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Large-scale image retrieval is a long-standing problem in computer vision, which
saw promising results [26,38,43,44] even before deep learning revolutionized the
field. Central to this problem are the representations used to describe images
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Abstract. Image retrieval is the problem of searching an image
database for items that are similar to a query image. To address this
task, two main types of image representations have been studied: global
and local image features. In this work, our key contribution is to unify
global and local features into a single deep model, enabling accurate
retrieval with efficient feature extraction. We refer to the new model as
DELG, standing for DEep Local and Global features. We leverage lessons
from recent feature learning work and propose a model that combines
generalized mean pooling for global features and attentive selection for
local features. The entire network can be learned end-to-end by care-
fully balancing the gradient flow between two heads — requiring only
image-level labels. We also introduce an autoencoder-based dimension-
ality reduction technique for local features, which is integrated into the
model, improving training efficiency and matching performance. Compre-
hensive experiments show that our model achieves state-of-the-art image
retrieval on the Revisited Oxford and Paris datasets, and state-of-the-art
single-model instance-level recognition on the Google Landmarks dataset
v2. Code and models are available at https://github.com/tensorflow/
models/tree/master /research /delf.
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Fig.1. Our proposed DELG (DEep Local and Global features) model (left)
jointly extracts deep local and global features. Global features can be used in the first
stage of a retrieval system, to efficiently select the most similar images (bottom). Local
features can then be employed to re-rank top results (top-right), increasing precision
of the system. The unified model leverages hierarchical representations induced by
convolutional neural networks to learn local and global features, combined with recent
advances in global pooling and attentive local feature detection.

Two types of image representations are necessary for high image retrieval per-
formance: global and local features. A global feature [1,17,26,46,47], also com-
monly referred to as “global descriptor” or “embedding”, summarizes the con-
tents of an image, often leading to a compact representation; information about
spatial arrangement of visual elements is lost. Local features [7,28,34,39,62], on
the other hand, comprise descriptors and geometry information about specific
image regions; they are especially useful to match images depicting rigid objects.
Generally speaking, global features are better at recall, while local features are
better at precision. Global features can learn similarity across very different
poses where local features would not be able to find correspondences; in con-
trast, the score provided by local feature-based geometric verification usually
reflects image similarity well, being more reliable than global feature distance. A
common retrieval system setup is to first search by global features, then re-rank
the top database images using local feature matching — to get the best of both
worlds. Such a hybrid approach gained popularity in visual localization [49,54]
and instance-level recognition problems [42,61].

Today, most systems that rely on both these types of features need to sep-
arately extract each of them, using different models. This is undesirable since
it may lead to high memory usage and increased latency, e.g., if both models
require specialized and limited hardware such as GPUs. Besides, in many cases
similar types of computation are performed for both, resulting in redundant
processing and unnecessary complexity.

Contributions. (1) Our first contribution is a unified model to represent both
local and global features, using a convolutional neural network (CNN), referred
to as DELG (DEep Local and Global features) — illustrated in Fig. 1. This allows
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for efficient inference by extracting an image’s global feature, detected keypoints
and local descriptors within a single model. Our model is enabled by leveraging
hierarchical image representations that arise in CNNs [64], which we couple
to generalized mean pooling [46] and attentive local feature detection [39]. (2)
Second, we adopt a convolutional autoencoder module that can successfully learn
low-dimensional local descriptors. This can be readily integrated into the unified
model, and avoids the need of post-processing learning steps, such as PCA, that
are commonly used. (3) Finally, we design a procedure that enables end-to-end
training of the proposed model using only image-level supervision. This requires
carefully controlling the gradient flow between the global and local network
heads during backpropagation, to avoid disrupting the desired representations.
Through systematic experiments, we show that our joint model achieves state-
of-the-art performance on the Revisited Oxford, Revisited Paris and Google
Landmarks v2 datasets.

2 Related Work

We review relevant work in local and global features, focusing mainly on
approaches related to image retrieval.

