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Abstract. Multi-task networks are commonly utilized to alleviate the
need for a large number of highly specialized single-task networks. How-
ever, two common challenges in developing multi-task models are often
overlooked in literature. First, enabling the model to be inherently incre-
mental, continuously incorporating information from new tasks without
forgetting the previously learned ones (incremental learning). Second,
eliminating adverse interactions amongst tasks, which has been shown to
significantly degrade the single-task performance in a multi-task setup
(task interference). In this paper, we show that both can be achieved
simply by reparameterizing the convolutions of standard neural network
architectures into a non-trainable shared part (filter bank) and task-
specific parts (modulators), where each modulator has a fraction of the
filter bank parameters. Thus, our reparameterization enables the model
to learn new tasks without adversely affecting the performance of existing
ones. The results of our ablation study attest the efficacy of the proposed
reparameterization. Moreover, our method achieves state-of-the-art on
two challenging multi-task learning benchmarks, PASCAL-Context and
NYUD, and also demonstrates superior incremental learning capability
as compared to its close competitors. The code and models are made
publicly available (https://github.com/menelaoskanakis/RCM).

Keywords: Multi-task learning · Incremental learning · Task
interference

1 Introduction

Over the last decade, convolutional neural networks (CNNs) have been estab-
lished as the standard approach for many computer vision tasks, like image classi-
fication [17,25,54], object detection [15,32,48], semantic segmentation [3,33,63],
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Fig. 1. (a) Optimizing independent models per task allows for the easy addition of new
tasks, at the expense of a multiplicative increase in the total number of parameters with
respect to a single model (green and blue denote task-specific parameters). (b) A single
backbone for multiple tasks must be meaningful to all, thus, all tasks interact with the
said backbone (black indicates common parameters). (c) Our proposed setup, RCM
(Reparameterized Convolutions for Multi-task learning), uses a pre-trained filter bank
(denoted in black) and independently optimized task-specific modulators (denoted in
colour) to adapt the filter bank on a per-task basis. New task addition is accomplished
by training the task-specific modulators, thus explicitly addressing task interference
while parameters scale at a slower rate than having independent models per task.
(Color figure online)

and monocular depth estimation [12,26]. Typically, these tasks are handled by
CNNs independently, i.e., a separate model is optimized for each task, result-
ing in several task-specific models (Fig. 1a). However, real-world problems are
more complex and require models to perform multiple tasks on-demand without
significantly compromising each task’s performance. For example, an interactive
advertisement system tasked with displaying targeted content to its audience
should be able to detect the presence of humans in its viewpoint effectively, esti-
mate their gender and age group, recognize their head pose, etc. At the same
time, there is a need for flexible models able to gradually add more tasks to
their knowledge, without forgetting previously known tasks or having to re-train
the whole model from scratch. For instance, a car originally deployed with lane
and pedestrian detection functionalities can be extended with depth estimation
capabilities post-production.

When it comes to learning multiple tasks under a single model, multi-task
learning (MTL) techniques [2,50] have been employed in the literature. On the
one hand, encoder-focused approaches [1,10,24,31,34,38,40,57] emphasize learn-
ing feature representations from multi-task supervisory signals by employing
architectures that encode shared and task-specific information. On the other
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hand, decoder-focused approaches [58,59,61,62] utilize the multi-task feature
representations learned at the encoding stage to distill cross-task information at
the decoding stage, thus refining the original feature representations. In both
cases, however, the joint learning from multiple supervisory signals (i.e., tasks)
can hinder the individual task performance if the associated tasks point to con-
flicting gradient directions during the update step of the shared feature rep-
resentations (Fig. 1b). Formally this is known as task interference or negative
transfer and has been well documented in the literature [24,36,65]. To sup-
press negative transfer, several approaches [6,16,21,36,52,55,65] dynamically
re-weight each task’s loss function or re-order the task learning, to find a ‘sweet
spot’ where individual task performance does not degrade significantly. Arguably,
such approaches mainly focus on mitigating the negative transfer problem in the
MTL architectures above, rather than eliminating it (see Sect. 3.2). At the same
time, existing works seem to disregard the fact that MTL models are commonly
desired to be incremental, i.e., information from new tasks should be continu-
ously incorporated while existing task knowledge is preserved. In existing works,
the MTL model has to be re-trained from scratch if the task dictionary changes;
this is arguably sub-optimal.

