
A Differentiable Recurrent Surface
for Asynchronous Event-Based Data

Marco Cannici(B), Marco Ciccone, Andrea Romanoni, and Matteo Matteucci

Politecnico di Milano, Milan, Italy
{marco.cannici,marco.ciccone,andrea.romanoni,matteo.matteucci}@polimi.it

Abstract. Dynamic Vision Sensors (DVSs) asynchronously stream
events in correspondence of pixels subject to brightness changes. Dif-
ferently from classic vision devices, they produce a sparse representation
of the scene. Therefore, to apply standard computer vision algorithms,
events need to be integrated into a frame or event-surface. This is usually
attained through hand-crafted grids that reconstruct the frame using ad-
hoc heuristics. In this paper, we propose Matrix-LSTM, a grid of Long
Short-Term Memory (LSTM) cells that efficiently process events and
learn end-to-end task-dependent event-surfaces. Compared to existing
reconstruction approaches, our learned event-surface shows good flex-
ibility and expressiveness on optical flow estimation on the MVSEC
benchmark and it improves the state-of-the-art of event-based object
classification on the N-Cars dataset.

Keywords: Event-based vision · Representation learning · LSTM ·
Classification · Optical flow

1 Introduction

Event-based cameras, such as dynamic vision sensors (DVSs) [2,17,25,29], are
bio-inspired devices that attempt to emulate the efficient data-driven commu-
nication mechanisms of the brain. Unlike conventional frame-based active pixel
sensors (APS), which capture the scene at a predefined and constant frame-
rate, these devices are composed of independent pixels that output sequences of
asynchronous events, efficiently encoding pixel-level brightness changes caused
by moving objects. This results in a sensor having a very high dynamic range
(>120 dB) and high temporal resolution (in the order of microseconds), matched
with low power consumption and minimal delay. All these characteristics are
key features in challenging scenarios involving fast movements (e.g., drones or

A. Romanoni—Work done prior to Amazon involvement of the author and does not
reflect views of the Amazon company.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58565-5 9) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12365, pp. 136–152, 2020.
https://doi.org/10.1007/978-3-030-58565-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58565-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-58565-5_9
https://doi.org/10.1007/978-3-030-58565-5_9
https://doi.org/10.1007/978-3-030-58565-5_9

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 137

moving cars), and abrupt brightness changes (e.g., when exiting a dark tun-
nel in a car). However, novel methods and hardware architectures need to be
specifically designed to exploit these advantages and leverage their potential in
complex tasks. Event-cameras only provide a timed sequence of changes that is
not directly compatible with computer vision systems which typically work on
frames.

Driven by the great success of frame-based deep learning architectures, that
learn representations directly from standard APS signals, research in event-based
processing is now focusing on how to effectively aggregate event information in
grid-based representations which can be directly used, for instance, by convolu-
tional deep learning models. Nevertheless, finding the best mechanism to extract
information from event streams is not trivial. Multiple solutions have indeed
emerged during the past few years, mostly employing hand-crafted mechanisms
to accumulate events. Examples of such representations are mechanisms rely-
ing on exponential [6,15,31] and linear [4,6] decays, “event-surfaces” storing
the timestamp of the last received event in each pixel and extensions of such
mechanism making use of memory cells [31] and voxel-grids [26,36].

Only very recently deep learning techniques have been applied to learn such
surfaces in a data-driven manner [10]. In this paper, we focus on this recent
trend in event-based processing, and propose a mechanism to efficiently apply
a Long Short-Term Memory (LSTM) network [12] as a convolutional filter over
the 2D stream of events in order to accumulate pixel information through time
and build 2D event representations. The reconstruction mechanism is end-to-
end differentiable, meaning that it can be jointly trained with state-of-the-art
frame-based architectures to learn event-surfaces specifically tailored for the task
at hand. Most importantly, the mechanism specifically focuses on preserving
sparsity during computation, enabling the reconstruction process to only focus
on pixels receiving events and without requiring events to be densified in a
dense tensor during the intermediate feature extraction steps, process that is
otherwise necessary when applying standard computer vision approaches, such
as ConvLSTM [30], in most of the cases.

Substituting hand-crafted event-surfaces with our trainable layer in state-of-
the-art architectures improves their performance substantially without requiring
particular effort in hyper-parameter tuning, enabling researchers to exploit event
information effectively. The contributions of the paper are summarized as follows:

– We propose Matrix-LSTM, a task-independent mechanism to extract grid-like
event representations from asynchronous streams of events. The framework
is end-to-end differentiable, it can be used as input of any existing frame-
based state-of-the-art architecture and jointly trained to extract the best
representation from the events.

– Replacing input representations with a Matrix-LSTM layer in existing archi-
tectures, we show that it improves the state-of-the-art on event-based object
classification on N-CARS [31] by 3.3% and performs better than hand-crafted
features on N-Caltech101 [23]. Finally, it improves optical flow estimation on

138 M. Cannici et al.

the MVSEC benchmark [37] up to 30.76% over hand-crafted features [37] and
up to 23.07% over end-to-end differentiable ones [10].

– We developed custom CUDA kernels, both in PyTorch [32] and Tensor-
Flow [1], to efficiently aggregate events by position and perform a convolution-
like operation on the stream of events using an LSTM as a convolutional
filter1.

2 Related Work

Event cameras provide outstanding advantages over ordinary devices in terms
of time resolution and dynamic range. However, their potentialities are still
unlocked, mainly due to the difficulty of building good representations from
a sparser, asynchronous and much more rough source of information compared
to frame-based data. In this section, we give a brief overview of related works,
focusing on representations for event-based data and highlighting the differences
and similarities with our work. We refer the reader to [8] for a thorough overview.