Local Features. Hand-crafted techniques such as SIFT [28] and SURF [7] have
been widely used for retrieval problems. Early systems [28,32,40] worked by
searching for query local descriptors against a large database of local descriptors,
followed by geometrically verifying database images with sufficient number of
correspondences. Bag-of-Words [53] and related methods [24,43,44] followed, by
relying on visual words obtained via local descriptor clustering, coupled to TF-
IDF scoring. The key advantage of local features over global ones for retrieval
is the ability to perform spatial matching, often employing RANSAC [15]. This
has been widely used [3,43,44], as it produces reliable and interpretable scores.
Recently, several deep learning-based local features have been proposed [6, 14,29,
33,34,39,41,48,62]. The one most related to our work is DELF [39]; our proposed
unified model incorporates DELF’s attention module, but with a much simpler
training pipeline, besides also enabling global feature extraction.

Global Features excel at delivering high image retrieval performance with
compact representations. Before deep learning was popular in computer vision,
they were developed mainly by aggregating hand-crafted local descriptors [25-27,
57]. Today, most high-performing global features are based on deep convolutional
neural networks [1,4,5,17,46,47,58], which are trained with ranking-based [9, 19,
50] or classification losses [11,60]. Our work leverages recent learned lessons in
global feature design, by adopting GeM pooling [46] and ArcFace loss [11]. This
leads to improved global feature retrieval performance compared to previous
techniques, which is further boosted by geometric re-ranking with local features
obtained from the same model.

Joint Local and Global CNN Features. Previous work considered neural
networks for joint extraction of global and local features. For indoor localization,
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Taira et al. [54] used NetVLAD [1] to extract global features for candidate pose
retrieval, followed by dense local feature matching using feature maps from the
same network. Simeoni et al.’s DSM [52] detected keypoints in activation maps
from global feature models using MSER [30]; activation channels are interpreted
as visual words, in order to propose correspondences between a pair of images.
Our work differs substantially from [52,54], since they only post-process pre-
trained global feature models to produce local features, while we jointly train
local and global. Sarlin et al. [49] distill pre-trained local [12] and global [1]
features into a single model, targeting localization applications. In contrast, our
model is trained end-to-end for image retrieval, and is not limited to mimicking
separate pre-trained local and global models. To the best of our knowledge, ours
is the first work to learn a non-distilled model producing both local and global
features.

Dimensionality Reduction for Image Retrieval. PCA and whitening
are widely used for dimensionality reduction of local and global features in
image retrieval [4,39,47,58]. As discussed in [23], whitening downweights co-
occurrences of local features, which is generally beneficial for retrieval applica-
tions. Mukundan et al. [35] further introduce a shrinkage parameter that controls
the extent of applied whitening. If supervision in the form of matching pairs or
category labels is available, more sophisticated methods [18,31] can be used.
More recently, Gordo et al. [16] propose to replace PCA /whitening by a fully-
connected layer, that is learned together with the global descriptor.

In this paper, our goal is to compose a system that can be learned end-to-end,
using only image-level labels and without requiring post-processing stages that
make training more complex. Also, since we extract local features from feature
maps of common CNN backbones, they tend to be very high-dimensional and
infeasible for large-scale problems. All above-mentioned approaches would either
require a separate post-processing step to reduce the dimensionality of features,
or supervision at the level of local patches — making them unsuitable to our
needs. We thus introduce an autoencoder in our model, which can be jointly and
efficiently learned with the rest of the network. It requires no extra supervision
as it can be trained with a reconstruction loss.

3 DELG

3.1 Design Considerations

For optimal performance, image retrieval requires semantic understanding of
the types of objects that a user may be interested in, such that the system can
distinguish between relevant objects versus clutter /background. Both local and
global features should thus focus only on the most discriminative information
within the image. However, there are substantial differences in terms of the
desired behavior for these two feature modalities, posing a considerable challenge
to jointly learn them.
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Global features should be similar for images depicting the same object of
interest, and dissimilar otherwise. This requires high-level, abstract represen-
tations that are invariant to viewpoint and photometric transformations. Local
features, on the other hand, need to encode representations that are grounded to
specific image regions; in particular, the keypoint detector should be equivariant
with respect to viewpoint, and the keypoint descriptor needs to encode local-
ized visual information. This is crucial to enable geometric consistency checks
between query and database images, which are widely used in image retrieval
systems.

