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Abstract. Example-guided image synthesis has recently been attempted
to synthesize an image from a semantic label map and an exemplary image.
In the task, the additional exemplar image provides the style guidance that
controls the appearance of the synthesized output. Despite the controlla-
bility advantage, the existing models are designed on datasets with specific
and roughly aligned objects. In this paper, we tackle a more challenging
and general task, where the exemplar is a scene image that is semantically
different from the given label map. To this end, we first propose a Masked
Spatial-Channel Attention (MSCA) module which models the correspon-
dence between two scenes via efficient decoupled attention. Next, we pro-
pose an end-to-end network for joint global and local feature alignment and
synthesis. Finally, we propose a novel self-supervision task to enable train-
ing. Experiments on the large-scale and more diverse COCO-stuff dataset
show significant improvements over the existing methods. Moreover, our
approach provides interpretability and can be readily extended to other
content manipulation tasks including style and spatial interpolation or
extrapolation.

Keywords: Example-guided image synthesis · Self-supervised
learning · Correspondence modeling · Efficient attention

1 Introduction

Conditional generative adversarial network (cGAN) [34] has recently made sub-
stantial progress in realistic image synthesis. In cGAN, a generator x̂ = G(c, z)
aims to output a realistic image x̂ with a constraint implicitly encoded by c.
Conversely, a discriminator D(x, c) learns such a constraint from ground-truth
pairs 〈x, c〉 by predicting if 〈x̂, c〉 is real or generated.

The current cGAN models [20,36,43] for semantic image synthesis aim to
solve the structural consistency constraint where the output image x̂ = G(c) is
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Fig. 1. Our task aims to synthesize style-consistent images from a semantic label map
(row 1, column 1) and a structurally and semantically different exemplar image
(row 1, columns 2–7). In spite of the differences between the two scenes, our model
can synthesize high-quality images of consistent styles with the reference images.

required to be aligned to a semantic label map c. However, for such a model,
the style of x̂ is inherently determined by the model and thus cannot be con-
trolled by the user. To provide desired controllability over the generated styles,
previous studies [27,41] impose additional constraints and allow more inputs to
the generator: x̂2→1 = G(c1, x2, z), where x2 is an exemplar image that guides
the style of c1. However, previous studies are designed on specified datasets such
as face [30,37], dancing [41] or street view [46], where the exemplar images and
semantic label map usually contain similar semantics and spatial structures.

Different from the previous studies, we address a more challenging example-
guided synthesis task that transfers styles across semantically very different
scenes. As shown in Fig. 1, given a semantic label map c1 (column 1) and an
arbitrary scene image x2 (row 1, column 2–7), the task aims to generate a new
scene image x̂2→1 (row 2) that matches the semantic structure of c1 and the
scene style of x2. The challenge is that scene images have complex semantic
structures as well as diversified scene styles, and more importantly, the inputs
c1 and x2 can be structurally unaligned and semantically different. Therefore, a
mechanism is required to better match the structures and semantics for coherent
synthesis.

In this paper, we propose a novel Masked Spatial-Channel Attention (MSCA)
module (Sect. 3.2) to propagate features across unstructured scenes. Our mod-
ule is inspired by a recent work [7] for attention-based object recognition, but
instead, we propose a new cross-attention mechanism to model the semantic
correspondence for image synthesis. Moreover, our method is based on the novel
design of spatial-channel decoupling that allows efficient computation. To facil-
itate example-guided synthesis, we further improve the module by including: i)
feature masking for semantic outlier filtering, ii) multi-scaling for global-local
feature processing, and iii) resolution extending for image synthesis. As a result,
our module provides both clear physical meaning and interpretability for the
example-guided synthesis task.
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We formulate the proposed approach under a unified synthesis network for
joint feature extraction, alignment and image synthesis. We achieve this by
applying MSCA modules to the extracted features for multi-scale feature domain
alignment. Next, we apply a recent feature normalization technique, SPADE [36]
on the aligned features to allow spatially-controllable synthesis. To facilitate the
learning of this network, we propose a novel self-supervision task. As opposed
to [41], our scheme requires only semantically parsed images for training and
does not rely on video data. We show that a model trained with this approach
generalizes across different scene semantics (See Fig. 1).

