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Abstract. Lifelong learning has attracted much attention, but exist-
ing works still struggle to fight catastrophic forgetting and accumulate
knowledge over long stretches of incremental learning. In this work, we
propose PODNet, a model inspired by representation learning. By care-
fully balancing the compromise between remembering the old classes and
learning new ones, PODNet fights catastrophic forgetting, even over very
long runs of small incremental tasks – a setting so far unexplored by cur-
rent works. PODNet innovates on existing art with an efficient spatial-
based distillation-loss applied throughout the model and a representa-
tion comprising multiple proxy vectors for each class. We validate those
innovations thoroughly, comparing PODNet with three state-of-the-art
models on three datasets: CIFAR100, ImageNet100, and ImageNet1000.
Our results showcase a significant advantage of PODNet over existing
art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points,
respectively.

Keywords: Incremental-learning · Representation-learning pooling

1 Introduction

Lifelong machine learning [7,31,34] focuses on models that accumulate and refine
knowledge over large timespans. Incremental learning – the ability to aggregate
different learning objectives seen over time into a coherent whole – is paramount
to those models. To achieve incremental learning, models must fight catastrophic
forgetting [7,31] of previous knowledge. Lifelong and incremental learning have
attracted much attention in the past few years, but existing works still struggle
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to preserve acquired knowledge over many cycles of short incremental learning
steps1.

We will focus on image classifiers, which are ordinarily trained once on a
fixed set of classes. In incremental learning, however, the classifier must learn
the classes by steps, in training cycles called tasks. At each task, we expose the
classifier to a new set of classes. Incremental learning would reduce trivially to
ordinary classification if we were allowed to store all training samples, but we are
imposed a limited memory : a maximum number of samples for previously learned
classes. This limitation is motivated by practical applications, in which privacy
issues, or storage and computing limitations prevent us from simply retraining
the entire model for each new task [21,22]. Furthermore, incremental learning
is different from transfer learning in that we aim to have good performance in
both old and new classes.

To overcome catastrophic forgetting, different approaches have been pro-
posed: reusing a limited amount of previous training data [3,30]; learning to
generate the training data [15,33]; extending the architecture for new phases
of data [20,36]; using a sub-network for each phase [6,10]; or constraining the
model divergence as it evolves [1,3,16,21,23,30].

In this work, we propose PODNet, approaching incremental learning as rep-
resentation learning, with a distillation loss that constrains the evolution of the
representation. By carefully balancing the compromise between remembering
the old classes and learning new ones, we learn a representation that fights
catastrophic forgetting, remaining stable over long runs of small incremental
tasks. Our model innovates on existing art with (1) an efficient spatial-based
distillation-loss applied throughout the model ; and (2) as a refinement, a repre-
sentation comprising multiple proxy vectors for each class, resulting in a more
flexible representation.

In this paper, we first present the existing state of the art (Sect. 2), which
we close by detailing our contributions. We then describe our model (Sect. 3),
and evaluate it in an extensive set of experiments (Sect. 4) on CIFAR100, Ima-
geNet100, and ImageNet1000, including ablation studies assessing each contri-
bution, and extensive comparisons with existing methods.

2 Related Work

To approach the problem of incremental learning, consider a single incremental
task: one has a classifier already trained over a set of old classes and must adapt
it to learn a set of new classes. To perform that single task, we will consider:
(1) the data/class representation model; (2) the set of constraints to prevent
catastrophic forgetting; (3) the experimental context (including the constraints
over the memory for previous training data) for which to design the model.

1 Code is available at: github.com/arthurdouillard/incremental learning.pytorch.

https://github.com/arthurdouillard/incremental_learning.pytorch
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Data/Class Representation Model. Representation learning was already
implicitly present in iCaRL [30]: it introduced the Nearest Mean Exemplars
(NME) strategy which averages the outputs of the deep convolutional network
to create a single proxy feature vector per class that are then used by a nearest-
neighbor classifier predict the final classes. Hou et al. [13] adopted this method
and also introduced another, named CNN, which uses the output class probabili-
ties to classify incoming samples, freezing (during training) the classifier weights
associated with old classes, and then fine-tuning them on an under-sampled
dataset.

