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Abstract. We introduce the task of 3D object localization in RGB-D
scans using natural language descriptions. As input, we assume a point
cloud of a scanned 3D scene along with a free-form description of a spec-
ified target object. To address this task, we propose ScanRefer, learn-
ing a fused descriptor from 3D object proposals and encoded sentence
embeddings. This fused descriptor correlates language expressions with
geometric features, enabling regression of the 3D bounding box of a tar-
get object. We also introduce the ScanRefer dataset, containing 51, 583
descriptions of 11, 046 objects from 800 ScanNet [8] scenes. ScanRefer
is the first large-scale effort to perform object localization via natural
language expression directly in 3D (Code: https://daveredrum.github.
io/ScanRefer/).

1 Introduction

In recent years, there has been tremendous progress in both semantic under-
standing and localization of objects in 2D images from natural language (also
known as visual grounding). Datasets such as ReferIt [27], RefCOCO [70], and
Flickr30K Entities [46] have enabled the development of various methods for
visual grounding in 2D [21,22,38]. However, these methods and datasets are
restricted to 2D images, where object localization fails to capture the true 3D
extent of an object (see Fig. 1, left). This is a limitation for applications rang-
ing from assistive robots to AR/VR agents where understanding the global 3D
context and the physical size is important, e.g., finding objects in large spaces,
interacting with them, and understanding their spatial relationships. Early work
by Kong et al. [30] looked at coreference in 3D, but was limited to single-view
RGB-D images.

In this work, we address these shortcomings by proposing the task of object
localization using natural language directly in 3D space. Specifically, we develop
a neural network architecture that localizes objects in 3D point clouds given nat-
ural language descriptions referring to the underlying objects; i.e., for a given text
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Fig. 1. We introduce the task of object localization in 3D scenes using natural language.
Given as input a 3D scene and a natural language expression, we predict the bounding
box for the target 3D object (right). The counterpart 2D task (left) does not capture
the physical extent of the 3D objects.

description in a 3D scene, we predict a corresponding 3D bounding box match-
ing the best-described object. To facilitate the task, we collect the ScanRefer
dataset, which provides natural language descriptions for RGB-D scans in Scan-
Net [8]. In total, we acquire 51, 583 descriptions of 11, 046 objects. To the best of
our knowledge, our ScanRefer dataset is the first large-scale effort that combines
3D scene semantics and free-form descriptions. In summary, our contributions
are as follows:

– We introduce the task of localizing objects in 3D environments using natural
language descriptions.

– We provide the ScanRefer dataset containing 51, 583 human-written free-form
descriptions of 11, 046 objects in 3D scans.

– We propose a neural network architecture for localization based on language
descriptions that directly fuses features from 2D images and language expres-
sions with 3D point cloud features.

– We show that our end-to-end method outperforms the best 2D visual ground-
ing method that simply backprojects its 2D predictions to 3D by a significant
margin (9.04 Acc@0.5IoU vs. 22.39 Acc@0.5IoU).

2 Related Work

Grounding Referring Expressions in Images. There has been much work
connecting images to natural language descriptions across tasks such as image
captioning [25,26,58,63], text-to-image retrieval [24,60], and visual ground-
ing [22,38,69]. The task of visual grounding (with variants also known as refer-
ring expression comprehension or phrase localization) is to localize a region
described by a given referring expression, the query. Localization can be spec-
ified by a 2D bounding box [27,38,46] or a segmentation mask [21], with the
input description being short phrases [27,46] or more complex descriptions [38].
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Table 1. Comparison of referring expression datasets in terms of the number of objects
(#objects), number of expressions (#expressions), average lengths of the expressions,
data format and the 3D context.

Dataset #objects #expressions AvgLeng Data format 3D
context

ReferIt [27] 96,654 130,364 3.51 Image –

RefCOCO [70] 50,000 142,209 3.50 Image –

Google RefExp [38] 49,820 95,010 8.40 Image –

SUN-Spot [40] 3,245 7,990 14.04 Image Depth

REVERIE [51] 4,140 21,702 18.00 Image Panoramic
image

ScanRefer (ours) 11,046 51,583 20.27 3D scan Depth,
size,
location,
etc.

Recently, Acharya et al. [1] proposed visual query detection where the input is
a question. The focus of our work is to lift this task to 3D, focusing on complex
descriptions that can localize an unique object in a scene.