Our main contributions include the following:

– A novel masked spatial-channel attention (MSCA) module to propagate fea-
tures between two semantically different scenes.

– A unified example-guided synthesis network for joint feature extraction, align-
ment and image synthesis.

– A novel self-supervision scheme that only requires semantically annotated
images for training but not at the testing (image synthesis) stage.

– Significant improvements over the existing methods on the COCO-stuff [3]
dataset, as well as interpretability and easy extensions to other content manip-
ulation tasks.

2 Related Work

Generative Adversarial Networks. Recent years have witnessed the progress
of generative adversarial networks (GANs) [11] for image synthesis. A GAN
model consists of a generator and a discriminator where the generator serves to
produce realistic images that cannot be distinguished from the real ones by the
discriminator. Recent techniques for realistic image synthesis include modified
losses [1,33,38], model regularization [35], self-attention [2,48], feature normal-
ization [24] and progressive synthesis [23].

Image-to-Image Translation (I2I). I2I translation aims to translate images
from a source domain to a target domain. The initial work of Isola et al. [20] pro-
poses a conditional GAN framework to learn I2I translation with paired images.
Wang et al. [43] improve the conditional GAN for high-resolution synthesis and
content manipulation. To enable I2I translation without using paired data, a few
works [4,18,25,29,50] apply the cycle consistency constraint in training. Recent
works on photo-realistic image synthesis take semantic label maps as inputs for
image synthesis. Specifically, Wang et al. [43] extend the conditional GAN for
high-resolution synthesis, Chen et al. [6] propose a cascade refinement pipeline.
More recently, Park et al. [36] propose spatial-adaptive normalization for realistic
image generation.

Example-Guided Style Transfer and Synthesis. Example guided style
transfer [8,13] aims to transfer the style of an example image to a target image.
Recent works [4,10,12,16,17,22,26,31,45] utilize deep neural network features
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to model and transfer styles. Several frameworks [18,32] perform style trans-
fer via image domain style and content disentanglement. In addition, domain
adaptation [4] applies a cycle consistency loss to perform cross-domain style
transformation.

More recently, example-guided synthesis [27,41] is proposed to transfer the
style of an example image to a target condition, e.g.. a semantic label map.
Specifically, Lin et al. [27] apply dual learning to disentangle the style for
guided synthesis, Wang et al. [41] extract style-consistent data pairs from videos
for model training. In addition, Park et al. [36] adopt an I2I network under
the auto-encoding framework for example-guided image synthesis. Different
from [27,36,41], we address style alignment issue between arbitrary scenes for
region and semantic aware style integration. Furthermore, our self-supervised
learning scheme does not require video data and is a generalize and more chal-
lenging auto-encoding task.

Correspondence Matching for Synthesis. Finding correspondence is criti-
cal for many synthesis tasks. For instance, Siarohin et al. [39] apply the affine
transformation on reference person images to improve pose-guided person image
synthesis, Wang et al. [42] use optical flow to align frames for coherent video
synthesis. However, the affine transformation and optical flow cannot adequately
model the correspondences between two structurally very different scenes.

Efficient Attention Modeling. The self-attention [44,48] can capture gen-
eral pair-wise correspondences. However, it is computationally intensive at high-
resolution. To enable fast attention computation, GCNL [47] and CCCA [19]
respectively apply Taylor series expansion and criss-cross attention to approx-
imate self-attention. Alternatively, A2-Nets [7] factorize self-attention to solve
video classification tasks. Inspired by [7], we propose an attention-based module
named MSCA. It is worth noting MSCA is based on cross-attention and feature
masking for modeling image correspondence.

3 Method

The proposed approach aims to generate scene images that align with given
semantic maps. Differ from conventional semantic image synthesis methods
[20,36,43], our model takes an exemplary scene as an extra input to provide
more controllability over the generated scene image. Unlike existing example-
based approaches [27,41], our model addresses a more challenging case where
the exemplary inputs are structurally and semantically unaligned with the given
semantic map.