Recently, task-conditional networks [36] emerged as an alternative for MTL,
inspired by work in multi-domain learning [45,46]. That is, performing separate
forward passes within an MTL model, one for each task, every time activating
a set of task-specific residual responses on top of the shared responses. Note
that, this is useful for many real-world setups (e.g., an MTL model deployed in
a mobile phone with limited resources that adapts its responses according to the
task at hand), and particularly for incremental learning (e.g., a scenario where
the low-level tasks should be learned before the high-level ones). However, the
proposed architecture in [36] is prone to task interference due to the inherent
presence of shared modules, which is why the authors introduced an adversar-
ial learning scheme on the gradients to minimize the performance degradation.
Moreover, the model needs to be trained from scratch if the task dictionary
changes.

All given, existing works primarily focus on either improving the multi-task
performance or reducing the number of parameters and computations in the
MTL model. In this paper, we take a different route and explicitly tackle the
problems of incremental learning and task interference in MTL. We show that
both problems can be addressed simply by reparameterizing the convolutional
operations of a neural network. In particular, building upon the task-conditional
MTL direction, we propose to decompose each convolution into a shared part
that acts as a filter bank encoding common knowledge, and task-specific mod-
ulators that adapt this common knowledge uniquely for each task. Figure 1c
illustrates our approach, RCM (Reparameterized Convolutions for Multi-task
learning). Unlike existing works, the shared part in our case is not trainable to
explicitly avoid negative transfer. Most notably, as any number of task-specific
modulators can be introduced in each convolution, our model can incrementally
solve more tasks without interfering with the previously learned ones. Our results
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demonstrate that the proposed RCM can outperform state-of-the-art methods
in multi-task (Sect. 4.6) and incremental learning (Sect. 4.7) experiments. At the
same time, we address the common multi-task challenge of task interference by
construction, by ensuring tasks can only update task-specific components and
cannot interact with each other.

2 Related Work

Multi-Task Learning (MTL) aims at developing models that can solve a
multitude of tasks [2,50]. In computer vision, MTL approaches can roughly
be divided into encoder-focused and decoder-focused ones. Encoder-focused
approaches primarily emphasize on architectures that can encode multi-purpose
feature representations through supervision from multiple tasks. Such encoding is
typically achieved, for example, via feature fusion [38], branching [24,34,40,57],
self-supervision [10], attention [31], or filter grouping [1]. Decoder-focused
approaches start from the feature representations learned at the encoding stage,
and further refine them at the decoding stage by distilling information across
tasks in a one-off [59], sequential [61], recursive [62], or even multi-scale [58]
manner. Due to the inherent layer sharing, the approaches above typically suffer
from task interference. Several works proposed to dynamically re-weight the loss
function of each task [6,21,52,55], sort the order of task learning [16], or adapt
the feature sharing between ‘related’ and ‘unrelated’ tasks [65], to mitigate the
effect of negative transfer. In general, existing MTL approaches have primarily
focused on improving multi-task performance or reducing the network parame-
ters and computations. Instead, in this paper, we look at the largely unexplored
problems of incremental learning and negative transfer in MTL models and pro-
pose a principled way to tackle them.

Incremental Learning (IL) is a paradigm that attempts to augment the exist-
ing knowledge by learning from new data. IL is often used, for example, when
aiming to add new classes [47] to an existing model, or learn new domains [30].
It aims to mitigate ‘catastrophic forgetting’ [14], the phenomenon of forgetting
old tasks as new ones are learned. To minimize the loss of existing knowledge, Li
and Hoiem [30] optimized the new task while preserving the old task’s responses.
Other works [23,28] constrained the optimization process to minimize the effect
learning has on weights important for older tasks. Rebuffi et al. [47] utilized
exemplars that best approximate the mean of the learned classes in the feature
space to preserve performance. Note that the performance of such techniques
is commonly upper bounded by the joint training of all tasks. More relevant to
our work, in a multi-domain setting, a few approaches [35,45,46,49] utilize a
pre-trained network that remains untouched and instead learn domain-specific
components that adapt the behavior of the network to address the performance
drop common in IL techniques. Inspired by this research direction, we investigate
the training of parts of the network, while keeping the remaining components
constant from initialization amongst all tasks. This technique not only addresses
catastrophic forgetting but also task interference, which is crucial in MTL.
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Fig. 2. (a) A standard convolutional module for a given task i, with task-specific
weights W i in orange. (b) A reparameterized convolution (RC) consisting of a shared
filter bank Ws in black, and task-specific modulator W i