Existing methods focus on predicting 2D bounding boxes [11,22,36,45,54,
59,60,69,70] and some predict segmentation masks [5,21,32,34,39,68]. A two-
stage pipeline is common, where first an object detector, either unsupervised [73]
or pretrained [53], is used to propose regions of interest, and then the regions
are ranked by similarity to the query, with the highest scoring region provided
as the final output. Other methods address the referring expression task with
a single stage end-to-end network [21,42,67]. There are also approaches that
incorporate syntax [16,35], use graph attention networks [61,65,66], speaker-
listener models [38,71], weakly supervised methods [10,62,72] or tackle zero-shot
settings for unseen nouns [55].

However, all these methods operate on 2D image datasets [27,46,70]. A recent
dataset [40] integrates RGB-D images but lacks the complete 3D context beyond
a single image. Qi et al. [51] study referring expressions in an embodied set-
ting, where semantic annotations are projected from 3D to 2D bounding boxes
on images observed by an agent. Our contribution is to lift NLP tasks to 3D
by introducing the first large-scale effort that couples free-form descriptions to
objects in 3D scans. Table 1 summarizes the difference between our ScanRefer
dataset and existing 2D datasets.

Object Detection in 3D. Recent work on 3D object detection on volumetric
grids [12,18,19,31,41] has been applied to several 3D RGB-D datasets [3,8,57].
As an alternative to regular grids, point-based methods, such as PointNet [49] or
PointNet++ [50], have been used as backbones for 3D detection and/or object
instance segmentation [13,64]. Recently, Qi et al. [48] introduced VoteNet, a
3D object detection method for point clouds based on Hough Voting [20]. Our
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Fig. 2. Our task: ScanRefer takes as input a 3D scene point cloud and a description
of an object in the scene, and predicts the object bounding box.

Fig. 3. Our data collection pipeline. The annotator writes a description for the focused
object in the scene. Then, a verifier selects the objects that match the description. The
selected object is compared with the target object to check that it can be uniquely
identified by the description.

approach extracts geometric features in a similar fashion, but backprojects 2D
feature information since the color signal is useful for describing 3D objects with
natural language.

3D Vision and Language. Vision and language research is gaining popularity
in image domains (e.g., image captioning [25,37,58,63], image-text matching [14,
15,23,29,33], and text-to-image generation [15,52,56]), but there is little work on
vision and language in 3D. Chen et al. [6] learn a joint embedding of 3D shapes
from ShapeNet [4] and corresponding natural language descriptions. Achlioptas
et al. [2] disambiguate between different objects using language. Recent work has
started to investigate grounding of language to 3D by identifying 3D bounding
boxes of target objects for simple arrangements of primitive shapes of different
colors [47]. Instead of focusing on isolated objects, we consider large 3D RGB-D
reconstructions that are typical in semantic 3D scene understanding. A closely
related work by Kong et al. [30] studied the problem of coreference in text
description of single-view RGB-D images of scenes, where they aimed to connect
noun phrases in a scene description to 3D bounding boxes of objects.

3 Task

We introduce the task of object localization in 3D scenes using natural language
(Fig. 2). The input is a 3D scene and free-form text describing an object in the



206 D. Z. Chen et al.

Fig. 4. Description lengths

Table 2. ScanRefer dataset statistics.

Number of descriptions 51,583

Number of scenes 800

Number of objects 11,046

Number of objects per scene 13.81

Number of descriptions per scene 64.48

Number of descriptions per object 4.67

Size of vocabulary 4,197

Average length of descriptions 20.27

(a) (b) (c) (d) (e)

Fig. 5. Word clouds of terms for (a) object names (b) colors (c) shapes (d) sizes, and
(e) spatial relations for the ScanRefer dataset. Bigger fonts indicate more frequent
terms in the descriptions.

scene. The scene is represented as a point cloud with additional features such as
colors and normals for each point. The goal is to predict the 3D bounding box
of the object that matches the input description.

4 Dataset

The ScanRefer dataset is based on ScanNet [8] which is composed of 1,613 RGB-
D scans taken in 806 unique indoor environments. We provide 5 descriptions for
each object in each scene, focusing on complete coverage of all objects that are
present in the reconstruction. Here, we summarize the annotation process and
statistics of our dataset (see supplement for more details).