Our method takes a semantic label map c1, a reference image x2 and its
corresponding parsed semantic label map c̃2 as inputs and synthesizes an image
x̂2�1 which matches the style of x2 and structure of x1 using a generator G,
x̂2�1 = G(c1, x2, c̃2). As shown in Fig. 2 left, the generator G consists of three
parts, namely i) feature extraction ii) feature alignment and iii) image synthesis.
In Sect. 3.1, we describe the first part that extracts features from inputs of both
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scenes. In Sect. 3.2, we propose a masked spatial-channel attention (MSCA)
module to distill features and discover relations between two arbitrarily struc-
tured scenes. Unlike the affine-transformation [21] and flow-base warping [42],
MSCA provides better interpretability to the scene alignment task. In Sect. 3.3,
we introduce how to use the aligned features for image synthesis. Finally, in
Sect. 3.4, we propose a self-supervised scheme to facilitate learning.

Sec. 3.3

SPADE

Sec. 3.1
Feature Extraction

Sec. 3.2
Alignment Synthesis

MSCA

MSCA

Fig. 2. Left: our generator consists of three steps, namely feature extraction, feature
alignment, and image synthesis. We describe each step in its corresponding section,
respectively. Right: The MSCA module for feature alignment (at scale i). Our module

takes image feature map F
(i)
x,2 and segmentation feature map F

(i)
c,1 , F

(i)
c,2 as inputs to

output a new image feature map F
(i)
x,1 that is aligned to condition c1.

3.1 Feature Extraction

Taking an image x2 and label maps c1, c̃2 as inputs, the feature extraction module
extracts multi-scale feature maps for each input. Specifically, the feature map
F

(i)
x,2 of image x2 at scale i is computed by:

F
(i)
x,2 = W (i)

x ∗ F (i)
vgg(x2), for i ∈ {0, . . . , L}, (1)

where ∗ denotes the convolution operation, F
(i)
vgg denotes the feature map

extracted by VGG-19 [40] at scale i, and W
(i)
x denotes a 1 × 1 convolutional

kernel for feature compression. L is the number scales and we set L = 4 in this
paper.

For label map c1, its feature F
(i)
c,1 is computed by:

F
(i)
c,1 =

{

LReLU(W (i)
c ∗ c

(i)
1 ) for i = L,

LReLU(W (i)
c ∗ [⇑ (F (i+1)

c,1 ), c(i)1 ]) otherwise,
(2)

where ⇑ (·) denotes ×2 bilinear interpolation, c
(i)
1 denotes the resized label map,

W
(i)
c denotes a 1 × 1 convolutional kernel for feature extraction, and operation

[·, ·] denotes channel-wise concatenation. Note that as scale i decreases from L
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down to 0, the feature resolutions in Eq. 2 are progressively increased to match
a finer label maps c

(i)
1 .

Similarly, applying Eq. 2 with the same weights to label map c̃2, we can
extract its features F

(i)
c,2 :

F
(i)
c,2 =

{

LReLU(W (i)
c ∗ c

(i)
2 ) for i = L

LReLU(W (i)
c ∗ [⇑ (F (i+1)

c,2 ), c̃(i)2 ]) otherwise
. (3)

3.2 Masked Spatial-Channel Attention Module

As shown in Fig. 2 right, taking the image features F
(i)
x,2 and the label map

features F
(i)
c,1 , F

(i)
c,2 as inputs1, the MSCA module generates a new image feature

map F
(i)
x,1 that has the content of F

(i)
x,2 but is aligned with F

(i)
c,1 . We elaborate the

detailed procedures as follows:

Spatial Attention. Given feature maps F
(i)
x,2, F

(i)
c,2 of the exemplar scene, the

module first computes a spatial attention tensor α(i) ∈ [0, 1]K·H·W :

α(i) = softmax2,3(φ(i) ∗ [F (i)
x,2, F

(i)
c,2 ]), (4)

with φ(i) ∈ R
(N+M2)·K denoting a 1 × 1 convolutional filter and softmax2,3

denoting a 2D softmax function on spatial dimensions {2, 3}. The output tensor
contains K attention maps of resolution H×W , which serve to attend K different
spatial regions on image feature F

(i)
x,2.

