6M and 3DPW. Different train sets are used.

Method Human3.6M 3DPW

MPJPE PA-MPJPE MPJPE PA-MPJPE

SMPLify [5] – 82.3 – –

Lassner et al. [29] – 93.9 – –

HMR [23] 88.0 56.8 – 81.3

NBF [41] – 59.9 – –

Pavlakos et al. [46] – 75.9 – –

Kanazawa et al. [24] - 56.9 - 72.6

GraphCMR [28] – 50.1 – 70.2

Arnab et al. [3] 77.8 54.3 – 72.2

SPIN [27] – 41.1 – 59.2

Pose2Mesh (Ours) 64.9 47.0 89.2 58.9

Fig. 4. Qualitative results of the proposed Pose2Mesh. First to third rows: COCO,
fourth row: FreiHAND.

Figure 4 shows the qualitative results on COCO validation set and FreiHAND
test set. Our Pose2Mesh outputs visually decent human meshes without post-
processing, such as model fitting [28]. More qualitative results can be found in
the supplementary material.



Pose2Mesh 783

7 Discussion

Although the proposed system benefits from the image appearance invariant
property of the 2D input pose, it could be challenging to recover various 3D
shapes solely from the pose. While it may be true, we found that the 2D pose
still carries necessary information to reason the corresponding 3D shape to some
degree. In the literature, SMPLify [5] has experimentally verified that under the
canonical body pose, utilizing 2D pose significantly drops the body shape fitting
error compared to using the mean body shape. We show that Pose2Mesh can
recover various body shapes from the 2D pose in the supplementary material.

8 Conclusion

We propose a novel and general system, Pose2Mesh, for 3D human mesh and
pose estimation from a 2D human pose. The 2D input pose enables the sys-
tem to benefit from the data captured from the controlled settings without the
image appearance overfitting. The model-free approach using GraphCNN allows
it to fully exploit mesh topology, while avoiding the representation issues of the
3D rotation parameters. We plan to enhance the shape recover capability of
Pose2Mesh using denser keypoints or part segmentation, while maintaining the
above advantages.
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