4.1 Data Collection

We deploy a web-based annotation interface on Amazon Mechanical Turk (AMT)
to collect object descriptions in the ScanNet scenes. The annotation pipeline con-
sists of two stages: i) description collection, and ii) verification (Fig. 3). From each
scene, we select objects to annotate by restricting to indoor furniture categories
and excluding structural objects such as “Floor” and “Wall”. We manually check
the selected objects are recognizable and filter out objects with reconstructions
that are too incomplete or hard to identify.

Annotation. The 3D web-based UI shows each object in context. The work-
ers see all objects other than the target object faded out and a set of captured
image frames to compensate for incomplete details in the reconstructions. The
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initial viewpoint is random but includes the target object. Camera controls allow
for adjusting the camera view to better examine the target object. We ask the
annotator to describe the appearance of the target and its spatial location rela-
tive to other objects. To ensure the descriptions are informative, we require the
annotator to provide at least two full sentences. We batch and randomize the
tasks so that each object is described by five different workers.

Verification. We recruit trained workers (students) to verify that the descrip-
tions are discriminative and correct. Verifiers are shown the 3D scene and a
description, and are asked to select the objects (potentially multiple) in the
scene that match the description. Descriptions that result in the wrong object
or multiple objects are filtered out. Verifiers also correct spelling and wording
issues in the description when necessary. We filter out 2,823 invalid descriptions
that do not match the target objects and fix writing issues for 2,129 descriptions.

4.2 Dataset Statistics

We collected 51,583 descriptions for 800 ScanNet scenes1. On average, there
are 13.81 objects, 64.48 descriptions per scene, and 4.67 descriptions per object
after filtering (see Table 2 for basic statistics, Table 3 for sample descriptions, and
Fig. 4 for the distribution of the description lengths). The descriptions are com-
plex and diverse, covering over 250 types of common indoor objects, and exhibit-
ing interesting linguistic phenomena. Due to the complexity of the descriptions,
one of the key challenges of our task is to determine what parts of the description
describe the target object, and what parts describe neighboring objects. Among
those descriptions, 41,034 mention object attributes such as color, shape, size,
etc. We find that many people use spatial language (98.7%), color (74.7%), and
shape terms (64.9%). In contrast, only 14.2% of the descriptions convey size
information. Figure 5 shows commonly used object names and attributes. Table 3
shows interesting expressions, including comparatives (“taller”) and superlatives
(“the biggest one”), as well as phrases involving ordinals such as “third from
the wall”. Overall, there are 672 and 2,734 descriptions with comparative and
superlative phrases. We provide more detailed statistics in the supplement.

5 Method

Our architecture consists of two main modules: 1) detection & encoding; 2)
fusion & localization (Fig. 6). The detection & encoding module encodes the
input point cloud and description, and outputs the object proposals and the
language embedding, which are fed into the fusion module to mask out invalid
object proposals and produce the fused features. Finally, the object proposal
with the highest confidence predicted by the localization module is chosen as
the final output.

1 6 scenes are excluded since they do not contain any objects to describe.
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Table 3. Examples from our dataset illustrating different types of phrases such as
attributes (1–8) and parts (5), comparatives (4), superlatives (5), intra-class spatial
relations (6), inter-class spatial relations (7) and ordinal numbers (8).

1. There is a brown wooden chair placed right against the wall

2. This is a triangular shape table. The table is near the
armchair

3. The little nightstand. The nightstand is on the right of the
bed

4. This is a short trash can. It is in front of a taller trash can

5. The couch is the biggest one below the picture. The couch
has three seats and is brown

6. This is a gray desk chair. This chair is the last one on the
side closest to the open door

7. The kitchen counter is covering the lower cabinets. The
kitchen counter is under the upper cabinets that are mounted
above

8. This is a round bar stool. It is third from the wall

Fig. 6. ScanRefer architecture: The PointNet++ [50] backbone takes as input a point
cloud and aggregates it to high-level point feature maps, which are then clustered and
fused as object proposals by a voting module similar to Qi et al. [48]. Object proposals
are masked by the objectness predictions, and then fused with the sentence embedding
of the input descriptions, which is obtained by a GloVE [44] + GRU [7] embedding.
In addition, an extra language-to-object classifier serves as a proxy loss. We apply a
softmax function in the localization module to output the confidence scores for the
object proposals.