t in orange. (c) An RC with
Normalized Feature Fusion (NFF), consisting of a shared filter bank Ws in black,
and task-specific modulator W i

t in orange. Each row wi
t of W i

t is reparameterized as
gi
t · vi

t / ‖ vi
t ‖.

Decomposition of filters and tensors within CNNs has been explored in the
literature. In particular, filter-wise decomposition into a product of low-rank
filters [20], filter groups [44], a basis of filter groups [29], etc. have been uti-
lized. In contrast, tensor-wise examples include SVD decomposition [9,60], CP-
decomposition [27], Tucker decomposition [22], Tensor-Train decomposition [42],
Tensor-Ring decomposition [64], T-Basis [41], etc. These techniques have been
successfully used for compressing neural networks or reducing their inference
time. Instead, in this paper, we utilize decomposition differently. We decompose
each convolutional operation into two components: a shared and a task-specific
part. Note that although we utilize the SVD decomposition for simplicity, the
same principles hold for other decomposition types too.

3 Reparameterizing CNNs for Multi-Task Learning

In this section, we present techniques to adapt a CNN architecture, such that it
can increasingly learn new tasks in an MTL setting while scaling more efficiently
than simply adding single-task models. Section 3.1 introduces the problem for-
mulation. Section 3.2 demonstrates the effect of task interference in MTL and
motivates the importance of CNN reparameterization. Section 3.3 presents tech-
niques to reparameterize CNNs and limit the parameter increase with respect
to task-specific models.

3.1 Problem Formulation

Given P tasks and input tensor x, we aim to learn a function f(x;Ws,W
i
t ) = yi

that holds for task i = 1, 2, . . . P , where Ws and W i
t are the shared and task-

specific parameters respectively. Unlike existing approaches [34,38] which learn
such functions f(·) on the layer level of the network, i.e., explicitly designing
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Fig. 3. Visualization of the Representation Similarity Analysis (RSA) on the task-
specific gradients at different depths of a ResNet-26 model [36]. The analysis was
conducted on: human parts segmentation (Parts), semantic segmentation (SemSeg),
saliency estimation (Sal), normals estimation (Normals), and edge detection (Edge).

shared and task-specific layers, we aim to learn f on a block-level by reparam-
eterizing the convolutional operation, and adapting its behaviour conditioned
on the task i, as depicted in Fig. 2b and Fig. 2c. By doing so, we can explic-
itly address the task interference and catastrophic forgetting problems within
an MTL setting.

3.2 Task Interference

To motivate the importance of addressing task interference by construction, we
analyze the task-specific gradient directions on the shared modules of a state-
of-the-art MTL model. Specifically, we utilize the work of [36], who used a dis-
criminator to enforce indistinguishable gradients amongst tasks.

We acquire the gradients from the training dataset of PASCAL-Context [39]
for each task, using minibatches of size 128, yielding 40 minibatches. We then
use the Representation Similarity Analysis (RSA), proposed in [11] for transfer
learning, as a means to quantify the correlation of the gradients amongst the
different tasks. Figure 3 depicts the task gradient correlations at different depths
of a ResNet-26 model [17], trained to have indistinguishable gradients in the out-
put layer [36]. It can be seen that there is a limited gradient correlation amongst
the tasks, demonstrating that addressing task interference indirectly (here with
the use of adversarial learning on the gradients) is a very challenging problem.
We instead follow a different direction and propose to utilize reparameterizations
with shared components amongst different tasks that are untouched during the
training process, and each task being able to optimize only its parameters. As
such, task interference is eliminated by construction.