Besides, our goal is to design a model that can be learned end-to-end, with
local and global features, without requiring additional learning stages. This sim-
plifies the training pipeline, allowing faster iterations and wider applicability.
In comparison, it is common for previous feature learning work to require sev-
eral learning stages: attentive deep local feature learning [39] requires 3 learning
stages (fine-tuning, attention, PCA); deep global features usually require two
stages, e.g., region proposal and Siamese training [17], or Siamese training and
supervised whitening [46], or ranking loss training and PCA [47].

3.2 Model

We design our DELG model, illustrated in Fig.1, to fulfill the requirements
outlined above. We propose to leverage hierarchical representations from CNNs
[64] in order to represent the different types of features to be learned. While
global features can be associated with deep layers representing high-level cues,
local features are more suitable to intermediate layers that encode localized
information.

Given an image, we apply a convolutional neural network backbone to obtain
two feature maps: S € RHs*WsxCs and D € RI*WoxCp representing shal-
lower and deeper activations respectively, where H,W, C correspond to the
height, width and number of channels in each case. For common convolutional
networks, Hp < Hg, Wp < Wg and Cp > Cg; deeper layers have spatially
smaller maps, with a larger number of channels. Let s, ,, € RCs and dhw € RCP
denote features at location h,w in these maps. For common network designs,
these features are non-negative since they are obtained after the ReLU non-
linearity, which is the case in our method.

In order to aggregate deep activations into a global feature, we adopt gen-
eralized mean pooling (GeM) [46], which effectively weights the contributions
of each feature. Another key component of global feature learning is to whiten
the aggregated representation; we integrate this into our model with a fully-
connected layer F € REF*CD | with learned bias br € REF, similar to [17].
These two components produce a global feature g € REF that summarizes the
discriminative contents of the whole image:

1/p

1
=F —_— d? b 1
g X HDWD ;; h,w +OF ( )
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Fig. 2. Illustration of our training pipeline. The components highlighted in green
are used solely during training. There are two classification losses: ArcFace for global
feature learning (Lg), and softmax for attention learning (L,). In both cases, the clas-
sification objective is to distinguish different landmarks (an instance-level recognition
problem). The autoencoder (purple) is further trained with a reconstruction loss (L).
The whole model is learned end-to-end, and benefits substantially from stopping gra-
dient back-propagation from L, and L, into the CNN backbone. (Color figure online)
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where p denotes the generalized mean power parameter, and the exponentiation
dﬁﬁw is applied elementwise.

Regarding local features, it is important to select only the relevant regions for
matching. This can be achieved by adopting an attention module M [39], whose
goal is to predict which among the extracted local features are discriminative
for the objects of interest. This is performed as A = M(S), where M is a
small convolutional network and A € R¥s*Ws denotes the attention score map
associated to the features from S.

Furthermore, since hundreds to thousands of local features are commonly
used, they must be represented compactly. To do so, we propose to integrate a
small convolutional autoencoder (AE) module [21], which is responsible for learn-
ing a suitable low-dimensional representation. The local descriptors are obtained
as L = T(S), where £ € RFs*Ws*Cr and T is the encoding part of the autoen-
coder, corresponding to a 1 x 1 convolutional layer with Cr filters. Note that,
contrary to S, the local descriptors £ are not restricted to be non-negative.

Each extracted local feature at position h,w is thus represented with a local
descriptor I, € L and its corresponding keypoint detection score aj ., € A.
Their locations in the input image are set to corresponding receptive field centers,
which can be computed using the parameters of the network [2].

The global and local descriptors are Ls-normalized into ¢ and lAh,w,
respectively.
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3.3 Training

We propose to train the model using only image-level labels, as illustrated in
Fig. 2. In particular, note that we do not require patch-level supervision to train
local features, unlike most recent works [14,29,36,48|.

Besides the challenge to acquire the annotations, note that patch-level super-
vision could help selecting repeatable features, but not necessarily the discrimi-
native ones; in contrast, our model discovers discriminative features by learning
which can distinguish the different classes, given by image-level labels. In this
weakly-supervised local feature setting, it is very important to control the gra-
dient flow between the global and local feature learning, which is discussed in
more detail below.