Hou et al. [13], in the method called here UCIR, made representation learning
explicit, by noticing that the limited memory imposed a severe imbalance on the
training samples available for the old and for the new classes. To overcome that
difficulty, they designed a metric-learning model instead of a classification model.
That strategy is often used in few-shot learning [8] because of its robustness to
few data. Because classical metric architectures require special training sampling
(e.g., semi-hard sampling for triplets), Hou et al. chose instead to redesign the
classifier’s last layer of their model to use the cosine similarity [25].

Model Constraints to Prevent Catastrophic Forgetting. Constraining
the model’s evolution to prevent forgetting is a fruitful idea proposed by several
methods [1,3,16,21,23,30]. Preventing the model’s parameters from diverging
too much forces it to remember the old classes, but care must be taken to still
allow it to learn the new ones. We call this balance the rigidity-plasticity trade-
off.

Existing art on knowledge distillation/compression [12] was an important
source of inspiration for constraints on models. The goal is to distill a large
trained model (called teacher) into a new smaller model (called student). The
distillation loss forces the features of the student to approach those of its teacher.
In our case, the student is the current model and the teacher—with same capac-
ity – is its version at the previous task. Zagoruyko and Komodakis [17] investi-
gated attention-based distillation for image classifiers, by pooling the interme-
diate features of convolutional networks into attention maps, then used in their
distillation losses. Li and Hoiem [21]—and several authors after them [3,30,35]—
used a binary cross-entropy between the output probabilities by the models. Hou
et al. [13], used instead Less-Forget, a cosine-similarity constraint on the flat
feature embeddings after the global average pooling. Dhar et al. [5] proposed
to constrain the gradient-based attentions generated by GradCam [32], a visu-
alization method. Wu et al. [35] proposed BiC, an algorithm oriented towards
large-scale datasets, which employs a small linear model learned on validation
data to recalibrate the output probabilities before applying a distillation loss.

Experimental Context. A critical component of incremental learning is the
convention used for the memory storing samples of previous data. An usual
convention is to consider a fixed amount of samples allowed in that memory, as
illustrated in Fig. 1.
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Fig. 1. Training protocol for incremental learning. At each training task we learn
a new set of classes, and the model must retain knowledge about all classes. The model
is allowed a limited memory of samples of old classes.

Still, there are two experimental protocols for such fixed-sample convention:
we may either use the memory budget at will (Mtotal), or add a constraint on the
number of samples per class for the old classes (Mper). When Mtotal = Mper×#
of classes, both settings have equivalent final memory size, but the latter, that
we adopt, is much more challenging since early tasks cannot benefit from the full
memory size. The granularity of the increments is another critical element: with
a fixed number of classes, increasing the number of tasks decreases the number
of classes per task. More tasks imply stronger forgetting of the earliest classes,
and pushing that number creates a challenging protocol, so far unexplored by
existing art. Hou et al. evaluate at most 10 tasks on CIFAR100, while we propose
as much as 50 tasks.

Finally, to score the experiments, Rebuffi et al. [30] proposed a global metric
that they called average incremental accuracy, taking into account the entire
history of the run, averaging the accuracy at the end of each task (including the
first).

Contributions. As seen, associating representation learning to model con-
straints is a particularly fruitful idea for incremental learning, but requires care-
fully balancing the goals of rigidity (to avoid catastrophic forgetting) and plas-
ticity (to learn new classes).

Employing a distillation-based loss to constrain the evolution of the repre-
sentation has also resulted in leading results [5,13,35,37]. Our model improves
existing art by employing a novel and efficient spatial-based distillation loss,
which we are able to apply throughout the model.

Implicit or explicit proxy vectors representing each class inside the models
have lead to state of the art results [13,30]. Our model extends that idea allowing
for multiple proxy vectors per class, resulting in a more flexible representation.

3 Model

Formally, we learn the model in T tasks, task t comprising a set of new classes Ct
N ,

and a set of old classes Ct
O, and aiming at classifying all seen classes Ct

O ∪ Ct
N .
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Fig. 2. Different possible poolings. The output from a convolutional layer ht
�,c,w,h

may be pooled (summed over) one or more axes. The resulting loss considers only
the pooled activations instead of the individual components, allowing more plasticity
across the pooled axes.