Spatial Aggregation. Then, the module aggregates K feature vectors from
F

(i)
x,2 using the K spatial attention maps of α(i) from Eq. 4. Specifically, a matrix

dot product is performed:

V (i) = F
(i)
x,2(α

(i))ᵀ, (5)

with α(i) ∈ [0, 1]K·HW and F
(i)
x,2 ∈ R

N ·HW denoting the reshaped versions of α(i)

and F
(i)
x,2, respectively. The output V (i) ∈ R

N ·K stores feature vectors spatially

aggregated from the K independent regions of F
(i)
x,2.

Feature Masking. The exemplar scene x2 may contain irrelevant semantics to
the label map c1, and conversely, c1 may contain semantics that are unrelated
to x2. To address this issue, we apply feature masking on the output of Eq. 5 by
multiplying V (i) with a length-K gating vector at each row:

˜V (i) = (V (i))T ◦ mlp([gap(F (i)
c,1), gap(F (i)

c,2)]), (6)

1 We assume spatial resolution at scale i being H × W and channel size of F
(i)
x,2, F

(i)
c,1 ,

F
(i)
c,2 being N,M1,M2, respectively.
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Fig. 3. Our self-supervision scheme performs cross-reconstruction at the patch scale
(top row) and self-reconstruction at the global scale (bottom row). The solid, dashed
and dotted bounding boxes respective represent images, semantic label maps, and
synthesized outputs. Boxes with the same color are cropped from the same position.

where mlp(·) denotes a 2-layer MLP followed by a sigmoid function, gap denotes
a global average pooling layer, ◦ denotes broadcast element-wise multiplication,
and ˜V (i) denotes the masked features. The design of feature masking in Eq. 6
resembles to Squeeze-and-Excitation [15]. Using the integration of global infor-
mation from label maps c1 and c̃2, features are filtered.

Channel Attention. Given feature F
(i)
c,1 of label map c1, a channel attention

tensor β(i) ∈ [0, 1]K·H·W is generated as follows:

β(i) = softmax1(ψ(i) ∗ F
(i)
c,1), (7)

with ψ(i) ∈ R
M1·K denoting a 1× 1 convolutional filter and softmax1 denoting a

softmax function on channel dimension. The output β(i) serves to dynamically
reuse features from ˜V (i).

Channel Aggregation. With channel attention β(i) computed in Eq. 7, feature
vectors at HW spatial locations are aggregated again from ˜V (i) via matrix dot
product:

F
(i)
x,1 = ˜V (i)(β(i))ᵀ, (8)

where β(i) ∈ R
K·HW denotes the reshaped version of β(i). The output F

(i)
x,1 ∈

R
N ·HW represents the aggregated features at HW locations. The output feature

map F
(i)
x,1 is generated by reshaping F

(i)
x,1 to size N × H × W .

Remarks. Spatial attention (Eq. 4) and aggregation (Eq. 5) attend to K inde-
pendent regions from feature F

(i)
x,2, then store the K features into V (i). After

feature masking, given a new label map c1, channel attention (Eq. 4) and aggre-
gation (Eq. 8) combine ˜V (i) at each location to compute an output feature map.
As a result, each output location finds its correspondent regional features or
ignored via feature masking. In this way, the feature of example scene is aligned.
Note that when K = 1 and α(i) is constant, the above operations is essentially
a global average pooling. We show in the experiment that K = 8 is sufficient to
dynamically capture visually significant scene regions for alignment.
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Multi-scaling. Both global color tone and local appearances are informative for
the style-constraint synthesis. Therefore, we apply MSCA modules at all scales
i ∈ {0, . . . , L} to generate global and local features F

(i)
x,1.