Global Features. For global feature learning, we adopt a suitable loss function
with Ly-normalized classifier weights W, followed by scaled softmax normaliza-
tion and cross-entropy loss [59]; this is sometimes referred to as “cosine classi-
fier”. Additionally, we adopt the ArcFace margin [11], which has shown excellent
results for global feature learning by inducing smaller intra-class variance. Con-
cretely, given ¢, we first compute the cosine similarity against W, adjusted by
the ArcFace margin. The ArcFace-adjusted cosine similarity can be expressed as
AF(u, ¢):

cos(acos(u) +m), ifec=1

AF(u,c) = { (2)
where w is the cosine similarity, m is the ArcFace margin and c is a binary value
indicating if this is the ground-truth class. The cross-entropy loss, computed
using softmax normalization can be expressed in this case as:

R exp(y x AF(w¥g,1
Lg(g,y)——10g< ( ( B )
> exp(y x AF(07, yn))
where v is a learnable scalar, w; refers to the Lo-normalized classifier weights

for class i, y is the one-hot label vector and k is the index of the ground-truth
class (yp = 1).

u, ife=0

3)

Local Features. To train the local features, we use two losses. First, a mean-
squared error regression loss that measures how well the autoencoder can recon-
struct S. Denote &’ = T"(L) as the reconstructed version of S, with same dimen-
sions, where 7" is a 1 x 1 convolutional layer with Cg filters, followed by ReLU.
The loss can be expressed as:

1
L.(8,S8) = HaWsCs Z (e (4)
h,w

Second, a cross-entropy classification loss that incentivizes the attention mod-
ule to select discriminative local features. This is done by first pooling the recon-
structed features S’ with attention weights ay, .-

CI,/ = Z a’h7’wS;z,w (5)

h,w
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Then using a standard softmax-cross-entropy loss:

exp(va’ + by)
2 nexp(via’ +by)

Ly(a' k) = —log ( (6)
where v;, b; refer to the classifier weights and biases for class ¢ and k is the index
of the ground-truth class; this tends to make the attention weights large for the
discriminative features. The total loss is given by L, + AL, + BL,.

Controlling Gradients. Naively optimizing the above-mentioned total loss
experimentally leads to suboptimal results, because the reconstruction and atten-
tion loss terms significantly disturb the hierarchical feature representation which
is usually obtained when training deep models. In particular, both tend to induce
the shallower features S to be more semantic and less localizable, which end up
being sparser. Sparser features can more easily optimize L,., and more semantic
features may help optimizing L,; this, as a result, leads to underperforming local
features.

We avoid this issue by stopping gradient back-propagation from L, and L,
to the network backbone, i.e., to §. This means that the network backbone is
optimized solely based on Ly, and will tend to produce the desired hierarchical
feature representation. This is further discussed in the experimental section that
follows.

4 Experiments

4.1 Experimental Setup

Model Backbone and Implementation. Our model is implemented using
TensorFlow, leveraging the Slim model library [51]. We use ResNet-50 (R50)
and ResNet-101 (R101) [20]; R50 is used for ablation experiments. We obtain
the shallower feature map S from the conv4 output, and the deeper feature
map D from the convd output. Note that the Slim implementation moves the
convd stride into the last unit from conv4, which we also adopt — helping reduce
the spatial resolution of §. The number of channels in D is Cp = 2048; GeM
pooling [46] is applied with parameter p = 3, which is not learned. The whiten-
ing fully-connected layer, applied after pooling, produces a global feature with
dimensionality Cr = 2048. The number of channels in § is C's = 1024; the
autoencoder module learns a reduced dimensionality for this feature map with
Cr = 128. The attention network M follows the setup from [39], with 2 convolu-
tional layers, without stride, using kernel sizes of 1; as activation functions, the
first layer uses ReLU and the second uses Softplus [13].

Training Details. We use the training set of the Google Landmarks dataset
(GLD) [39], containing 1.2M images from 15k landmarks, and divide it into two
subsets ‘train’/‘val’ with 80%/20% split. The ‘train’ split is used for the actual
learning, and the ‘val’ split is used for validating the learned classifier as training
progresses. Models are initialized from pre-trained ImageNet weights. The images
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first undergo augmentation, by randomly cropping/distorting the aspect ratio;
then, they are resized to 512 x 512 resolution. We use a batch size of 16, and
train using 21 Tesla P100 GPUs asynchronously, for 1.5M steps (corresponding
to approximately 25 epochs of the ‘train’ split). The model is optimized using
SGD with momentum of 0.9, and a linearly decaying learning rate that reaches
zero once the desired number of steps is reached. We experiment with initial
learning rates within [3 x 10~%,1072] and report results for the best performing
one. We set the ArcFace margin m = 0.1, the weight for L, to 5 = 1, and the
weight for L, to A = 10. The learnable scalar for the global loss L, is initialized

to v =+/Cpg = 45.25.