Between tasks, the new set Ct
O will be set to Ct−1

O ∪ Ct−1
N , but the amount

of training samples from Ct
O (called memory) is constrained to exactly Mper

samples per class, while all training samples in the dataset are allowed for the
classes in Ct

N , as shown in Fig. 1. The resulting imbalance, if unmanaged, leads
to catastrophic forgetting [7,31], i.e., learning the new classes at the cost of
forgetting the old ones.

Our base model is a deep convolutional network ŷ = g(f(x)), where x is the
input image, y is the output vector of class probabilities, h = f(x) is the “feature
extraction” part of the network (all layers up to the next-to-last), ŷ = g(h) is
the final classification layer, and h is the final embedding of the network before
classification (Fig. 3). The superscript t denotes the model learned at task t:f t,
gt, ht, etc.

3.1 POD: Pooled Outputs Distillation Loss

Constraining the evolution of the weights is crucial to reduce forgetting. Each
new task t learns a new (student) model, whose weights are not only initialized
with those of the previous (teacher) model, but also constrained by a distillation
loss. That loss must be carefully balanced to prevent forgetting (rigidity), while
allowing the learning of new classes (plasticity).

To this goal, we propose a set of constraints we call Pooled Outputs Distil-
lation (POD), applied not only over the final embedding output by ht = f t(x),
but also over the output of its intermediate layers ht

� = f t
� (x) (where by notation

overloading f t
� (x) ≡ f t

� ◦ . . . ◦ f t
1(x), and thus f t(x) ≡ f t

L . . . ◦ f t
� ◦ . . . f t

1(x)).
The convolutional layers of the network output tensors ht

� with components
ht

�,c,w,h, where c stands for channel (filter), and w ×h for column and row of the
spatial coordinates. The loss used by POD may pool (sum over) one or several
of those indexes, more aggressive poolings (Fig. 2) providing more freedom, and
thus, plasticity: the lowest possible plasticity imposes an exact similarity between
the previous and current model while higher plasticity relaxes the similarity
definition.

Pooling is an important operation in Computer Vision, with a strong theo-
retical motivation. In the past, pooling has been introduced to obtain invariant
representations [19,24]. Here, the justification is similar, but the goal is different:
as we will see, the pooled indexes are aggregated in the proposed loss, allowing
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plasticity. Instead of the model acquiring invariance to the input image, the
desired loss acquires invariance to model evolution, and thus, representation.
The proposed pooling-based formalism has two advantages: first, it organizes
disparately proposed distillation losses into a neat, general formalism. Second,
as we will see, it allowed us to propose novel distillation losses, with better
plasticity-rigidity compromises. Those topics are explored next.

Pooling of Convolutional Outputs. As explained before, POD constrains the
output of each intermediate convolutional layer ht

�,c,w,h = f t
� (·) (in practice, each

stage of a ResNet [11]). As a reminder, c is the channel and w×h are the spatial
coordinates. All POD variants use the Euclidean distance of �2-normalize tensors,
here noted as ‖· − ·‖. They differ on the type of pooling applied before that
distance is computed. On one extreme, one can apply no pooling at all, resulting
in the most strict loss, the most rigid constrains, and the lowest plasticity:

LPOD-pixel(ht−1
� ,ht

�) =
C∑

c=1

W∑

w=1

H∑

h=1

∥∥∥ht−1
�,c,w,h − ht

�,c,w,h

∥∥∥
2

. (1)

By pooling the channels, one preserves only the spatial coordinates, resulting in a
more permissive loss, allowing the activations to reorganize across the channels,
but penalizing global changes of those activations across the space,

LPOD-channel(ht−1
� ,ht

�) =
W∑

w=1

H∑

h=1

∥∥∥∥∥

C∑

c=1

ht−1
�,c,w,h −

C∑

c=1

ht
�,c,w,h

∥∥∥∥∥

2

; (2)

or, contrarily, by pooling the space (equivalent, up to a factor, to a Global
Average Pooling), one preserves only the channels:

LPOD-gap(ht−1
� ,ht

�) =
C∑

c=1

∥∥∥∥∥

W∑

w=1

H∑

h=1

ht−1
�,c,w,h −

W∑

w=1

H∑

h=1

ht
�,c,w,h

∥∥∥∥∥

2

. (3)

Note that the only difference between the variants is in the position of the
summation. For example, contrast equations Eqs. 1 and 2: in the former the
differences are computed between activation pixels, and then totaled; in the
latter, first the channel axis is flattened, then the differences are computed,
resulting in a more permissive loss.