SPADE_VAE 
[38]

ours
GAP

ours MSCA
w/o fm

ours MSCA
w/o global

ours MSCA
w/o att

Exemplar
Images

Parsing of 
Exemplar

Target
Lebel maps

Generated GT for
Retrival task [47]

Retrieved
Images

cI2I
[29]

EGSC-IT
[43]

ours
full

Inputs Comparative methods Ablation models Ours Generated GT

Fig. 4. Green box from left to right: the inputs for example-guided synthesis, i.e. target
label maps, exemplar label parsing from Deeplab-v2 [5], and exemplar images. Red box
from left to right: visual comparisons with cI2I [27], EGSC-IT [32], SPADE VAE [36],
four ablation models, and our full model. Blue box from left to right: the retrieved
ground-truth before and after color correction [45]. Our full model generates the most
style-consistent results with the exemplar images. (Color figure online)

3.3 Image Synthesis

The extracted features F
(i)
c,1 in Sect. 3.1 capture the semantic structure of c1,

whereas the aligned features F
(i)
x,1 in Sect. 3.2 capture the appearance style of

the example scene. In this section, we leverage F
(i)
c,1 and F

(i)
x,1 as control signals

to generate output images with desired structures and styles.
Specifically, we adopt a recent synthesis model, SPADE [36], and feed the

concatenation of F
(i)
x,1 and F

(i)
c,1 to the spatially-adaptive denormalization layer

of SPADE at each scale. By taking the style and structure signal as inputs,
spatially-controllable image synthesis is achieved. We refer readers to appendix
for more network details of the synthesis module.

3.4 Self-supervised Training

Training an example-guided synthesis model that can transfer styles across
semantically different scenes is challenging. First, style-consistent scene images
are hard to acquire. A previous work [41] generates style-consistent pairs from
videos. However, collecting scene videos can be more labor intensive. Second,
even with ground truth style-consistent pairs, the trained model is not guaran-
teed to generalize to a new arbitrary scene.
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We propose a novel self-supervised scheme to enable style-transfer between
two structurally and semantically different scenes. Our solution is motivated by
the fact that the style of a scene image is stationary, meaning that patches
cropped from the same scene share largely the same style. Moreover, non-
overlapping patches from the same scene may contain new structures and seman-
tic labeling, which is essential for the learned model to generalize better.

We first design a cross-reconstruction task at the patch scale: given patches
xp and xq cropped from the same scene image x, the generator is asked to
reconstruct xp using xq. Formally,

x̂p = G(cp, xq, c̃q). (9)

Note that cp and c̃q contain different semantic labeling. Therefore, the genera-
tor are required to infer the correlation between different semantic labeling for
coherent style transfer. An illustrative example is shown in Fig. 3. More details
on patch sampling is included in the appendix.

The cross-reconstruction task is designed at the patch scale and may not
generalize well to the global scale. In fact, the generator trained with the patch-
level task alone tends to generate repetitive local textures (in Sect. 4). Therefore,
we further design a self-reconstruction task at the global scale, which reconstructs
an global image x from itself:

x̂ = G(c, x, c̃). (10)

Our training objective for generator G and discriminator D is formulated as:

L(G,D) = log D(xp, cp, xq, c̃q) + log(1 − D(x̂p, cp, xq, c̃q)) + Lspade(x̂p, xp)
+ λ{log D(x, c, x, c̃) + log(1 − D(x̂, c, x, c̃)) + Lspade(x̂, x)}

(11)

where Lspade refers to the VGG and GAN feature matching losses defined in [36]
and λ is a parameter that controls the importance of the two self-supervised
tasks. We set λ = 1 in our experiments. Our full objective for self-supervised
training is:

G∗ = arg min
G

max
D

L(G,D) (12)

4 Experiments

Dataset. Our model is trained on the COCO-stuff dataset [3]. It contains
densely annotated images captured from various scenes. We remove images with
indoor scenes and large objects from the dataset, resulting in 34, 698/499 scene
images for training/testing, respectively. The COCO-stuff dataset does not pro-
vide ground-truth for the example-guided synthesis task, i.e. two images with
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Table 1. Quantitative comparisons of different methods and ablation models in terms
of PSNR, LPIPS [49], Fréchet Inception Distance (FID) [14] and style loss (Lstyle) [9].
Higher scores are better for metrics with uparrow (↑), and vice versa.