3.3 Reparameterizing Convolutions

We define a convolutional operation f(x;w) = y for the single-task learning
setup, Fig. 2a. w ∈ R

k2cin denotes the parameters of a single convolutional layer
(we omit the bias to simplify notation) for a kernel size k and cin channels.
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x ∈ R
k2cin is the input tensor volume at a given spatial location (x and w

are expressed in vector notation), and y is the scalar response. Assuming cout

such filters, the convolutional operator can be rewritten in matrix notation as
f(x;W ) = y, where y ∈ R

cout provides cout responses, and W ∈ R
cout×k2cin . In

a single-task setup:

f(x;W 1) = y1, . . . , f(x;WP ) = yP (1)

where W i and yi are the task-specific parameters and responses for a given
convolutional layer, respectively. The total number of parameters for this setup
is O(Pk2cincout). Our goal is to reparameterize f(·) in Eq. 1 as:

f(x;W i) = h(x;Ws,W
i
t ), ∀i = 1, . . . , P (2)

using a set of shared (Ws ∈ R
cout×k2cin) and task-specific (W i

t ∈ R
cout×cout)

parameters for each convolutional layer of the backbone. Our formulation aims
to retain the prediction performance of the original convolutional layer (Eq. 1),
while simultaneously reducing the rate in which the total number of parameters
grows. The complexity now becomes O((k2cin + Pcout)cout), which is less than
O(Pk2cincout) for standard layers. We argue that this reparameterization is
necessary for coping with task interference and incremental learning in an MTL
setup, in which we only optimize for task-specific parameters W i

t , while keeping
the shared parameters Ws intact. Note that, when adding a new task i = ω, we
do not need to train the entire network from scratch as in [36]. We only optimize
Wω

t for each layer of the reparameterized CNN.
We denote our reparameterized convolutional layer as a matrix multiplication

between the two sets of parameters: W i
t Ws. In order to find a set of parame-

ters W i
t Ws that approximates the single-task weights W i a natural choice is to

minimize the Frobenius norm ‖W i
t Ws −W i‖F directly. Even though direct min-

imization of this metric is appealing due to its simplicity, it poses some major
caveats. (i) It assumes that all directions in the parameter space affect the final
performance for task i in the same way and are thus penalized uniformly. How-
ever, two different solutions for W i

t with the same Frobenius norm can yield
drastically different losses. (ii) This approximation is performed independently
for each convolutional layer, neglecting the chain effect an inaccurate prediction
in one layer can have in the succeeding layers. In the remainder of this section,
we propose different techniques to address these limitations.

Reparameterized Convolution. We implement the Reparameterized Convo-
lution (RC) W i

t Ws as a stack of two 2D convolutional layers without non-linearity
in between, with Ws having a spatial filter size k and W i

t being a 1 × 1 convolu-
tion (Fig. 2b)1. We optimize only W i

t directly on the task-specific loss function
using stochastic gradient descent while keeping the shared weights Ws constant.

1 To ensure compliance with ImageNet [8] initialization, the new architecture is
first pre-trained on ImageNet using the publicly available training script from
PyTorch [43].
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This ensures that training for one task is independent of other tasks, ruling out
interference amongst tasks while optimizing the metric of interest.

Normalized Feature Fusion. One can view wi
t, a row in matrix W i

t , as a
soft filter adaptation mechanism, i.e., a modulator which generates new task-
specific filters from a given filter bank Ws, depicted in Fig. 2b. However, instead
of training the vector wi

t directly, we propose its reparameterization into two
terms, a vector term vi

t ∈ R
cout , and a scalar term gi

t as:

wi
t = gi

t

vi
t

‖ vi
t ‖ , (3)

where ‖ · ‖ denotes the Euclidean norm. We refer to this reparameterization as
Normalized Feature Fusion (NFF), depicted in Fig. 2c. NFF provides an easier
optimization process in comparison to an unconstrained wi

t. This reparametriza-
tion enforces vi

t/‖ vi
t ‖ to be unit length and point in the direction which best

merges the filter bank. The vector norm ‖ wi
t ‖= gi

t learns independently the
appropriate scale of the newly generated filters, and thus the scale of the acti-
vation. Directly optimizing wi