We can trade a little plasticity for rigidity, with less aggressive pooling by
aggregating statistics across just one of the spatial dimensions:

LPOD-width(ht−1
� ,ht

�) =
C∑

c=1

H∑

h=1

∥∥∥∥∥

W∑

w=1

ht−1
�,c,w,h −

W∑

w=1

ht
�,c,w,h

∥∥∥∥∥

2

; (4)

or, likewise, for the vertical dimension, resulting in POD-height. Each of those
variants measure the distribution of activation pixels across their respective
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axis. These two complementary intermediate statistics can be further combined
together:

LPOD-spatial(ht−1
� ,ht

�) = LPOD-width(ht−1
� ,ht

�) + LPOD-height(ht−1
� ,ht

�) . (5)

LPOD-spatial is minimal when the average statistics over the dataset, on both
width and height axes, are similar for the previous and current model. It brings
the right balance between being too rigid (Eq. 1) and being too permissive (Eqs. 2
and 3).

Constraining the Final Embedding. After the convolutional layers, the
network, by design, flattens the spatial coordinates, and the formalism above
needs adjustment, as a summation over w and h is no longer possible. Instead,
we set a flat constraint on the final embedding ht = f t(x):

LPOD-flat(ht−1,ht) =
∥∥ht−1 − ht

∥∥2
. (6)

Combining the Losses, Analysis. The final POD loss combines the two
components:

LPOD-final(x) =
λc

L − 1

L−1∑

�=1

LPOD-spatial

(
f t−1

� (x), f t
� (x)

)

+ λfLPOD-flat

(
f t−1(x), f t(x)

)
. (7)

The hyperparameters λc and λf are necessary to balance the two terms, due
to the different nature of the intermediate outputs (spatial and flat).

As mentioned, the strategy above generalizes disparate propositions existing
both in the literature of incremental learning, and elsewhere. When λc = 0, it
reduces to the cosine constraint of Less-Forget, proposed by Hou et al. for incre-
mental learning, which constrains only the final embedding [13]. When λf = 0
and POD-spatial is replaced by POD-pixel, it suggests the Perceptual Features
loss, proposed for style transfer [14]. When λf = 0 and POD-spatial is replaced
by POD-channel, the strategy hints at the loss proposed by Komodakis et al. [17]
to allow distillation across different networks, a situation in which the channel
pooling responds to the very practical need to allow the comparison of architec-
tures with different number of channels.

As we will see in our evaluations of pooling strategies (Subsect. 4.2), what
proved optimal was a completely novel idea, POD-spatial, combining two pool-
ings, each of which flattens one of the spatial coordinates. That relatively rigid
strategy (channels and one of the spatial coordinates are considered in each half
of the loss) makes intuitive sense in our context, which is small-task incremental
learning, and thus where we expect a slow drift of the model across a single task.
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Fig. 3. Overview of PODNet: the distillation loss POD prevent excessive model
drift by constraining intermediate outputs of the ConvNet f and the LSC classifier g
learns a more expressive multi-modal representation.

3.2 Local Similarity Classifier

Hou et al. [13] observed that the class imbalance of incremental learning have
concrete manifestations on the parameters of the final layer on classifiers, namely
the weights for the over-represented (new) classes becoming much larger than
those for the underrepresented (old) classes. To overcome this issue, their method
(called here UCIR) �2-normalizes both the weights and the activations, which
corresponds to taking the cosine similarity instead of the dot product. For each
class c, their last layer becomes

ŷc =
exp (η〈θc,h〉)∑
i exp (η〈θi,h〉) , (8)

where θc are the last-layer weights for class c, η is a learned scaling parameter,
and 〈·, ·〉 is the cosine similarity.