Hand-Crafted Representations. Several hand-crafted event representations
have been proposed over the years, ranging from biologically inspired, such as
those used in Spiking Neural Networks [19], to more structured ones. Recently,
the concept of time-surface was introduced [15,20], in which 2D surfaces are
obtained by keeping track of the timestamp of the last event occurred in each
location and by associating each event with features computed applying expo-
nential kernels on the surface. An extension of these methods, called HATS [31],
employs memory cells that retain temporal information from past events. Instead
of building the surface using just the last event, too sensitive to noise, HATS
uses a fixed-length memory. Histograms are then extracted from the surface and
a SVM classifier is finally used for prediction. The use of a memory to compute
the event-surface closely relates HATS with the solution presented in this paper.
Crucially, the accumulation procedure employed in HATS is hand-crafted, while
our work is end-to-end trainable thanks to a grid of LSTM cells [12], which
enable to learn a better accumulation strategy directly from data.

In [36], the authors propose the EV-FlowNet network for optical flow esti-
mation together with a new time-surface variant. Events of different polari-
ties are kept separate to build a four-channel grid containing the number of
events occurred in each location besides temporal information. A similar rep-
resentation has also been used in [34]. To improve the temporal resolution of
such representations, [38] suggests to discretize time into consecutive bins and
accumulate events into a voxel-grid through a linearly weighted accumulation
similar to bilinear interpolation. A similar time discretization has also been
used in Events-to-Video [26], where the event representation is used within a
recurrent-convolutional architecture to produce realistic video reconstructions of
event sequences. Despite being slower, the quality of reconstructed frames closely

1 Code available at https://marcocannici.github.io/matrixlstm.

https://marcocannici.github.io/matrixlstm

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 139

resembles actual gray-scale frames, allowing the method to take full advantage
from transferring feature representations trained on natural images.

End-to-End Representations. Most closely related to the current work, [10]
learns a dense representation end-to-end directly from raw events. A multi-layer
perceptron (MLP) is used to implement a trilinear filter that produces a voxel-
grid of temporal features. The event time information of each event is encoded
using the MLP network and the value obtained from events occurring in the
same spatial location are summed up together to build the final feature. A
look-up table is then used, after training, to speed-up the procedure. Events
are processed independently as elements of a set, disregarding their sequential-
ity and preventing the network to modulate the information based on previous
events. Our method, instead, by leveraging the memory mechanism of LSTM
cells, can integrate information conditioned on the current state and can decide
how much each event is relevant to perform the task, and how much information
to retain from past events. A recent trend in event-based processing is studying
mechanisms that do not require to construct intermediate explicit dense rep-
resentations to perform the task at hand [3,28,33]. Among these, [22] uses a
variant of the LSTM network, called PhasedLSTM, to learn the precise timings
of events. While it integrates the events sequentially as in our work, PhasedL-
STM employs a single cell on the entire stream of events and can be used only
on very simple tasks [5]. The model, indeed, does not maintain the input spatial
structure and condenses the 2D stream of events into a single feature vector,
preventing the network to be used as input to standard CNNs. Finally, although
it has never been adopted with event-based cameras, we also mention here the
ConvLSTM [30] network, a convolutional variant of the LSTM that has previ-
ously been applied on several end-to-end prediction tasks. Despite its similarity
with our method, since both implement the notion of convolution to LSTM cells,
ConvLSTM is not straightforward to apply to sparse event-based streams and
requires the input to be densified into frames before processing. This involves
building very sparse frames of simultaneous events, mostly filled with padding,
or dense frames containing uncorrelated events. Our formulation, instead, pre-
serves sparsity during computation and does not require events to be densified,
even when large receptive fields are considered.

3 Method

Event-based cameras are vision sensors composed of pixels able to work indepen-
dently. Each pixel has its own exposure time and it is free to fire independently
by producing an event as soon as it detects a significant change in brightness.
Unlike conventional devices, no rolling shutter is used, instead, an asynchronous
stream of events is generated describing what has changed in the scene. Each
event ei is a tuple ei = (xi, yi, ti, pi) specifying the time ti, the location (x, y)i

(within a H × W space) and the polarity pi ∈ {−1, 1} of the change (bright-
ness increase or decrease). Therefore, given a time interval τ (i.e., the sample
length), the set of events produced by the camera can be described as a sequence

140 M. Cannici et al.

Fig. 1. Overview of Matrix-LSTM (figure adapted from [22]). Events in each pixel are

first associated to a set of features f
(x,y)
i , and then processed by the LSTM. The last

output, s
(x,y)
T , is finally used to construct SE . GroupByPixel is shown here on a single

sample (N = 1) highlighting a 2 × 2 pixel region. Colors refer to pixel locations while
intensity indicates time. For clarity, the features dimension is not shown in the figure
(Color figure online)

E = {(xi, yi, ti, pi) | ti ∈ τ}, ordered by the event timestamp. In principle, mul-
tiple events could be generated at the same timestamp. However, the grid repre-
sentation of the events at a fixed timestamp t is likely to be very sparse, hence,
an integrating procedure is necessary to reconstruct a dense representation SE
before being processed by conventional frame-based algorithms.

Note that, in this work, we do not aim to reconstruct a frame that resem-
bles the actual scene, such as a grey-scale or RGB image [26,27], but instead
to extract task-aware features regardless of their appearance. In the following,
“surface”, “reconstruction” and “representation” are used with this meaning.

3.1 Matrix-LSTM

Analogously to [10], our goal is to learn end-to-end a fully parametric mapping
M : E → SE ∈ R

H×W×C , between the event sequence and the corresponding
dense representation, providing the best features for the task to optimize.