t attempts to learn both jointly, which is a harder
optimization problem. Normalizing weight tensors has been generally explored
for speeding up the convergence of the optimization process [7,51,56]. In our
work, we use it differently and demonstrate empirically (see Sect. 4.5) that such
a reparameterization in series with a filter bank also improves performance in the
MTL setting. As seen in Eq. 3, additional learnable parameters are introduced
in the training process (gi

t and vi
t), however, wi

t can be computed after training
and used directly for deployment, eliminating additional overhead.

Response Initialization. We build upon the findings of matrix/tensor decom-
position literature [9,60] that network weights/responses lie on a low dimen-
sional subspace. We further assume that such a subspace can be beneficial for
multiple tasks, and thus good for network initialization under a MTL setup.
To this end, we identify a meaningful subspace of the responses for the gen-
eration of a better filter bank Ws when compared to that directly learned by
pre-training Ws on ImageNet. More formally, let y = f(x;Wm) be the responses
for input tensor x, where Wm ∈ R

cout×k2cin are the pre-trained ImageNet
weights. We define Y ∈ R

cout×n as a matrix containing n responses of y with the
mean vector y subtracted. We compute the eigen-decomposition of the covari-
ance matrix Y Y T = USUT (using Singular Value Decomposition, SVD), where
U ∈ R

cout×cout is an orthogonal matrix with the eigenvectors on the columns,
and S is a diagonal matrix of the corresponding eigenvalues. We can now ini-
tialize the shared convolution parameters Ws with UT Wm, and the task-specific
W i

t with U . We refer to this initialization methodology as Response Initialization
(RI). We point the reader to the supplementary material for more details.
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4 Experiments

4.1 Datasets

We focus our evaluation on dense prediction tasks, making use of two datasets.
We conduct the majority of the experiments on PASCAL [13], and more specif-
ically, PASCAL-Context [39]. We address edge detection (Edge), semantic seg-
mentation (SemSeg), human parts segmentation (Parts), surface normals esti-
mation (Normals), and saliency (Sal). We evaluate single-task performance using
optimal dataset F-measure (odsF) [37] for edge detection, mean intersection over
union (mIoU) for semantic segmentation, human parts and saliency, and finally
mean error (mErr) for surface normals. Labels for human parts segmentation
are acquired from [5], while for saliency and surface normals from [36].

We further evaluate the proposed method on the smaller NYUD dataset [53],
comprised of indoor scenes, on edge detection (Edge), semantic segmentation
(SemSeg), surface normals estimation (Normals), and depth (Depth). The eval-
uation metrics for edge detection, semantic segmentation, and surface normals
estimation are identical to those for PASCAL-Context, while for depth we use
root mean squared error (RMSE).

4.2 Architecture

All of our experiments make use of the DeepLabv3+ architecture [4], originally
designed for semantic segmentation, which performs competitively for all tasks
of interest as demonstrated in [36]. DeepLabv3+ encodes multi-scale contextual
information by utilizing a ResNet [17] encoder with a-trous convolutions [3] and
an a-trous spatial pyramid pooling (ASPP) module, while a decoder with a skip
connection refines the predictions. Unless otherwise stated, we use a ResNet-18
(R-18) based DeepLabv3+, and report the mean performance of five runs for
each experiment2.

4.3 Evaluation Metric

We follow standard practice [36,58] and quantify the performance of a model
m as the average per-task performance drop with respect to the corresponding
single-task baseline b:

Δm =
1
P

P∑

i=1

(−1)li
Mm,i − Mb,i

Mb,i
(4)

where li is either 1 or 0 if a lower or a greater value indicates better performance,
respectively, for a performance measure M . P indicates the total number of tasks.

2 Baseline comparisons to competing methods, as well as additional backbone exper-
iments, can be found in the supplementary material.
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Table 1. Performance analysis of task-specific modules. We report the effect
network modules (Convs and BNs) have on the performance of PASCAL-Context.