Task MeasurescI2I [27] EGSC-IT

[41]

SPADE-

VAE

[36]

Ours GAP Ours

MSCA

w/o att

Ours

MSCA

w/o fm

Ours

MSCA

w/o global

Ours full

retrieving PSNR↑ 9.50 12.57 15.77 15.85 11.96 16.24 15.98 16.65

LPIPS↓ 0.757 0.581 0.483 0.457 0.522 0.451 0.446 0.437

FID↓ 228.63 163.23 102.68 101.74 112.83 100.01 96.66 91.91

Lstyle ↓ 3.53e−3 1.69e−3 1.07e−3 6.40e−4 7.10e−3 7.62e−4 7.21e−4 5.34e−4

mirroring PSNR↑ 9.46 12.44 15.37 15.80 11.95 16.02 16.58 17.03

LPIPS↓ 0.759 0.602 0.477 0.438 0.510 0.437 0.421 0.397

FID↓ 242.73 190.01 90.99 89.15 102.41 90.52 85.92 76.75

Lstyle ↓ 4.14e−3 2.03e−3 1.67e−3 7.45e−4 7.99e−3 8.76e−4 6.69e−4 3.96e−4

duplicatingPSNR↑ 9.46 12.45 15.43 15.80 11.94 16.02 16.62 17.03

LPIPS↓ 0.759 0.602 0.476 0.438 0.510 0.438 0.421 0.397

FID↓ 242.81 190.02 90.97 89.22 103.23 90.56 86.20 76.64

Lstyle ↓ 4.15e−3 2.03e−3 1.66e−3 7.41e−4 7.94e−3 8.81e−4 6.53e−4 3.97e−4

Style 
inputs   

Label
maps   

Fig. 5. With a slight modification and no further training, our model can perform style
interpolation between exemplar inputs. Note how our model interpolates styles for new
semantics, e.g. “river” in row 3.

the exact same styles. To qualitatively evaluate the performances, we designed
three tasks where the ground-truth image can be obtained: i) duplicating task
self-reconstructs an image using itself as exemplar and its semantic label map
as layout condition, ii) mirroring task reconstructs an image using its mirrored
version as exemplar and the semantic label map as layout condition, iii) retriev-
ing task : requires a model to reconstruct an ground-truth (GT) image using its
semantic label map and a retrieved image from a image pool. To retrieve an
image that best match GT in styles, we first select 20 candidate images from
the image pool that has the greatest label histogram intersections with the GT
image. Afterwards, the best-matched image is select out of candidates using SIFT
Flow [28]. Finally, since the color of GT is different from the retrieved image,
we apply color correction [45] on GT to eliminate color discrepancy. Examples
of GT before and after color correction are shown in the blue box in Fig. 4.
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Implementation Details. We use a COCO-stuff pretrained Deeplab-v2 [5]
model to generate semantic label maps from exemplar images. During training,
we resize images to 512 × 512 then crop two non-overlapping patches of size
256 × 256 to facilitate patch-based cross-reconstruction. After 20 epochs, we
increase the patch size to 384 × 384 for cross-patch reconstruction in order to
improve generalization to global scenes. Details of the patch sampling procedure
are provided in the appendix.

For the MSCA modules from scale 0 to 4, the number of attention maps K
are respectively set to 8, 16, 16, 16, 16. The learning rate is set to 0.0002 for the
generator and the discriminator. The weights of generator are updated every 5
iterations. Our synthesis model and all comparative models based on SPADE
backbone are trained for 40 epochs to generate the results in the experiments.

Before training, we pretrain the spatial-channel attention with a lightweight
feature decoder to improve training efficiency. Specifically, at each scale, the
concatenation of F

(i)
x,1 and F

(i)
c,1 in Sect. 3.3 at each scale is fed into a 1×1 convo-

lutional layer to reconstruct the ground-truth VGG feature at the corresponding
scale. More details of the pretraining procedure is provided in the appendix.