In this work, we propose to implement M as an H × W matrix of LSTM
cells [12] (see Fig. 1). Let’s define the ordered sequence of events E(x,y) produced
by the pixel (x, y) during interval τ as E(x,y) = {(xi, yi, ti, pi) | ti ∈ τ, xi = x, yi =
y} ⊂ E , and its length as T (x,y) = |E(x,y)|, which may potentially be different for
each location (x, y). A set of features f

(x,y)
i ∈ R

F is first computed for each event
occurring at location (x, y), typically the polarity and one or multiple temporal
features (see Sect. 4). At each location (x, y), an LSTM (x,y) cell then processes
these features asynchronously, keeping track of the current integration state and
condensing all events into a single output vector s(x,y) ∈ R

C . In particular, at
each time t, the LSTM (x,y) cell produces an intermediate representation s

(x,y)
t .

Once all the events are processed, the last output of the LSTM cell compresses
the dynamics of the entire sequence E(x,y) into a fixed-length vector s

(x,y)
T that

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 141

can be used as pixel feature (here we dropped the superscript (x,y) from T for
readability). The final surface SE is finally built by collecting all LSTMs final
outputs s

(x,y)
T into a dense tensor of shape H × W × C. A fixed all-zeros output

is used where the set of events E(x,y) is empty.

Temporal Bins. Taking inspiration from previous methods [10,26,38] that dis-
cretize time into temporal bins, we also propose a variant of Matrix-LSTM
that operates on successive time windows. Given a fixed number of bins B,
the original event sequence is split into B consecutive windows Eτ1 , Eτ2 , . . . , EτB .
Each sequence is processed independently, i.e., the output of each LSTM at
the end of each interval is used to construct a surface SEb

and the LSTMs
state is re-initialized before the next sub-sequence starts. This gives rise of B
different reconstructions SEb

that are concatenated to form the final surface
SE ∈ R

H×W×B·C . In this formulation, the LSTM input features f
(x,y)
i usually

contain both global temporal features (i.e., w.r.t. the original uncut sequence)
and relative features (i.e., the event position in the sub-sequence). Although
LSTMs should be able to retain memory over very long periods, we found that
discretizing time into intervals helps , especially in tasks requiring precise time
information such as optical flow estimation (see Sect. 4.2). A self-attention mod-
ule [13] is then optionally applied on the reconstructed surface to correlate inter-
vals (see Sect. 4.1).

Parameters Sharing. Inspired by the convolution operation defined on images,
we designed Matrix-LSTM to enjoy translation invariance. This is implemented
by sharing the parameters across all the LSTM cells, as in a convolutional kernel.
Sharing parameters not only drastically reduces the number of parameters in the
network, but it also allows us to transfer a learned transformation to higher or
lower resolutions as in fully-convolutional networks [18].

We highlight that such an interpretation of the Matrix-LSTM functioning
also fits the framework proposed in [10], in which popular event densification
mechanisms are rephrased as kernel convolutions on the event field, i.e., a dis-
cretized four-dimensional manifold spanning x and y, and the time and polarity
dimensions. We finally report that this formulation is equivalent to a 1× 1 Con-
vLSTM [30] applied on a dense tensor where events are stacked in pixel locations
by arrival order. However, as reported in Sect. 4.1, this formulation has better
space and time performance on sparse event sequences. Moreover, in the next
section, an extension to larger receptive fields with better accuracy performance
on asynchronous event data compared to ConvLSTM, is also proposed.

Receptive Field Size. As in a conventional convolution operation, Matrix-
LSTM can be convolved on the input space using different strides and kernel
dimensions. In particular, given a receptive field of size KH×KW , each LSTM cell
processes a local neighborhood of asynchronous events E(x,y) = {(xi, yi, ti, pi) |
ti ∈ τ, |x − xi| < KW − 1, |y − yi| < KH − 1}. Events features are computed
as in the original formulation, however, an additional coordinate feature (px, py)
is also added specifying the relative position of each event within the receptive
field. Coordinate features are range-normalized in such a way that an event

142 M. Cannici et al.

occurring in the top-left pixel of the receptive field has feature (0, 0), whereas one
occurring in the bottom-right position has features (1, 1). Events belonging to
multiple receptive fields (e.g., when the LSTM is convolved with a stride 1×1 and
receptive field greater then 1 × 1) are processed multiple times, independently.

Implementation. The convolution-like operation described in the previous
section can be implemented efficiently by means of two carefully designed event
grouping operations. Rather than replicating the LSTM unit multiple times
on each spatial location, a single recurrent unit is applied over different E(x,y)

sequences in parallel. This requires a reshape operation, i.e., groupByPixel, that
splits events based on their pixel location maintaining the events relative ordering
within each sub-sequence. A similar procedure, i.e., groupByTime, is employed to
efficiently split events into consecutive temporal windows without making use of
expensive masking operations. An example of the groupByPixel operation is pro-
vided in Fig. 1 while implementation details of both operations, implemented as
custom CUDA kernels, are provided in the supplementary materials. We finally
highlight that these operations are not specific to Matrix-LSTM, since group-
ing events by pixel index is a common operation in event-based processing, and
could indeed benefit other implementations making use of GPUs.

4 Evaluation

We test the proposed mechanism on two different tasks: object classification
(see Sect. 4.1) and optical flow estimation (see Sect. 4.2), where the network is
required to extract effective temporal features. We evaluated the goodness of
Matrix-LSTM features indirectly: a state-of-the-art architecture is taken as a
reference and the proposed method is evaluated in terms of the gain in perfor-
mance obtained by replacing the network representation with a Matrix-LSTM.