Method Convs BNs Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑ Δm% ↓
Freeze encoder 67.32 60.37 47.86 17.40 58.39 14.98

Task-specific BNs � 69.80 63.93 53.22 14.78 64.44 5.76

Task-specific Convs � 71.72 66.00 59.05 13.78 66.31 0.62

Single-task � � 71.88 66.22 59.69 13.64 66.62 –

4.4 Analysis of Network Module Sharing

We investigate the level of task-specific adaptation required for a common back-
bone to perform competitively to single-task models, while additionally elimi-
nating negative transfer. In other words, the necessity for task-specific modules,
i.e., convolutions (Convs) and batch normalizations (BNs) [19]. Specifically, we
optimize for task-specific Convs, BNs, or both along the network’s depth. Mod-
ules that are not being optimized maintain their ImageNet pre-trained param-
eters. Table 1 presents the effect on performance, while Fig. 4 depicts the total
number of parameters with respect to the number of tasks. Experiments vary
from common Convs and BNs (Freeze encoder) to task-specific Convs and BNs
(Single-task), and anything in-between.
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100
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m
et
er
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× 1

e6
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Task-specific BNs
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Fig. 4. Backbone parameter scaling.
Total number of parameters with respect
to the number of tasks for R-18 backbone.

The model utilizing a common
backbone pre-trained on ImageNet
(Freeze encoder), as expected, is
unable to perform competitively to
the single-task counterpart, with a
performance drop of 14.98%. Task-
specific BNs significantly improve per-
formance with a percentage drop
of 5.76%, at a minimal increase in
parameters (Fig. 4). The optimization
of Convs is essential for competitive
performance to single-task, with a
percentage drop of 0.62%. However,
the increase in parameters is compa-
rable to single-task, which is undesir-
able (Fig. 4).

4.5 Ablation Study

To validate the proposed methodology from Sect. 3, we conduct an ablation
study, presented in Table 2. We additionally report the performance of a model
trained jointly on all tasks, consisting of a fully shared encoder and task-specific
decoders (Multi-task). This multi-task model is not trained in an IL setup but
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Table 2. Ablation study of the proposed RCM. We present ablation exper-
iments for the proposed Reparameterized Convolution (RC), Response Initialization
(RI), Normalized Feature Fusion (NFF) on PASCAL-Context dataset.

Method NFF RI Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑ Δm% ↓
Single-task 71.88 66.22 59.69 13.64 66.62 –

Multi-task 70.74 62.43 57.89 14.43 66.31 3.32

RC 71.10 64.56 56.87 13.91 66.37 2.13

RC+NFF � 71.12 64.71 56.91 13.90 66.33 2.07

RC+RI � 71.36 65.58 57.99 13.70 66.21 1.12

RC+RI+NFF � � 71.34 65.70 58.12 13.70 66.38 0.99

merely serves as a reference to the traditional multi-tasking techniques. We
report a performance drop of 3.32% with respect to the single-task setup.

Reparameterized Convolution. We first develop a new baseline for our pro-
posed reparameterization, where we replace every convolution with the RC
(Sect. 3.3) counterpart. As seen in Table 2, RC achieves a performance drop of
2.13%, outperforming the 3.32% drop of the multi-task baseline, as well as the
Task-specific BNs (Table 1) that achieved a performance drop of 5.76%. This
observation corroborates the claim made in Sect. 4.4 that task-specific adapta-
tion of the convolutions is essential for a model to perform competitively for
all tasks. Additionally, we demonstrate that even without training entirely task-
specific convolutions, as in Table 1 (Task-specific Convs), a performance boost
can still be observed at a smaller magnitude, while the total number of parame-
ters scales at a slower rate (Fig. 4). RCM in Fig. 4 depicts the parameter scaling
of all the RC-based methods introduced in Table 2, described in this section.
As such, improvements in performance from this baseline do not stem from an
increase in network capacity.

Response Initialization. We investigate the effect on the performance of a
more meaningful filter bank, RI (Sect. 3.3), against the filter bank learned by
directly pre-training the RC architecture on ImageNet. In Table 2 we report
the performance of our proposed model when directly pre-trained on ImageNet
(Table 2-RC), and with the RI based filter bank (Table 2-RC+RI). Compared to
the RC model, the performance significantly improves from a 2.13% drop to a
1.12% drop with the RC+RI model. This observation clearly demonstrates that
the filter bank generated using our proposed RI approach is beneficial for better
weight initialization.