5.1 Data Representations

Point Clouds. We randomly sample NP vertices of one scan from ScanNet
as the input point cloud P = {(pi, fi)}, where pi ∈ R3 represents the point
coordinates in 3D space and fi stands for additional point features such as
colors and normals. Note that the point coordinates pi provides only geometrical
information and does not contain other visual information such as color and
texture. Since descriptions of objects do refer to attributes such as color and
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texture, we incorporate visual appearance by adapting the feature projection
scheme in Dai et al. [9] to project multi-view image features vi ∈ R128 to the
point cloud. The image features are extracted using a pre-trained ENet [43].
Following Qi et al. [48], we also append the height of the point from the ground
and normals to the new point features f ′

i ∈ R135. The final point cloud data
is prepared offline as P ′ = {(pi, f ′

i)} ∈ RNP ×135. We set NP to 40, 000 in our
experiments.

Descriptions. We tokenize the input description with SpaCy [17] and the NW

tokens to 300-dimensional word embedding vectors W = {wj} ∈ RNW ×300 using
pretrained GloVE word embeddings [44].

5.2 Network Architecture

Our method takes as input the preprocessed point cloud P ′ and the word embed-
ding sequence W representing the input description and outputs the 3D bound-
ing box for the proposal which is most likely referred to by the input descrip-
tion. Conceptually, our localization pipeline consists of the following four stages:
detection, encoding, fusion and localization.

Detection. As the first step in our network, we detect all probable objects in
the given point cloud. To construct our detection module, we adapt the Point-
Net++ [50] backbone and the voting module in Qi et al. [48] to process the point
cloud input and aggregate all object candidates to individual clusters. The out-
put from the voting module is a set of point clusters C ∈ RM×128 representing
all object proposals with enriched point features, where M is the upper bound of
the number of proposals. Next, the proposal module takes in the point clusters
and processes those clusters to predict the objectness mask Dobjn ∈ RM×1 and
the axis-aligned bounding boxes Dbbox ∈ RM×(6+18) for all M proposals, where
each Di

bbox = (cx, cy, cz, rx, ry, rz, l) consists of the box center c, the box lengths
r and a vector l ∈ R18 representing the semantic predictions.

Encoding. The sequences of word embedding vectors of the input description
are fed into a GRU cell [7] to aggregate the textual information. We take the
final hidden state e ∈ R256 of the GRU cell as the final language embedding.

Fusion. The outputs from the previous detection and encoding modules are fed
into the fusion module (orange block in Fig. 6, see supplemental for details) to
integrate the point features together with the language embeddings. Specifically,
each feature vector ci ∈ R128 in the point cluster C is concatenated with the
language embedding e ∈ R256 as the extended feature vector, which is then
masked by the predicted objectness mask Di

objn ∈ {0, 1} and fused by a multi-
layer perceptron as the final fused cluster features C ′ = {c′

i} ∈ RM×128.

Localization. The localization module aims to predict which of the proposed
bounding boxes corresponds to the description. Point clusters with fused cluster
features C′ = {c′

i} are processed by a single layer perceptron to produce the raw
scores of how likely each box is the target box. We use a softmax function to
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squash all the raw scores into the interval of [0, 1] as the localization confidences
S = {si} ∈ RM×1 for the proposed M bounding boxes.

5.3 Loss Function

Localization Loss. For the predicted localization confidence si ∈ [0, 1] for
object proposal Di

bbox, the target label is represented as ti ∈ {0, 1}. Following
the strategy of Yang et al. [67], we set the label tj for the jth box that has the
highest IoU score with the ground truth box as 1 and others as 0. We then use
a cross-entropy loss as the localization loss Lloc = −∑M

i=1 ti log(si).

Object Detection Loss. We use the same detection loss Ldet as introduced in
Qi et al. [48] for object proposals Di

bbox and Di
objn: Ldet = Lvote-reg+0.5Lobjn-cls+

Lbox +0.1Lsem-cls, where Lvote-reg, Lobjn-cls, Lbox and Lsem-cls represent the vote
regression loss (defined in Qi et al. [48]), the objectness binary classification
loss, box regression loss and the semantic classification loss for the 18 ScanNet
benchmark classes, respectively. We ignore the bounding box orientations in
our task and simplify Lbox as Lbox = Lcenter-reg + 0.1Lsize-cls + Lsize-reg, where
Lcenter-reg, Lsize-cls and Lsize-reg are used for regressing the box center, classifying
the box size and regressing the box size, respectively. We refer readers to Qi et
al. [48] for more details.