4.1 Object Classification

We evaluated the model on the classification task using two publicly avail-
able event-based collections, namely the N-Cars [31] and the N-Caltech101 [23]
datasets, which represent to date the most complex benchmarks for event-based
classification. N-Cars is a collection of urban scenes recordings (lasting 100ms
each) captured with a DVS sensor and showing two object categories: cars and
urban background. The dataset comes already split into 7, 940 car and 7, 482
background training samples, and 4, 396 car and 4, 211 background testing sam-
ples. The N-Caltech101 collection is an event-based conversion of the popular
Caltech-101 [16] dataset obtained by moving an event-based camera in front of a
still monitor showing one of the original RGB images. Like the original version,
the dataset contains objects from 101 classes distributed amongst 8, 246 samples.

Network Architectures. We used two network configurations to test Matrix-
LSTM on both datasets, namely the classifier used in Events-to-Video [26],
and the one used to evaluate the EST [10] reconstruction. Both are based on

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 143

Table 1. Results on N-Cars: (a) ResNet18–Ev2Vid, variable time encoding, and nor-
malization; (b) ResNet18–EST, variable time encoding and number of bins

ResNet

Norm
ts absolute ts relative delay relative

� 95.22 ± 0.41% 94.77 ± 1.01% 95.40 ± 0.59%

95.75 ± 0.27% 95.32 ± 0.85% 95.80 ± 0.53%

(a)

1 bin 2 bins 9 bins

delay
glob+loc - 92.68 ± 1.23% 92.32 ± 1.02%

local 92.64 ± 1.21% 92.35 ± 0.83% 92.67 ± 0.90%

ts
ts glob+loc - 93.46 ± 0.84% 93.21 ± 0.49%

local 92.65 ± 0.78% 92.75 ± 1.38% 93.12 ± 0.68%

(b)

ResNet [11] backbones and pre-trained on ImageNet [7]. Events-to-Video [26]
uses a ResNet18 configuration maintaining the first 3 channels convolution (since
reconstructed images are RGB) while adding an extra fully-connected layer to
account for the different number of classes in both N-Calthec101 and N-Cars (we
refer to this configuration as ResNet–Ev2Vid). EST [10] instead uses a ResNet34
backbone and replaces both the first and last layers respectively, with a convo-
lution matching the input features, and a fully-connected layer with the proper
number of neurons (we refer to this configuration as ResNet–EST).

To perform a fair comparison we replicated the two settings, using the same
number of channels in the event representation (although we also tried different
channel values) and data augmentation procedures (random horizontal flips and
crops of 224 × 224 pixels). We perform early stopping on a validation set in all
experiments, using 20% of the training on N-Cars and using the splits provided
by the EST official code repository [9] for N-Caltech101. ADAM [14] was used
as optimizer for all experiments with a learning rate of 10−4. Finally, we use a
batch size of 64 and a constant learning rate on N-Cars in both configurations.
On N-Caltech101, instead, we use a batch size of 16 while decaying the learning
rate by a factor of 0.8 after each epoch when testing on ResNet–Ev2Vid, and a
batch size of 100 with no decay with the ResNet–EST setup. Finally, to perform
a robust evaluation, we compute the mean and standard deviation values using
five different seeds in all the experiments reported in this section.

Results. The empirical evaluation is organized as it follows for both ResNet–
Ev2Vid and ResNet–EST. We always perform hyper-parameters search using
ResNet18 on N-Cars, being faster to train and thus allowing to explore a larger
parameter space. We then select the best configuration to train the remaining
architectures, i.e., ResNet34 on N-Cars and both variants on N-Caltech101.

Matrix-LSTM + ResNet-Ev2Vid. We start out with the ResNet–Ev2Vid
baseline (setting up the Matrix-LSTM to output 3 channels) by identifying the
optimal time feature to provide as input to the LSTM, as reported in Table 1a.
We distinguish between ts and delay features and between absolute and relative
scope. The first distinction refers to the type of time encoding, i.e., the timestamp
of each event in the case of ts feature, or the delay between an event and the
previous one in case of delay. Time features are always range-normalized between
0 and 1, with the scope distinction differentiating if the normalization takes place
before splitting events into pixels (absolute feature) or after (relative feature).

144 M. Cannici et al.

Table 2. Results on N-Cars with ResNet18–EST: (a) polarity + global ts + local ts
encoding, optional SELayer and variable number of bins; (b) polarity + global ts +
local ts encoding, SELayer and variable number of channels

SE 2 bins 4 bins 9 bins 16 bins

93.46 ± 0.84% 92.68 ± 0.62% 93.21 ± 0, 49% 92.01 ± 0.45%

� 93.71 ± 0.93% 92.90 ± 0.62% 93.30 ± 0, 47% 92.44 ± 0.43%

(a)

Channels

bins 4 8 16

1 93.88 ± 0.87% 93.60 ± 0.30% 94.37 ± 0.40%

2 93.05 ± 0.92% 93.97 ± 0.52% 94.09 ± 0.29%

bins 4 7 8

9 92.42 ± 0.65% 93.56 ± 0.46% 93.49 ± 0.84%

(b)

In the case of ts, absolute means that the first and last events in the sequence
have time feature 0 and 1, respectively, regardless of their position, whereas
relative means that the previous condition holds for each position (x, y). Note
that we only consider relative delays since it is only meaningful to compute them
between events of the same pixel. Finally, we always add the polarity, obtaining
a 2-value feature f

(x,y)
i . Delay relative and ts absolute are those providing the

best results, with ts relative having higher variance. We select delay relative as
the best configuration. In Table 1a we also show the effect of applying the same
frame normalization used while pre-training the ResNet backbone on ImageNet
al.so to the Matrix-LSTM output. While performing normalization makes sense
when training images are very similar to those used in pre-training, as in Events-
to-Video [26], we found out that in our case, where no constraint is imposed on
the appearance of reconstructions, this does not improve the performance.