Normalized Feature Fusion. We replace the unconstrained task-specific com-
ponents of RC with the proposed NFF (Sect. 3.3). We demonstrate in Table 2
that NFF improves the performance no matter the initialization of the filter
bank. RC improves from a 2.13% drop to a 2.07% in RC+NFF, while RC+RI
improved from a 1.12% drop to 0.99% for RC+RI+NFF.
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Table 3. Comparison with state-of-the-art methods on PASCAL-Context.

Method Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑ Δm% ↓
Single-task 71.88 66.22 59.69 13.64 66.62 –

ASTMT (R-18 w/o SE) [36] 71.20 64.31 57.79 15.06 66.59 3.49

ASTMT (R-26 w SE) [36] 71.00 64.61 57.25 15.00 64.70 4.12

Series RA [45] 70.62 65.99 55.32 14.27 66.08 2.97

Parallel RA [46] 70.84 66.51 56.56 14.16 66.36 2.09

RCM (ours) 71.34 65.70 58.12 13.70 66.38 0.99

Table 4. Comparison with state-of-the-art methods on NYUD.

Method Edge ↑ SemSeg ↑ Normals ↓ Depth ↓ Δm% ↓
Single-task 68.83 35.45 22.20 0.56 –

ASTMT (R-18 w/o SE) [36] 68.60 30.69 23.94 0.60 6.96

ASTMT (R-26 w SE) [36] 73.50 30.07 24.32 0.63 7.56

Series RA [45] 67.56 31.87 23.35 0.60 5.88

Parallel RA [46] 68.02 32.13 23.20 0.59 5.02

RCM (ours) 68.44 34.20 22.41 0.57 1.48

The architecture used for the remaining experiments is the Reparameterized
Convolution (RC) with Normalized Feature Fusion (NFF), initialized using the
Response Initialization (RI) methodology. This architecture is denoted as RCM.

4.6 Comparison to State-of-the-Art

In this work, we focus on comparing to task-conditional methods that can address
MTL. We compare the performance of our method to Series Residual Adapter
(Series RA) [45] and Parallel RA [46]. Series and Parallel RAs learn multi-
ple visual domains by optimizing domain-specific residual adaptation modules
(rather than using RCM as in our work, Fig. 2c) on an ImageNet pre-trained
backbone. Since both methods were developed for multi-domain settings, we
optimize them using our own pipeline, ensuring a fair comparison amongst the
methods while additionally benchmarking the capabilities of multi-domain meth-
ods in a multi-task setup. We further report the performance of ASTMT [36],
which utilizes an architecture resembling that of Parallel RA [46] with Squeeze-
and-Excitation (SE) blocks [18] and adversarial task disentanglement of gradi-
ents. Specifically, we report the performance of the models using a ResNet-26
(R-26) DeepLab-V3+ with SE as reported in [36], and also optimize with the
use of their codebase a ResNet-18 model without SE. The latter model uses an
architecture resembling more closely that of the other methods since SE can be
additionally incorporated in the others as well. We report the average perfor-
mance drop with respect to our single-task baseline.
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(a) Input image (b) Semseg (c) Parts

(d) Edge (e) Normals (f) Sal

Fig. 5. Feature visualizations. We visualize the features of the input image (a) for
the tasks of PASCAL-Context. The first row of each sub-figure corresponds to the
responses of the single-task model (ST), the second row those of Parallel RA (Par.
RA) [46] and the final row of our proposed method (RCM). For all tasks and depths
of the network, the responses of RCM closely resemble those of ST, in contrast to the
responses of Par. RA. This is made apparent from the colours utilized by the different
methods. The RGB values were identified from a common PCA basis across the three
methods in order to highlight similarities and differences between them.

The results for PASCAL-Context (Table 3) and NYUD (Table 4) demonstrate
that our method achieves the best performance, outperforming the other meth-
ods that make use of RA modules. This demonstrates that although the RA can
perform competitively in multi-domain settings, placing the convolution in series
without non-linearity is a more promising direction for the drastic adaptations
required for different tasks in a multi-task learning setup.