Comparative Methods. We compare our approach with an example-guided
synthesis approach: variational autoencoding SPADE (SPADE VAE) [36] which
is based on a self-reconstruction loss for training. We also trained cI2I [27],
EGSC-IT [32] and SCGAN [41] on COCO-stuff dataset. cI2I and EGSC-IT are orig-
inally designed for exemplar-guided image-to-image translation. As a result, we
observed that cI2I and EGSC-IT have difficulty generating images from one-hot
encoded semantic label maps. However, these models can synthesize reasonable
images from color-encoded semantic label maps. Finally, we note that SCGAN is
not directly applicable to COCO-stuff dataset, as its positive pairs are sampled
from video data. We attempted to modify SCGAN such that its positive pairs can
be generated from our self-supervision task. However, we could not achieve rea-
sonable image outputs. We speculate that the negative sampling and semantic
consistency loss of SCGAN is not optimal for COCO-stuff dataset, as COCO-stuff
dataset contains much larger variations for negative pairs. Finally, four ablation
models are evaluated (see Ablation Study).

Quantitative Evaluation. For quantitative evaluation, we apply PSNR as
the low-level metric. Furthermore, perceptual-level metrics including Percep-
tual Image Patch Similarity Distance (LPIPS) [49], Fréchet Inception Distance
(FID) [14] and style loss (Lstyle) of [9] are evaluated on different methods. The
linearly calibrated VGG model is used to compute LPIPS distance.

Among the four competitive methods (cI2I, EGSC-IT, SPADE VAE and ours
full) in Table 1, our method clearly outperforms the remaining methods both
in low-level and perceptual-level measurements, suggesting that our model can
better preserve color and texture appearances. Also, we observe that without fur-
ther modification, the off-the-shelf example-guided image translation approaches
cannot perform well on image synthesis tasks (cI2I, EGSC-IT). It suggests that
example-guided image-synthesis task can be more challenging. Finally, a simple
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Fig. 6. Left: inputs and outputs of our model. Right: the K = 8 learned spatial and
channel attention that attends and transfer feature between individual exemplar and
target regions. By examining the semantics label maps, we observe the following trans-
formation patterns: sky other � clouds, tree � {tree, hill} for the 1st sample,
and clouds � clouds, snow � sand, other � {surfboard,other} for the 2nd sample.

synthesis model (ours GAP) outperforms SPADE VAE, suggesting that the self-
supervised task in Sect. 3.4 is beneficial to the exampled-guided synthesis task
(see Ablation Study for more details).

Qualitative Evaluation. Figure 4 qualitatively compares our approach against
the remaining approach on four scenes. We observe that our full model gener-
ates more style-consistent results with the exemplar images. In comparisons,
SPADE VAE tends to generate results with low color contrast, as it lacks
the mechanism and supervision to perform region-aware style transformation.
In addition, the existing example-guided image-to-image approaches (cI2I,
EGSC-IT) cannot generalize well to the image synthesis tasks.

Ablation Study. To evaluate the effectiveness of our design, we separately
train four variants of our model: i) our GAP that replaces the MSCA module
with global average pooling, ii) ours MSCA w/o att that keeps MSCA modules
but replaces spatial and channel attention with one-hot label maps from source
and target domains, respectively. In such a way, alignment is performed only
for regions with the same semantic labeling, iii) ours MSCA w/o fm that keeps
MSCA modules but removes the feature masking procedures, and iv) ours MSCA
w/o global that is trained without using global-level self-reconstruction (Eq. 12)
or increased patchsize.

In Table 1, our full model clearly achieves the best qualitative results. In
Fig. 4, ours GAP tends to produce images with deviated colors since it averages
the style features from all exemplar regions. In contrast, our model dynamically
transfers appearance for individual regions. We observe that ours w/o att is
less stable in training and cannot generate plausible results. We suspect that the
label-level alignment generates more misaligned and noisier feature maps, thus
hurting training. ours MSCA w/o fm tends to generate inconsistent colors for
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new semantic labels, for instance, the “hill” and “sky” regions in rows 1 and 2 of
Fig. 4. In contrast, our model can eliminate the undesired influence of exemplar
inputs on new semantic labels. ours MSCA w/o global performs reasonably well
but it tends to generate repetitive local textures, while the self-reconstruction
scheme helps our model generalize better at the global scale.