Matrix-LSTM + ResNet-EST. We continue the experiments on N-Cars by
considering ResNet–EST as baseline, where we explore the effect of using bins,
i.e., intervals, on the quality of Matrix-LSTM surfaces. Since multiple intervals
are involved, we distinguish between global and local temporal features. The first
type is computed on the original sequence E , before splitting events into intervals,
whereas the latter locally, within the interval scope Eτb . For local features we
consider the best options we identified on ResNet-Ev2Vid, namely delay relative
and ts absolute, while we only consider ts as global feature since a global delay
loses meaning after interval splitting. Results are reported in Table 1b where
values for single bin are missing since there is no distinction between global and
local scope. Adding a global feature consistently improves performance. This can
indeed help the LSTM network in performing integration conditioned on a global
timescale and thus enabling the extraction of temporal consistent features. We
use global ts + local ts features in next experiments, since this provides better
performance and reduced variance, and always add the polarity feature.

The next set of experiments was designed to select the optimal number of
bins, searching for the best B = 2, 4, 9, 16 as done in EST, while using a fixed
polarity + global ts + local ts configuration. In these experiments, we also make
use of the SELayer [13], a self-attention operation specifically designed to corre-
late channels. Being the number of channels limited, we always use a reduction
factor of 1. Please refer to the paper [13] for more details. As reported in Table 2a,
adding the layer consistently improves performance. We explain this by noticing

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 145

3x3 5x5

Matrix-LSTM
delay rel 95.05± 0.96% 93.38± 0.64%
ts abs 94.92± 0.74% 94.34± 0.94%

ConvLSTM
delay rel 92.33± 0.41% 92.65± 0.78%
ts abs 93.97± 1.30% 93.61± 1.59%

(a)
1 4 16 64 256

−40

−20

0

20

40

60

80

100

batch size

R
el
at
iv
e
im

pr
ov
em

en
t
[%

]

fw space
bw space
fw time
bw time

(b)

Fig. 2. (a) Comparison between Matrix-LSTM and ConvLSTM on N-Cars. (b) Space
and time relative improvements of Matrix-LSTM over ConvLSTM as a function of
input density (from 10% to 100% with 30% steps). Colors refer to different density,
from low density (dark colors) to high density (light colors) (Color figure online)

that surfaces computed on successive intervals are naturally correlated and, thus,
explicitly modeling this behavior helps in extracting richer features. Finally, we
perform the last set of experiments to select the Matrix-LSTM hidden size (which
also controls the number of output channels). Results are reported in Table 2b.
Note that we only consider 4, 7, 8 channels with 9 bins to limit the total number
of channels after concatenation.

Matrix-LSTM vs. ConvLSTM. In Table 2a we compare Matrix-LSTM with
ConvLSTM [30] for different choices of kernel size on the N-Cars [31] dataset
using the Ev2Vid–ResNet18 backbone. When using ConvLSTM, events are den-
sified in a volume Ẽdense of shape N × T

(x,y)
max × H × W × F . Matrix-LSTM

performs better on all configurations, despite achieving worst performance than
the 1 × 1 Matrix-LSTM best configuration in Table 1a. Event surfaces produced
by the Matrix-LSTM layer are indeed more blurry with larger receptive fields
and this may prevent the subsequent ResNet backbone from extracting effective
features. Using a 1 × 1 kernel enables to focus on temporal information while
the subsequent convolutional layers deal with spatial correlation.

ConvLSTM, instead, does not properly handle asynchronous data when large
receptive fields are considered, and this may explains the performance difference
with Matrix-LSTM. Indeed, since pixels at different locations most often fire at
different times and with different frequencies, the Ẽdense[n, i, :, :, :] slice processed
by the ConvLSTM in each iteration does not contain all simultaneous events.
Using a large ConvLSTM receptive field means to compare a neighborhood of
events occurred at different timestamps and therefore not necessarily correlated.
Contrary to ConvLSTM, Matrix-LSTM allows for a greater flexibility when large
receptive fields are considered since the original events arrival order is preserved
and we do not require events to be densified during intermediate steps. We do not
compare the two LSTMs on the 1 × 1 configuration since, when using Ẽdense as
input to ConvLSTM, the two configurations compute the same transformation,

146 M. Cannici et al.

despite ConvLSTM having to process more padded values. The two settings are
indeed computationally equivalent only in the worst case in which all pixels in
the batch happen to receive at least one event (i.e., P = N · H · W).

The 1 × 1 configurations are compared in terms of space and time efficiency
in Fig. 2b. We use the two layers to extract a 224 × 224 frame from artificially
generated events with increasing density, i.e., the ratio of pixels receiving at least
one event. The reconstruction is performed using PyTorch [32] on a 12 GB Titan
Xp, by varying the batch size, the LSTM hidden size and the number of events
in each active pixel (starting from 1 and increasing by a factor of 2 for the hidden
size, while increasing by a factor of 10 for the number of events, until allowed
by GPU memory constraints). We compute the relative improvement of Matrix-
LSTM in terms of sample reconstruction time and peak processing space (i.e.,
excluding model and input space) during both forward and backward passes,
and finally aggregate the results by batch size computing the mean improvement
over all the trials. Matrix-LSTM performs better than ConvLSTM on prediction
time, with the time efficiency improving as the batch size increases, while worst
than ConvLSTM on memory efficiency in very dense surfaces (>70% density).
However, this situation is quite uncommon in event-cameras since they only
generate events when brightness changes are detected. Uniform parts of the
scene that remain unchanged, despite the camera movement, do not appear in
the event stream. For instance, the background sky and road in MVSEC [37]
make outdoor day sequences only have an average 10% of active pixels.