We visualize in Fig. 5 the learned representations of single-task, Parallel
RA [46], and RCM across tasks and network depths. For each task and layer
combination, we compute a common PCA basis for the methods above and
depict the first three principal components as RGB values. For all tasks and
layers of the network, the representations of RCM closely resemble those of the
single-task models. Simultaneously, Parallel RA is unable to adapt the convolu-
tion behavior to the extent required to be comparable to single-task models.

4.7 Incremental Learning for Multi-tasking

We further evaluate the methods from Sect. 4.6 in the incremental learning (IL)
setup. In other words, we investigate the capabilities of the models to learn
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Table 5. Incremental learning experiments on a network originally trained on the
low-level tasks (Edge and Normals) of PASCAL-Context.

Method Edge ↑ Normals ↓ SemSeg ↑ Parts ↑ Sal ↑ Δm% ↓
Single-task 71.88 13.64 66.22 59.69 66.62 –

ASTMT (R-18 w/o SE) [36] 70.70 14.84 55.32 50.49 64.34 11.77

Series RA [45] 70.62 14.27 65.99 55.32 66.08 2.83

Parallel RA [46] 70.84 14.16 66.51 56.56 66.36 1.73

RCM (ours) 71.34 13.70 65.70 58.12 66.38 1.26

Table 6. Incremental learning experiments on a network originally trained on the
high-level tasks (SemSeg and Parts) of PASCAL-Context.

Method SemSeg ↑ Parts ↑ Edge ↑ Normals ↓ Sal ↑ Δm% ↓
Single-task 66.22 59.69 71.88 13.64 66.62 –

ASTMT (R-18 w/o SE) [36] 63.91 57.33 68.67 14.12 64.43 3.76

Series RA [45] 65.99 55.32 70.62 14.27 66.08 2.39

Parallel RA [46] 66.51 56.56 70.84 14.16 66.36 1.88

RCM (ours) 65.70 58.12 71.34 13.70 66.38 0.52

new tasks without the need to be completely retrained on the entire task dic-
tionary. We divide the tasks of PASCAL-Context into three groups, (i) edge
detection and surface normals (low-level tasks), (ii) saliency (mid-level task) and
(iii) semantic segmentation and human parts segmentation (high-level tasks). IL
experiments are conducted by allowing the base network to initially use knowl-
edge from either (i) or (iii), and reporting the capability for the optimized model
to learn additional tasks without affecting the performance of the already learned
tasks (the performance drop is calculated over the new tasks that were not used
in the initial training). In the IL setup, ASTMT [36] is initially trained using an
R-18 backbone without SE (a comparable backbone to the competing methods
for a fair comparison) on the subset of the tasks (either i or iii). New tasks can be
incorporated by training their task-specific modules independently. On the other
hand, Series RA, Parallel RA, and RCM, were designed to be inherently incre-
mental due to directly optimizing only the task-specific modules. Consequently,
their task-specific performance in the IL setup is identical to that reported in
Sect. 4.6.

In Tables 5 and 6 we report the performance of tasks that are utilized to
generate the initial knowledge of the model in grey (important for ASTMT [36]),
while in black the performance of the incrementally learned tasks. As shown in
both tables, and in particular Table 5, ASTMT does not perform competitively
in the IL experiments. This observation further demonstrates the importance
of utilizing generic filter banks that can be adapted based on the task-specific
needs, in particular for IL setups. We consider research in generic multi-task
filter banks to be a promising direction.
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5 Conclusion

We have presented a novel method of a convolutional operation reparameteri-
zation and its application to training multi-task learning architectures. These
reparameterized architectures can be applied on a multitude of different tasks,
and allow the CNN to be inherently incremental, while additionally eliminating
task interference, all by construction. We evaluate our model on two datasets and
multiple tasks, and show experimentally that it outperforms competing baselines
that address similar challenges. We further demonstrate its efficacy when com-
pared to the state-of-the-art task-conditional multi-task method, which is unable
to tackle incremental learning.
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