Evaluation Datasets. To evaluate our model, we use several datasets. First,
Oxford [43] and Paris [44], with revisited annotations [45], referred to as ROxf
and RPar, respectively. There are 4993 (6322) database images in the ROxf
(RPar) dataset, and a different query set for each, both with 70 images. Perfor-
mance is measured using mean average precision (mAP). Large-scale results are
further reported with the R1M distractor set [45], which contains 1M images. As
in previous papers [37,47,55], parameters are tuned in ROxf/RPar, then kept
fixed for the large-scale experiments. Second, we report large-scale instance-
level retrieval and recognition results on the Google Landmarks dataset v2
(GLDv2) [61], using the latest ground-truth version (2.1). GLDv2-retrieval has
1129 queries (379 validation and 750 testing) and 762k database images; per-
formance is measured using mAP@100. GLDv2-recognition has 118k test (41k
validation and 77k testing) and 4M training images from 203k landmarks; the
training images are only used to retrieve images and their scores/labels are used
to form the class prediction; performance is measured using pAP@1. We perform
minimal parameter tuning based on the validation split, and report results on
the testing split.

Feature Extraction and Matching. We follow the convention from previ-
ous work [17,39,46] and use an image pyramid at inference time to produce
multi-scale representations. For global features, we use 3 scales, {%, 1,v2}; Ly
normalization is applied for each scale independently, then the three global fea-
tures are average-pooled, followed by another Lo normalization step. For local
features, we experiment with the same 3 scales, but also with the more expensive
setting from [39] using 7 image scales in total, with range from 0.25 to 2.0 (this
latter setting is used unless otherwise noted). Local features are selected based
on their attention scores A; a maximum of 1k local features are allowed, with a
minimum attention score 7, where we set 7 to the median attention score in the
last iteration of training, unless otherwise noted. For local feature matching, we
use RANSAC [15] with an affine model. When re-ranking global feature retrieval
results with local feature-based matching, the top 100 ranked images from the
first stage are considered. For retrieval datasets, the final ranking is based on the
number of inliers, then breaking ties using the global feature distance; for the
recognition dataset, we follow the exact protocol from the GLDv2 paper [61] to
combine local and global scores, aggregating scores for different classes based on
the top-ranked images. Our focus is on improving global and local features for
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Table 1. Local feature ablation. Com- l00p==F======F==g==—==f--o
parison of local features, trained separately I~
or jointly, with different methods for dimen- < & POh =
sionality reduction (DR). We report aver- = |/
age precision (AP) results of matching §
image pairs from the Google Landmarks g
dataset (GLD) E 10 === D (conv5): naive joint training
g —— D (conv5): our joint training
< o . —
- === & (conv4): naive joint training
DR method|\ |Jointly Stop GLD-pairs B (c071’u4): our joint training
trained gradients |AP (%) =
o0z 0z 06 0s 10 12 14
PCA [39] |- |x - 51.48 Training iterations (millions)
FC - 52.67
AE [ours] |0 |X - 49.95 Fig. 3. Evolution of activation spar-
1 51.28 sity over training iterations for D (conv5)
5 52.26 and S (conv4), comparing the naive joint
10 54.21 training method and our improved ver-
20 53.51 . . .
ol X 3708 sion that controls gradient propagation.
10 , 53.73 The naive method leads to much sparser

feature maps.

Table 2. Global feature ablation. Comparison of global features, trained separately
or jointly, with different pooling methods (SPoC, GeM) and loss functions (Softmax,
ArcFace). We report mean average precision (mAP %) on the ROxf and RPar datasets.