Discussion. Results of the top performing configurations for both ResNet-
Ev2Vid and ResNet-EST variants on both N-Cars and N-Caltech101 are
reported in Table 3. We use relative delay with ResNet-Ev2Vid and global ts
+ local ts with ResNet-EST. Through an extensive evaluation, we show that
using Matrix-LSTM representation as input to the baseline networks and train-
ing them jointly improves performance by a good margin. Indeed, using the
ResNet34-Ev2Vid setup, our solution sets a new state-of-the-art on N-Cars,
even surpassing the Events-to-Video model that was trained to extract real-
istic reconstructions. The same does not happen on N-Caltech101, whose perfor-
mance usually greatly depends on pre-training also on the original image-based
version, and where Events-to-Video has therefore advantage. Despite this, our
model only performs 0.9% worse than the baseline. On the ResNet-EST configu-
ration, the model performs consistently better on N-Cars, while slightly worse on
N-Caltech101 on most configurations. However, we remark that search for the
best configuration was indeed performed on N-Cars, while a hyper-parameter
search directly performed on N-Caltech101 would have probably lead to better
results.

4.2 Optical Flow Prediction

For the evaluation of optical flow prediction we used the MVSEC [37] suite.
Fusing event-data with lidar, IMU, motion capture and GPS sources, MVSEC
is the first event-based dataset to provide a solid benchmark in real urban con-
ditions. The dataset provides ground truth information for depth and vehicle

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 147

Table 3. Matrix-LSTM best configurations compared to state-of-the-art

Method Classifier Channels (bins) N-Cars N-Caltech101

H-First [24] Spike-based - 56.1 0.54

HOTS [15] Histogram similarity - 62.4 21.0

Gabor-SNN [31] SVM - 78.9 19.6

HATS [31] SVM - 90.2 64.2

ResNet34–EST [10] - 90.9 69.1

ResNet18–Ev2Vid [26] - 90.4 70.0

Ev2Vid [26] ResNet18–Ev2Vid 3 91.0 86.6

Matrix-LSTM (Ours) ResNet18–Ev2Vid 3 (1) 95.80± 0.53 84.12± 0.84

ResNet34–Ev2Vid 3 (1) 95.65± 0.46 85.72± 0.37

EST [10] ResNet34–EST 2 (9) 92.5 81.7

ResNet34–EST 2 (16) 92.3 83.7

Matrix-LSTM (Ours) ResNet18–EST 16 (1) 94.37± 0.40 81.24± 1.31

ResNet34–EST 16 (1) 94.31± 0.43 78.98± 0.54

ResNet18–EST 16 (2) 94.09± 0.29 83.42± 0.80

ResNet34–EST 16 (2) 94.31± 0.44 80.45± 0.55

ResNet18–EST 2 (16) 92.58± 0.68 84.31± 0.59

ResNet34–EST 2 (16) 92.15± 0.73 83.50± 1.24

pose and was later extended in [36] with optical flow information extracted from
depth-maps. The dataset has been recorded on a range of different vehicles and
features both indoor and outdoor scenarios and different lighting conditions.

Network Architecture. We used the EV-FlowNet [36] architecture as reference
model. To perform a fair comparison between Matrix-LSTM and the original
hand-crafted features, we built our model on top of its publicly available code-
base [35]. The code contains few minor upgrades over the paper version, which
we made sure to remove as reported in the supplementary materials.

The original network uses a 4-channels event-surface, collecting in pairs of
separate channels based on the event polarity, the timestamp of the most recent
event, and the number of events occurred in every spatial location. We replaced
this representation with a Matrix-LSTM making use of 4 output channels, as
well. We trained the model on the outdoor day1 and outdoor day2 sequences
for 300, 000 iterations, as in the original paper. We used the ADAM optimizer
with batch size 8, and an initial learning rate of 10−5, exponentially decayed
every 4 epochs by a factor of 0.8. We noticed that EV-FlowNet is quite unstable
at higher learning rates, while Matrix-LSTM could benefit from larger rates, so
we multiply its learning rate, i.e., the Matrix-LSTM gradients, by a factor of
10 during training. Test was performed on a separate set of recordings, namely
indoor flying1, indoor flying2 and indoor flying3, which are visually different
from the training data. The network performance is measured in terms of average
endpoint error (AEE), defined as the distance between the endpoints of the
predicted and ground truth flow vectors. In addition, as proposed in the KITTI
benchmark [21] and as done in [36], we report the percentage of outliers, namely
points with endpoint error greater than 3 pixels and 5% of the magnitude ground

148 M. Cannici et al.

truth vector. Finally, following the procedure used in [36], we only report the
error computed in spatial locations where at least one event was generated.