However, this strategy optimizes a global similarity : its training objective
increases the similarity between the extracted features and their associated
weights. For each class, the normalized weight vector acts as a single proxy
[26], towards which the learning procedure pushes all samples in the class.

We observed that such global strategy is hard to optimize in an incremental
setting. To avoid forgetting, the distillation losses (Subsect. 3.1) tries to keep
the final embedding h consistent through time so that the class proxies stay
relevant for the classifier. Unfortunately catastrophic forgetting, while alleviated
by current methods, is not solved and thus the distribution of h may change. The
cosine classifier is very sensitive to those changes as it models a unique majority
mode through its class proxies.

Local Similarity Classifier. The problem above lead us to amend the clas-
sification layer during training, in order to consider multiple proxies/modes per
class. A shift in the distribution of h will have less impact on the classifier as
more modes are covered.
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Our redesigned classification layer, which we call Local Similarity Classifier
(LSC), allows for K multiple proxies/modes during training. Like before, the
proxies are a way to interpret the weight vector in the cosine similarity, thus we
allow for K vectors θc,k for each class c. The similarity sc,k to each proxy/mode is
first computed. An averaged class similarity ŷc is the output of the classification
layer:

sc,k =
exp 〈θc,k,h〉∑
i exp 〈θc,i,h〉 , ŷc =

∑

k

sc,k 〈θc,k,h〉 . (9)

The multi-proxies classifier optimizes the similarity of each sample to its ground
truth class representation and minimizes all others. A simple cross-entropy loss
would work, but we found empirically that the NCA loss [9,26] converged faster.
We added to the original loss a hinge [ · ]+ to keep it bounded, and a small margin
δ to enforce stronger class separation, resulting in the final formulation:

LLSC =

[
− log

exp (η(ŷy − δ))∑
i�=y exp ηŷi

]

+

. (10)

Weight Initialization for New Classes. The incremental learning setting
imposes detecting new classes at each new task t. New weights {θc,k | ∀c ∈
Ct

N ,∀k ∈ 1...K} must be added to predict them. We could initialize them ran-
domly, but the class-agnostic features of the ConvNet f , extracted by the model
trained so far offer a better prior. Thus, we employ a generalization of Imprinted
Weights [28] procedure to multiple modes: for each new class c, we extract the
features of its training samples, use a k-means algorithm to split them into K
clusters, and use the centroids of those clusters as initial values for θc,k. This
procedure ensures mode diversity at the beginning of a new task and resulted in
a one percentage point improvement on CIFAR100 [18].

3.3 Complete Model Formulation

Our model has the classical structure of a convolutional network f(·) acting as a
features extractor, and a classifier g(·) producing a score per class. We introduced
two innovations to this model: (1) our main contribution is a novel distillation
loss (POD) applied all over the ConvNet, from the spatial features h� to the
final flat embedding h; (2) as further refinement we propose that the classifier
learns a multi-modal representation that explicitly keeps multiple proxy vectors
per class, increasing the model expressiveness and thus making it less sensible
to shift in the distribution of h. The final loss for current model gt ◦ f t, i.e., the
model trained for task t, is simply their addition L{ft;gt} = LLSC + LPOD-final.

4 Experiments

We compare our technique (PODNet) with three state-of-the-art models. Those
models are particularly comparable to ours since they all employ a sample mem-
ory with a fixed capacity. Both iCaRL [30] and UCIR [13] use the same infer-
ence method –Nearest-Mean-Examplars (NME), although UCIR also proposes a
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second inference method based on the classifier probabilities (called here UCIR-
CNN). We evaluate PODNet with both inference methods for a small scale
dataset, and the later for larger scale datasets. BiC [35], while not focused on rep-
resentation learning, is specially designed to be effective on large scale datasets,
and thus provided an interesting baseline.

Datasets. We employ three images datasets – extensively used in the literature
of incremental learning – for our experiments: CIFAR100 [18], ImageNet100 [4,
13,35], and ImageNet1000 [4]. ImageNet100 is a subset of ImageNet1000 with
only 100 classes, randomly sampled from the original 1000.