Jointly trained | Stop gradients | Medium Hard
Pooling | Loss ROxf | RPar | ROxf | RPar
SPoC | Softmax | X 51.2 |72.0 |26.3 |47.7
SPoC | ArcFace | X 59.8 |80.8 |35.6 |61.7
GeM ArcFace | X 69.3 |82.2 444 |64.0
GeM ArcFace |V X 68.8 |78.9 |42.4 |58.3
GeM ArcFace |V v 69.7 |81.6 |45.1 |63.4

retrieval /recognition, so we do not consider techniques that post-process results
such as query expansion [10,46] or diffusion/graph traversal [8,22]. These are
expensive due to requiring additional passes over the database, but if desired
could be integrated to our system and produce stronger performance.

4.2 Results

First, we present ablation experiments, to compare features produced by our
joint model against their counterparts which are separately trained, and also to
discuss the effect of controlling the gradient propagation. For a fair comparison,
our jointly trained features are evaluated against equivalent separately-trained
models, with the same hyperparameters as much as possible. Then, we compare
our models against state-of-the-art techniques. See also the appendices for more
details, visualizations and discussions.
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Local Features. As an ablation, we evaluate our local features by matching
image pairs. We select 200k pairs, each composed of a test and a train image
from GLD, where in 1k pairs both images depict the same landmark, and in 199k
pairs the two images depict different landmarks. We compute average precision
(AP) after ranking the pairs based on the number of inliers. All variants for
this experiment use 7 equals to the 75! percentile attention score in the last
iteration of training. Results are presented in Table 1.

First, we train solely the attention and dimensionality reduction modules, for
500k iterations, all methods initialized with the same weights from a separately-
trained global feature model. These results are marked as not being jointly
trained. It can be seen that our AE outperforms PCA and a simpler method
using only a single fully-connected (FC) layer. Performance improves for the AE
as A increases from 0 to 10, decreasing with 20. Then, we jointly train the unified
model; in this case, the variant that does not stop gradients to the backbone suf-
fers a large drop in performance, while the variant that stops gradients obtains
similar results as in the separately-trained case.

The poor performance of the naive jointly trained model is due to the degra-
dation of the hierarchical feature representation. This can be assessed by observ-
ing the evolution of activation sparsity in S (conv4) and D (convs), as shown
in Fig.3. Generally, layers representing more abstract and high-level semantic
properties (usually deeper layers) have high levels of sparsity, while shallower
layers representing low-level and more localizable patterns are dense. As a refer-
ence, the ImageNet pre-trained model presents on average 45% and 82% sparsity
for these two feature maps, respectively, when run over GLD images. For the
naive joint training case, the activations of both layers quickly become much
sparser, reaching 80% and 97% at the end of training; in comparison, our pro-
posed training scheme preserves similar sparsity as the ImageNet model: 45%
and 88%. This suggests that the conv4 features in the naive case degrade for the
purposes of local feature matching; controlling the gradient effectively resolves
this issue.

Global Features. Table 2 compares global feature training methods. The first
three rows present global features trained with different loss and pooling tech-
niques. We experiment with standard Softmax Cross-Entropy and ArcFace [11]
losses; for pooling, we consider standard average pooling (equivalent to SPoC [4])
and GeM [46]. ArcFace brings an improvement of up to 14%, and GeM of up to
9.5%. GeM pooling and ArcFace loss are adopted in our final model. Naively
training a joint model, without controlling gradients, underperforms when com-
pared to the baseline separately-trained global feature, with mAP decrease of
up to 5.7%. Once gradient stopping is employed, the performance can be recov-
ered to be on par with the separately-trained version (a little better on ROxf,
a little worse on RPar). This is expected, since the global feature in this case is
optimized by itself, without influence from the local feature head.

Comparison to Retrieval State-of-the-Art. Table3 compares our model
against the retrieval state-of-the-art. Three settings are presented: (A) local fea-
ture aggregation and re-ranking (previous work); (B) global feature similarity
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Table 3. Comparison to retrieval state-of-the-art. Results (% mAP) on the
ROxf/RPar datasets (and their large-scale versions ROxf+1M/RPar+1M), with both
Medium and Hard evaluation protocols. The top set of rows (A) presents previous
work’s results using local feature aggregation and re-ranking. Other sets of rows present
results using (B) global features only, or (C) global features for initial search then re-
ranking using local features. DELG™* refers to a version of DELG where the local
features are binarized. DELG and DELG”* outperform previous work in setups (B) and
(C) substantially. DELG also outperforms methods from setting (A) in 7 out of 8 cases.