User Study. We conduct a user study to qualitatively evaluate our method.
Specifically, we retrieve an exemplar image for each testing label map, and ask 20
subjects to choose the most style-consistent results generated by our method and
two competitive baselines (SPADE VAE and ours GAP). To generate samples for
the user study, we first rank the label histogram intersections with each target
scene for all images in the image pool, and use the top 20 percentile images
as exemplars2. The subjects are given unlimited time to make their selections.
For each subject, we randomly generate 100 questions from the dataset. Table 2
shows the evaluation results. First, all subjects strongly favor our results. Second,
ours GAP is favored more than twice over SPADE VAE [36], further suggesting that
the proposed self-supervision scheme is effective since ours GAP is also trained
with self-supervision.

Table 2. User preference study. The numbers indicate the percentage of user who
favors the result generated by different methods. Two com

Methods SPADE VAE [36] Ours GAP Ours full

Choose rate 15.6 29.3 55.0

Effect of Attention. To understand the effect of spatial-channel attention, we
visualize the learned spatial and channel attention in Fig. 6. We observe that:
a) spatial attention can attend to multiple regions of the reference image. For
each reference region, channel attention finds the corresponding target region.
b) spatial-channel attention can detect and utilize the similarities of semantic
labels to facilitate style features transfer. In the first sample of Fig. 6, atten-
tion in channels 1, 4 respectively perform transformations: sky other � clouds,
tree � {tree, hill}. In the second sample, attention in channels 1, 2, 7
respectively perform transformations: clouds � clouds, snow � sand and
other � {surfboard,other}. We provide more analysis on the effect of atten-
tion in the appendix.

Interpolation. We can easily control the synthesized styles in the test stage by
manipulating spatial and channel attentions. First, by manipulating the spatial
attention of two exemplar inputs, our trained model can perform style inter-
polation between the two exemplar. The results are shown in Fig. 5. Next, by
manipulating the channel attention, our trained model can perform spatial style
2 This differs from the typical retrieve task that uses the top-1 image since the top 20

percentile images tend to be more semantically different from the target label maps.
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Fig. 7. With a slight modification and no further training, our model can perform
spatial style interpolation. In this figure, we demonstrate a horizontal gradient style
change on the output image. Please refer to Interpolation, Sect. 4 for more details.

Fig. 8. Given an exemplar patch at the center and the global semantic label map, our
trained model can perform example-guided scene image extrapolation, i.e. generating
style-consistent beyond-the-border images with semantic maps guidance.

interpolation. Figure 7 shows our model can interpolate between two images
and generate horizontally gradient style changes. More details are included in
the appendix.

Extrapolation. Given a scene patch at the center our model can achieve scene
extrapolation, i.e. generating beyond-the-border image content according to the
semantic map guidance. A 512×512 extrapolated image is generated by weighted
combining synthesized 256 × 256 patches at 4 corners and 10 other random
locations. As shown in Fig. 8, our model generates visually plausible extrapo-
lated images, showing the promise of our proposed framework for guided scene
panorama generation.

Style Swapping. Figure 9 shows reference-guided style swapping between
six arbitrary scenes. Our model can generalize across recognizably different
scenes semantics and appearances, including snow, mountain, seashore, grass-
land, dessert, artistic effect, and synthesize image with reasonable and consis-
tent styles. More results and comparisons to other approaches are included in
the appendix.
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Fig. 9. Style-structure swapping on 6 arbitrary scenes at resolution 256 × 256. Our
model can generalize across recognizably different scenes of different semantics. Note
that the images along the diagonal (red boxes) are self-reconstruction (Color figure
online)

5 Conclusion

We propose to address a challenging example-guided image synthesis task
between semantically very different scenes. To propagate information between
two structurally unaligned and semantically different scenes, we propose an
MSCA module that leverages decoupled cross-attention for adaptive correspon-
dence modeling. With MSCA, we propose a unified model for joint global-
local alignment and image synthesis. We further propose a patch-based self-
supervision scheme that enables training. Experiments on the COCO-stuff
dataset show significant improvements over the existing methods. Furthermore,
our approach provides interpretability and can be extended to other content
manipulation tasks.
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