Protocol. We validate our model and the compared baselines using the chal-
lenging protocol introduced by Hou et al. [13]: we start by training the models
on half the classes (i.e., 50 for CIFAR100 and ImageNet100, and 500 for Ima-
geNet1000). Then the classes are added incrementally in steps. We divide the
remaining classes equally among the steps, e.g., for CIFAR100 we could have 5
steps of 10 classes or 50 steps of 1 class. Note that a training of 50 steps is actu-
ally made of 51 different tasks: the initial training followed by the incremental
steps. Models are evaluated after each step on all the classes seen until then. To
facilitate comparison, the accuracies at the end of each step are averaged into a
unique score called average incremental accuracy [30]. If not specified otherwise,
the average incremental accuracy is the score reported in all our results.

Following Hou et al. [13], for all datasets, and all compared models, we limit
the memory Mper to 20 images per old class. For results with different memory
settings, refer to Subsect. 4.2.

Implementation Details. For fair comparison, all compared models employ
the same ConvNet backbone: ResNet-32 for CIFAR100, and ResNet-18 for Ima-
geNet. We remove the ReLU activation at the last block of each ResNet end-of-
stage to provide a signed input to POD (Subsect. 3.1). We implemented our
method (called here PODNet) in PyTorch [27]. We compare both ours and
UCIR’s implementation [13] of iCaRL. Results of UCIR come from the imple-
mentation of Hou et al. [13]. We provide their reported results and also run their
code ourselves. We used our implementation of BiC in order to compare with the
same backbone. We sample our memory images using herding selection [30] and
perform the inference with two different methods: the Nearest-Mean-Examplars
(NME) proposed for iCarl, and also adopted on one of the variants of UCIR
[13], and the “CNN” method introduced for UCIR (see Sect. 2). Please see the
supplementary materials for the full implementation details.

4.1 Quantitative Results

The comparisons with all the state of the art are tabulated in Table 1 for
CIFAR100 and Table 2 for ImageNet100 and ImageNet1000. All tables shows
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Table 1. Average incremental accuracy for PODNet vs. state of the art. We run exper-
iments three times (random class orders) on CIFAR100 and report averages± standard
deviations. Models with an asterisk * are reported directly from Hou et al. [13]

New classes per step CIFAR100

50 steps 25 steps 10 steps 5 steps

1 2 5 10

iCaRL* [30] — — 52.57 57.17

iCaRL 44.20± 0.98 50.60± 1.06 53.78± 1.16 58.08± 0.59

BiC [35] 47.09± 1.48 48.96± 1.03 53.21± 1.01 56.86± 0.46

UCIR (NME)* [13] — — 60.12 63.12

UCIR (NME) [13] 48.57± 0.37 56.82± 0.19 60.83± 0.70 63.63± 0.87

UCIR (CNN)* [13] — — 60.18 63.42

UCIR (CNN) [13] 49.30± 0.32 57.57± 0.23 61.22± 0.69 64.01± 0.91

PODNet (NME) 61.40±0.68 62.71±1.26 64.03±1.30 64.48±1.32

PODNet (CNN) 57.98±0.46 60.72±1.36 63.19±1.16 64.83±0.98

the average incremental accuracy for each considered models with various num-
ber of steps on the incremental learning run. The “New classes per step” row
shows the amount of new classes introduced per task.

CIFAR100. We run our comparisons on 5, 10, 25, and 50 steps with respectively
10, 5, 2, and 1 classes per step. We created three random class orders to ran each
experiment thrice, reporting averages and standard deviations. For CIFAR100
only, we evaluated our model with two different kind of inference: NME and
CNN. With both methods, our model surpasses all previous state of the art
models on all steps. Moreover, our model relative improvement grows as the
number the steps increases, surpassing existing models by 0.82, 2.81, 5.14, and
12.1 percent points (p.p.) for respectively 5, 10, 25, and 50 steps. Larger numbers
of steps imply stronger forgetting; those results confirm that PODNet manages to
reduce drastically the said forgetting. While PODNet with NME has the largest
gain, PODNet with CNN also outperforms the previous state of the art by up to
8.68p.p. See Fig. 4 for a plot of the incremental accuracies on this dataset. In the
extreme setting of 50 increments of 1 class (Fig. 4a), our model showcases large
differences, with slow degradation (“gradual forgetting” [7]) due to forgetting
throughout the run, while the other models show a quick performance collapse
(“catastrophic forgetting”) at the start of the run.