Method Medium ‘Hard

ROxf +1M RPar|+1M ROxf|+1M|RPar|+1M
(A) Local feature aggregation + re-ranking
HesAff-rSIFT-ASMK*+SP [57] 60.6 |46.8 |61.4 |42.3 |36.7 |26.9 [35.0 |16.8
HesAfl-HardNet-ASMK*+SP [34] 65.6 |— 65.2 |- 41.1 |~ 38.5 |-
DELF-ASMK* +SP [39,45] 67.8 |53.8 |76.9 |57.3 |43.1 |31.2 |55.4 |26.4
DELF-R-ASMK*+SP (GLD) [55] 76.0 64.0 80.2 |59.7|52.4 (38.1 58.6 29.4
(B) Global features
AlexNet-GeM [46] 43.3 |24.2 |58.0 |29.9 |17.1 |9.4 |29.7 84
VGG16-GeM [46] 61.9 |42.6 69.3 |45.4 |33.7 [19.0 44.3 |19.1
R101-R-MAC [17] 60.9 [39.3 |78.9 |54.8 |32.4 |12.5 |59.4 28.0
R101-GeM [46] 64.7 |45.2 |77.2 |52.3 |38.5 [19.9 |56.3 24.7
R101-GeM7 [52] 65.3 |46.1 |77.3 |52.6 |39.6 |22.2 |56.6 |24.8
R101-GeM-AP [47] 67.5 |47.5 |80.1 |52.5 |[42.8 |23.2 60.5 |25.1
R101-GeM-AP (GLD) [47] 66.3 |- 80.2 |- 42.5 |- 60.8 |-
R152-GeM (GLD) [46] 687 |- 797 - 442 - 603 -
R101-GeM+SOLAR (GLD) [37] 69.9 |53.5 81.6 |59.2 |47.9 |29.9 64.5 |33.4
R50-DELG [ours] 69.7 |55.0/81.6 |59.7 [45.1 |27.8 63.4 |34.1
R101-DELG [ours] 73.2 |54.8 |82.4 |61.8/51.2 |30.3|64.7 |35.5
(C) Global features + Local feature re-ranking
R101-GeM1+DSM [52] 65.3 |47.6 |77.4 |52.8 [39.2 |23.2 |56.2 |25.0
R50-DELG* [ours] - 60.4 — 60.3 |- 35.3 |- 34.1
R101-DELG (3 scales global & local) [ours] |77.2 |61.7 |82.4 |62.3 |55.4 |37.5 |62.7 |35.3
R101-DELG* (3 scales global & local) [ours]|— 61.2 |- 62.2 |- 36.4 - 35.4
R101-DELG [ours] 78.5 |62.7 82.6 |62.5/58.6 39.2/63.9 |36.3
R101-DELG* [ours] - 62.2 - 62.4 |- 38.3 |- 36.1

search; (C) global feature search followed by re-ranking with local feature match-
ing and spatial verification (SP).

In setting (B), the DELG global feature variants strongly outperform pre-
vious work for all cases (most noticeably in the large-scale setting), as well
as outperforming concurrent work [37]. Compared to previous work, we see
7.1% improvement in ROxf+1M-Hard and 7.5% in RPar+1M-Hard. Note that
we obtain strong improvements even when using the ResNet-50 backbone,
while the previous state-of-the-art used ResNet-101/152, which are much more
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Table 4. GLDv2 evaluation. Results on the Table 5. Re-ranking exper-
GLDv2 dataset, for the retrieval and recogni- iment. Comparison of DELG
tion tasks, on the “testing” split of the query against other recent local features;
set. For a fair comparison, all methods are results (% mAP) on the ROxf

trained on GLD. dataset.