Table 4. Optical flow estimation on MVSEC

Method indoor flying1 indoor flying2 indoor flying3

AEE %Outlier AEE %Outlier AEE %Outlier

Two-Channel Image [20] 1.21 4.49 2.03 22.8 1.84 17.7

EV-FlowNet [36] 1.03 2.20 1.72 15.1 1.53 11.9

Voxel Grid [38] 0.96 1.47 1.65 14.6 1.45 11.4

EST [10] Exp. kernel 0.96 1.27 1.58 10.5 1.40 9.44

Learnt kernel 0.97 0.91 1.38 8.20 1.43 6.47

Matrix-LSTM (Ours) 1 bin 1.017 2.071 1.642 13.88 1.432 10.44

2 bins 0.829 0.471 1.194 5.341 1.083 4.390

4 bins 0.969 1.781 1.505 11.63 1.507 12.97

8 bins 0.881 0.672 1.292 6.594 1.181 5.389

2 bins + SELayer 0.821 0.534 1.191 5.590 1.077 4.805

Results. In the previous classification experiments, we observed that the type
of temporal features and the number of bins play an important role in extracting
effective representations. We expect time resolution to be a key factor of perfor-
mance in optical flow, hence, we focus here on measuring how different interval
choices impact on the flow prediction. We decided to always use the polarity +
global ts + local ts configuration, which worked well on N-Cars while considering
different bin setups. Results are reported in Table 4.

As performed on classification, we study the effect of adding a SELayer on
the best performing configuration. Correlating the intervals slightly improves
the AEE metric in all test sequences but increases the number of outliers. As
expected, varying the number of bins has a great impact on performance. The
AEE metric, indeed, greatly reduces by simply considering two intervals instead
of one. Interestingly, we achieved the best performance by considering only
2 intervals, as adding more bins hurts performance. We believe this behavior
resides on the nature of optical flow prediction, where the network is implicitly
asked to compare two distinct temporal instants. This configuration consistently
improves the baseline up to 30.76% on indoor flying2, highlighting the capability
of the Matrix-LSTM to adapt also to low-level tasks.

4.3 Time Performance Analysis

We compared the time performance of Matrix-LSTM with other event repre-
sentations following EST [10] and HATS [31] evaluation procedure. In Table 3b
we report the time required to compute features on a sample averaged over
the whole N-Cars training dataset for both ResNet–Ev2Vid and ResNet–EST
configurations. Our surface achieves similar time performance than both HATS
and EST, performing only ∼2 ms slower than EST on the same setting (9 bins

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 149

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

latency (ms)

A
cc
ur
ac
y

HATS [31]
Gabor-SNN [31]
HOTS [15]
Matrix-LSTM delay
Matrix-LSTM delay + aug.

(a)

Method Bins Channels Asynch.
Time
[ms]

Speed
[kEV/s]

Gabor-SNN [31] - - Yes 285.95 14.15
HOTS [15] - - Yes 157.57 25.68
HATS [31] - - Yes 7.28 555.74
EST [10] 9 2 No 6.26 632.9

Matrix-LSTM
(Ours)

1 3 No 10.89 385.7
9 2 No 8.25 468.36

(b)

Mean reconstruction time (on GPU) [ms]
Bins Ev-FlowNet [36] surf. EST [10] Matrix-LSTM
1 2.53± 2.74 3.62± 2.35 3.20± 0.97
2 2.01± 1.22 3.94± 1.47 5.18± 1.68
9 2.04± 1.20 9.09± 1.96 4.92± 1.47

(c)

Fig. 3. (a) Accuracy as a function of latency (adapted from [31]). (b) Average sample
computation time on N-Cars and number of events processed per second. (c) Average
time to reconstruct the event surface in MVSEC test sequences

and 2 channels). Similarly, in Table 3c, we compute the mean surface recon-
struct time for MVSEC indoor flying test sequences. While EST can exploit
parallel batch computation of events within the same sample, since each event
feature is processed independently, Matrix-LSTM relies on sequential computa-
tion to reconstruct the surface. The custom CUDA kernels we designed, however,
enable bins and pixel sequences to be processed in parallel, drastically reducing
the processing time. Please, refer to the additional materials for more details.
All evaluations are performed with PyTorch on a GeForce GTX 1080Ti GPU.

In Fig. 3a we analyze the accuracy-vs-latency trade-off on the N-Cars dataset,
as proposed in [31], using the ResNet18-Ev2Vid configuration. While the perfor-
mance of the model, trained on 100 ms sequences, significantly drops when very
few milliseconds of events are considered, the proposed method still shows good
generalization, achieving better performance than the baselines when more than
20 ms of events are used. However, fixing the performance loss on small latencies
is just a matter of training augmentation: by randomly cropping sequences to
variable lengths (from 5 ms to 100 ms), our method consistently improves the
baselines, dynamically adapting to sequences of different lengths.

5 Conclusion

We proposed Matrix-LSTM, an effective method for learning dense event repre-
sentations from event-based data. By modeling the reconstruction with a spa-
tially shared LSTM we obtained a fully differentiable procedure that can be
trained end-to-end to extract the event representation that best fits the task at
hand. Focusing on efficiently handling asynchronous data, Matrix-LSTM pre-
serves sparsity during computation and surpasses other popular LSTM variants
on space and time efficiency when processing sparse inputs. In this regard, we

150 M. Cannici et al.

proposed an efficient implementation of the method that exploits parallel batch-
wise computation and demonstrated the effectiveness of the Matrix-LSTM layer
on multiple tasks, improving the state-of-the-art of object classification on N-
Cars by 3.3% and the performance on optical flow prediction on MVSEC by
up to 23.07% over previous differentiable techniques [10]. Although we only inte-
grate windows of events, the proposed mechanism can be extended to process a
continuous streams thanks to the LSTM memory that is able to update its rep-
resentation as soon as a new event arrives. As a future line of research, we plan
to explore the use of Matrix-LSTM for more complex tasks such as gray-scale
frame reconstruction [26], ego-motion and depth estimation [34,38].

Acknowledgments. We thank Alex Zihao Zhu for his help on replicating Ev-FlowNet
results and the ISPL group at Politecnico di Milano for GPU support. This research
is supported from project TEINVEIN, CUP: E96D17000110009 - Call “Accordi per
la Ricerca e l’Innovazione”, cofunded by POR FESR 2014-2020 (Regional Operational
Programme, European Regional Development Fund).