ImageNet100. We run our comparisons on 5, 10, 25, and 50 steps with respec-
tively 10, 5, 2, and 1 classes per step. For both ImageNet100, and ImageNet1000
we report only PODNet with CNN, as the kNN-based NME classifier did not
generalize as well to larger-scale datasets. With the more complex images of
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Table 2. Average incremental accuracy, PODNet vs. state of the art. Models with an
asterisk * are reported directly from Hou et al. [13]

New classes per step ImageNet100 Imagenet1000

50 steps 25 steps 10 steps 5 steps 10 steps 5 steps

1 2 5 10 50 100

iCaRL* [30] — — 59.53 65.04 46.72 51.36

iCaRL [30] 54.97 54.56 60.90 65.56 — —

BiC [35] 46.49 59.65 65.14 68.97 44.31 45.72

UCIR (NME)* [13] — — 66.16 68.43 59.92 61.56

UCIR (NME) [13] 55.44 60.81 65.83 69.07 — —

UCIR (CNN)* [13] — — 68.09 70.47 61.28 64.34

UCIR (CNN) [13] 57.25 62.94 67.82 71.04 — —

PODNet (CNN) 62.48 68.31 74.33 75.54 64.13 66.95

± 0.59 ± 2.45 ± 0.93 ± 0.26

ImageNet100, our model also outperforms the state of the art on all tested runs,
by up to 6.51p.p.

ImageNet1000. This dataset is the most challenging, with much greater image
complexity than CIFAR100, and ten times the number of classes as ImageNet100.
We evaluate the models in 5 and 10 steps, and results confirm the consistent
improvement of PODNet against existing arts by up to 2.85p.p.

4.2 Further Analysis and Ablation Studies

Ablation Studies. Our model has two components: the distillation loss POD
and the LSC classifier. An ablation study showcasing the contribution of each
component is displayed in Table 3a: each additional component improves the
model performance. We evaluate every ablation on CIFAR100 with 50 steps
of 1 new class each. The reported metric is the average incremental accuracy.
The table shows that our novel method of constraining the whole ConvNet is
beneficial. Furthermore applying only POD-spatial still beats the previous state
of the art by a significant margin. Using both POD-spatial and POD-flat then
further increases results with a large gain. We also compare the results with the
Cosine classifier [13,25] against the Local Similarity Classifier (LSC) with NCA
loss. Finally, we add LSC-CE: our classifier with multi-mode but with a simple
cross-entropy loss instead of our modified NCA loss. This version brings to mind
SoftTriple [29] and Infinited Mixture Prototypes [2], used in the different context
of few-shot learning. The latter only considers the closest mode of each class in
its class assignment, while LSC considers all modes of a class, thus, taking into
account the intra-class variance. That allows LSC to decrease class similarity
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Table 3. Ablation studies performed on CIFAR100 with 50 steps. We report the
average incremental accuracy.

(a) Comparison of the performance of the model
when disabling parts of the complete PODNet
loss

Classifier POD-flat POD-spatial NME CNN

Cosine 40.76 37.93

Cosine ✓ 48.03 46.73

Cosine ✓ 54.32 57.27

Cosine ✓ ✓ 56.69 55.72

LSC-CE ✓ ✓ 59.86 57.45

LSC 41.56 40.76

LSC ✓ 53.29 52.98

LSC ✓ 61.42 57.64

LSC ✓ ✓ 61.40 57.98

(b)Comparison of distillation losses
based on intermediary features. All
losses evaluated with POD-flat

Loss NME CNN

None 53.29 52.98

POD-pixels 49.74 52.34

POD-channels 57.21 54.64

POD-gap 58.80 55.95

POD-width 60.92 57.51

POD-height 60.64 57.50

POD-spatial 61.40 57.98

GradCam [5] 54.13 52.48

Perceptual style [14] 51.01 52.25

when intra-class variance is high (which could signal a lack of confidence in the
class).