Method Retrieval | Recognition Method Hard | Medium
mAP (%) | kAP (%) R50-DELG (global-only) |45.1 |69.7

DELF-R-ASMK*+SP [55] 18.8 Local feature re-ranking

R101-GeM+ArcFace [61] 20.7 33.3 SIFT [28] 44.4 1 69.8

R101-GeM+CosFace [63] 21.4 - SOSNet [56] 45.5 [69.9

DELF-KD-tree [39] - 44.8 D2-Net [14] 47.2 |70.4

R50-DELG (global-only) [ours] |20.4 32.4 R50-DELG [ours] 53.7 |75.4

R101-DELG (global-only) [ours] |21.7 32.0

R50-DELG [ours] 22.3 56.8

R101-DELG [ours] 24.3 58.8

complex (2X/3X the number of floating point operations, respectively). To
ensure a fair comparison, we present results from [46,47] which specifically use
the same training set as ours, marked as “(GLD)” — the results are obtained
from the authors’ official codebases. In particular, note that “R152-GeM (GLD)
[46]” uses not only the same training set, but also the same exact scales in the
image pyramid; even if our method is much cheaper, it consistently outperforms
others.

For setup (C), we use both global and local features. For large-scale
databases, it may be impractical to store all raw local features in memory; to
alleviate such requirement, we also present a variant, DELG*, where we store
local features in binarized format, by simply applying an elementwise function:
b(x) = +1if x > 0, —1 otherwise.

Local feature re-ranking boosts performance substantially for DELG, com-
pared to only searching with global features, especially in large-scale cases: gains
of up to 8.9% (in ROxf+1M-Hard). We also present results where local feature
extraction is performed with 3 scales only, the same ones used for global features.
The large-scale results are similar, providing a boost of up to 7.2%. Results for
DELG™ also provide large improvements, but with performance that is slightly
lower than the corresponding unbinarized versions. Our retrieval results also
outperform DSM [52] significantly, by more than 10% in several cases. Differ-
ent from our proposed technique, the gain from spatial verification reported in
their work is small, of at most 1.5% absolute. DELG also outperforms local fea-
ture aggregation results from setup (A) in 7 out of 8 cases, establishing a new
state-of-the-art across the board.

GLDv2 Evaluation. Table 4 compares DELG against previous GLDv2 results,
where for a fair comparison we report methods trained on GLD. DELG achieves
top performance in both retrieval and recognition tasks, with local feature re-
ranking providing significant boost in both cases — especially on the recognition
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task (26.8% absolute improvement). Note that recent work has reported even
higher performance on the retrieval task, by learning on GLDv2’s training set
and using query expansion techniques [63]/ensembling [61]. On the other hand,
DELG’s performance on the recognition task is so far the best reported single-
model result, outperforming many ensemble-based methods (by itself, it would
have been ranked top-5 in the 2019 challenge) [61]. We expect that our results
could be further improved by re-training on GLDv2’s training set.

Re-ranking Experiment. Table5 further compares local features for re-
ranking purposes. R50-DELG is compared against SIFT [28], SOSNet [56]
(HPatches model, DoG keypoints) and D2-Net [14] (trained, multiscale). All
methods are given the same retrieval short list of 100 images for re-ranking
(based on R50-DELG-global retrieval); for a fair comparison, all methods use 1k
features and 1k RANSAC iterations. We tuned matching parameters separately
for each method: whether to use ratio test or distance threshold for selecting
correspondences (and their associated thresholds); RANSAC residual threshold;
minimum number of inliers (below which we declare no match). SIFT and SOS-
Net provide little improvement over the global feature, due to suboptimal feature
detection based on our observation (i.e., any blob-like feature is detected, which
may not correspond to landmarks). D2-Net improves over the global feature,
benefiting from a better feature detector. DELG outperforms other methods by
a large margin.

Latency and Memory, Qualitative Results. Please refer to the appendices
for a comparison of latency and memory requirements for different methods, and
for qualitative results.

5 Conclusions

Our main contribution is a unified model that enables joint extraction of local
and global image features, referred to as DELG. The model is based on a ResNet
backbone, leveraging generalized mean pooling to produce global features and
attention-based keypoint detection to produce local features. We also introduce
an effective dimensionality reduction technique that can be integrated into the
same model, based on an autoencoder. The entire network can be trained end-to-
end using image-level labels and does not require any additional post-processing
steps. For best performance, we show that it is crucial to stop gradients from
the attention and autoencoder branches into the network backbone, otherwise a
suboptimal representation is obtained. We demonstrate the effectiveness of our
method with comprehensive experiments, achieving state-of-the-art performance
on the Revisited Oxford, Revisited Paris and Google Landmarks v2 datasets.
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