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2016, pp. 265–283 (2016)

2. Berner, R., Brandli, C., Yang, M., Liu, S.C., Delbruck, T.: A 240×180 10mW 12us
latency sparse-output vision sensor for mobile applications. In: 2013 Symposium
on VLSI Circuits, pp. C186–C187. IEEE (2013)

3. Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., Andreopoulos, Y.: Graph-based
object classification for neuromorphic vision sensing. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 491–501 (2019)

4. Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: Asynchronous convolu-
tional networks for object detection in neuromorphic cameras. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(2019)

5. Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: Attention mechanisms for
object recognition with event-based cameras. In: 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1127–1136. IEEE (2019)

6. Cohen, G.K.: Event-Based Feature Detection, Recognition and Classification. The-
ses, Université Pierre et Marie Curie - Paris VI (September 2016)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

8. Gallego, G., et al.: Event-based vision: A survey. arXiv preprint arXiv:1904.08405
(2019)

9. Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of
representations for asynchronous event-based data. https://github.com/uzh-rpg/
rpg event representation learning

10. Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning
of representations for asynchronous event-based data. In: IEEE International Con-
ference of Computer Vision (ICCV) (October 2019)

http://arxiv.org/abs/1904.08405
https://github.com/uzh-rpg/rpg_event_representation_learning
https://github.com/uzh-rpg/rpg_event_representation_learning

A Differentiable Recurrent Surface for Asynchronous Event-Based Data 151

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(2018)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (ICLR) (2015)

15. Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: HOTS: a hier-
archy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 39(7), 1346–1359 (2016)

16. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

17. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128×128 120 db 15µs latency asyn-
chronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576
(2008)

18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic seg-
mentation. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2015)

19. Maass, W.: Networks of spiking neurons: the third generation of neural network
models. Neural Netw. 10(9), 1659–1671 (1997)

20. Maqueda, A.I., Loquercio, A., Gallego, G., Garćıa, N., Scaramuzza, D.: Event-
based vision meets deep learning on steering prediction for self-driving cars. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5419–5427 (2018)

21. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2015)

22. Neil, D., Pfeiffer, M., Liu, S.C.: Phased LSTM: accelerating recurrent network
training for long or event-based sequences. In: Advances in Neural Information
Processing Systems, pp. 3882–3890 (2016)

23. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image
datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437
(2015)

24. Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., Benosman,
R.: HFirst: a temporal approach to object recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 37(10), 2028–2040 (2015)

25. Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., Delbruck, T.:
Retinomorphic event-based vision sensors: bioinspired cameras with spiking out-
put. Proc. IEEE 102(10), 1470–1484 (2014)

26. Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: Events-to-video: bringing mod-
ern computer vision to event cameras. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3857–3866 (2019)

27. Scheerlinck, C., Rebecq, H., Stoffregen, T., Barnes, N., Mahony, R., Scaramuzza,
D.: CED: color event camera dataset. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops (2019)

28. Sekikawa, Y., Hara, K., Saito, H.: EventNet: asynchronous recursive event pro-
cessing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3887–3896 (2019)

152 M. Cannici et al.

29. Serrano-Gotarredona, T., Linares-Barranco, B.: A 128×128 1.5% contrast sensi-
tivity 0.9% FPN 3µs latency 4 mW asynchronous frame-free dynamic vision sen-
sor using transimpedance preamplifiers. IEEE J. Solid-State Circ. 48(3), 827–838
(2013)

30. SHI, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W., WOO, W.: Convolutional
LSTM network: a machine learning approach for precipitation nowcasting. In:
Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances
in Neural Information Processing Systems, vol. 28, pp. 802–810. Curran Associates,
Inc. (2015)

31. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: his-
tograms of averaged time surfaces for robust event-based object classification. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1731–1740 (2018)

32. Steiner, B., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

33. Wang, Q., Zhang, Y., Yuan, J., Lu, Y.: Space-time event clouds for gesture recog-
nition: from RGB cameras to event cameras. In: 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1826–1835. IEEE (2019)

34. Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J.A., Aloimonos, Y.: Unsupervised
learning of dense optical flow, depth and egomotion from sparse event data. arXiv
preprint arXiv:1809.08625 (2018)

35. Zhu, A., Yuan, L., Chaney, K., Daniilidis, K.: EV-FlowNet: Self-supervised optical
flow estimation for event-based cameras. https://github.com/daniilidis-group/EV-
FlowNet

36. Zhu, A., Yuan, L., Chaney, K., Daniilidis, K.: EV-FlowNet: self-supervised optical
flow estimation for event-based cameras. In: Proceedings of Robotics: Science and
Systems, Pittsburgh, Pennsylvania (June 2018)

37. Zhu, A.Z., Thakur, D., Özaslan, T., Pfrommer, B., Kumar, V., Daniilidis, K.:
The multivehicle stereo event camera dataset: an event camera dataset for 3D
perception. IEEE Robot. Autom. Lett. 3(3), 2032–2039 (2018)

38. Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning
of optical flow, depth, and egomotion. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 989–997 (2019)

http://arxiv.org/abs/1809.08625
https://github.com/daniilidis-group/EV-FlowNet
https://github.com/daniilidis-group/EV-FlowNet

	A Differentiable Recurrent Surface for Asynchronous Event-Based Data
	1 Introduction
	2 Related Work
	3 Method
	3.1 Matrix-LSTM

	4 Evaluation
	4.1 Object Classification
	4.2 Optical Flow Prediction
	4.3 Time Performance Analysis

	5 Conclusion
	References