Spatial-Based Distillation. We apply our distillation loss POD differently for
the flat final embedding h (POD-flat) and the ConvNet’s intermediate features
maps h� (POD-spatial). We designed and evaluated several alternative for the
latter whose results are shown in Table 3b. Refer to Sect. 3.1 and Fig. 2 for their
definition. All losses are evaluated with POD-flat. “None” is using only POD-flat.
Overall, we see that not using pooling results in bad performance (POD-pixels).
Our final loss, POD-spatial, surpasses all others by taking advantages of the
statistics aggregated from both spatial axis. For the sake of completeness we
also included losses not designed by us: GradCam distillation [5] and Perceptual
Style [14]. The former uses a gradient-based attention while the later – used for
style transfer – computes a gram matrix for each channel.

Forgetting and Plasticity Balance. Forgetting can be drastically reduced
by imposing a high factor on the distillation losses. Unfortunately, it will also
degrade the capacity (its plasticity) to learn new classes. When POD-spatial is
added on top of POD-flat, we manage to increase the oldest classes performance
(+7 percentage points) while the newest classes performance were barely reduced
(−0.2p.p.). Because our loss POD-spatial constraints only statistics, it is less
stringent than a loss based on exact pixels values as POD-pixel. The latter hurts
the newest classes (−2p.p.) for a smaller improvement of old classes (+5p.p.).
Furthermore our experiments confirmed that LSC reduced the sensibility of the
model to distribution shift, as the performance it brings was localized on the old
classes.
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(a) 50 steps, 1 class / step (b) 25 steps, 2 classes / step

Fig. 4. Incremental Accuracy on CIFAR100 over three orders for two different
step sizes. The legend reports the average incremental accuracy.

Table 4. Effect of the memory size per class Mper on the models performance. Results
from CIFAR100 with 50 steps, we report the average incremental accuracy

Mper 5 10 20 50 100 200

iCaRL [30] 16.44 28.57 44.20 48.29 54.10 57.82

BiC [35] 20.84 21.97 47.09 55.01 62.23 67.47

UCIR (NME) [13] 21.81 41.92 48.57 56.09 60.31 64.24

UCIR (CNN) [13] 22.17 42.70 49.30 57.02 61.37 65.99

PODNet (NME) 48.37 57.20 61.40 62.27 63.14 63.63

PODNet (CNN) 35.59 48.54 57.98 63.69 66.48 67.62

Robustness of Our Model. While previous results showed that PODNet
improved significantly over the state-of-the-arts, we wish here to demonstrate
here the robustness of our model to various factors. In Table 4, we compared
how PODNet behaves against the baseline when the memory size per class Mper

changes: PODNet improvements increase as the memory size decrease, up to a
gain of 26.20p.p. with NME (resp. 13.42p.p. for CNN) with Mper = 5. Notice that
by default, the memory size is 20 in Subsect. 4.1. We also compared our model
against baselines with a more flexible memory Mtotal = 2000 [30,35], and with
various initial task size (by default it is 50 on CIFAR100). In the former case,
models benefit from a larger memory per class in the early tasks. In the later
case, models initialization is worse because of a smaller initial task size. In these
settings very different from Sect. 4.1, PODNet still outperformed significantly
the compared models, proving the robustness of our model. The full results of
those experiments can be found in the supplementary material.
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5 Conclusion

We introduced in this paper a novel distillation loss (POD) constraining the
whole convolutional network. This loss strikes a balance between reducing for-
getting of old classes and learning new classes, essential for long incremental runs,
by carefully chosen pooling. As a further refinement, we proposed a multi-mode
similarity classifier, more robust to shift in the distribution inherent to incremen-
tal learning. Those innovations allow PODNet to outperform the previous state
of the art in a challenging experimental context, with severe sample-per-class
memory limitation, and long runs of many small-sized tasks, by a large margin.
Extensive experiments over three datasets show the robustness of our model on
different settings.
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