Language to Object Classification Loss. To further supervise the train-
ing, we include an object classification loss based on the input description. We
consider the 18 ScanNet benchmark classes (excluding the label “Floor” and
“Wall”). The language to object classification loss Lcls is a multi-class cross-
entropy loss.

Final Loss. The final loss is a linear combination of the localization loss, object
detection loss and the language to object classification loss: L = αLloc +βLdet +
γLcls, where α, β and γ are the weights for the individual loss terms. After
fine-tuning on the validation split, we set those weights to 1, 10, and 10 in our
experiments to ensure the loss terms are roughly of the same magnitude.

5.4 Training and Inference

Training. During training, the detection and encoding modules propose object
candidates as point clusters, which are then fed into the fusion and localization
modules to fuse the features from the previous module and predict the final
bounding boxes. We train the detection backbone end-to-end with the detection
loss. In the localization module, we use a softmax function to compress the
raw scores to [0, 1]. The higher the predicted confidence is, the more likely the
proposal will be chosen as output. To filter out invalid object proposals, we use
the predicted objectness mask to ensure that only positive proposals are taken
into account. We set the maximum number of proposals M to 256 in practice.



ScanRefer: 3D Object Localization in RGB-D Scans Using Natural Language 211

Inference. Since there can be overlapping detections, we apply a non-maximum
suppression module to suppress those overlapping proposals in the inference step.
The remaining object proposals are fed into the localization module to predict
the final score for each proposal. The number of object proposals is less than the
upper bound M in the training step.

Implementation Details. We implement our architecture using PyTorch and
train the model end-to-end using ADAM [28] with a learning rate of 1e−3.
We train the model for roughly 130, 000 iterations until convergence. To avoid
overfitting, we set the weight decay factor to 1e−5 and apply data augmentations
to our training data. For point clouds, we apply rotation about all three axes
by a random angle in [−5◦, 5◦] and randomly translate the point cloud within
0.5 meters in all directions. We rotate around all axes (not just up), since the
ground alignment in ScanNet is imperfect.

6 Experiments

Train/Val/Test Split. Following the official ScanNet [8] split, we split our
data into train/val/test sets with 36,665, 9,508 and 5,410 samples respectively,
ensuring disjoint scenes for each split. Results and analysis are conducted on the
val split (except for results in Table 4 bottom). The test set is hidden and will
be reserved for the ScanRefer benchmark.

Metric. To evaluate the performance of our method, we measure the thresholded
accuracy where the positive predictions have higher intersection over union (IoU)
with the ground truths than the thresholds. Similar to work with 2D images, we
use Acc@kIoU as our metric, where the threshold value k for IoU is set to 0.25
and 0.5 in our experiments.

Fig. 7. Object localization in an image using a 2D grounding method and back-
projecting the result to the 3D scene (blue box) vs. directly localizing in the 3D scene
(green box). Grounding in 2D images suffers from the limited view of a single frame,
which results in inaccurate 3D bounding boxes. (Color figure online)

Baselines. We design several baselines by 1) evaluating our language localiza-
tion module on ground truth bounding boxes, 2) adapting 3D object detectors,
and 3) adapting 2D referring methods to 3D using back-projection.
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OracleCatRand & OracleRefer: To examine the difficulty of our task, we
use an oracle with ground truth bounding boxes of objects, and predict the box
by simply selecting a random box that matches the object category (OracleCa-
tRand) or our trained fusion and localization modules (OracleRefer).

VoteNetRand & VoteNetBest: From the predicted object proposals of the
VoteNet backbone [48], we select one of the bounding box proposals, either by
selecting a box randomly with the correct semantic class label (VoteNetRand) or
the best matching box given the ground truth (VoteNetBest). VoteNetBest pro-
vides an upper bound on how well the object detection component works for our
task, while VoteNetRand provides a measure of whether additional information
beyond the semantic label is required.

SCRC & One-Stage: 2D image baselines for referring expression comprehen-
sion by extending SCRC [22] and One-stage [67] to 3D using back-projection.
Since 2D referring expression methods operate on a single image frame, we con-
struct a 2D training set by using the recorded camera pose associated with each
annotation to retrieve the frame from the scan video with the closest camera
pose. At inference time, we sample frames from the scans (using every 20th
frame) and predict the target 2D bounding boxes in each frame. We then select
the 2D bounding box with the highest confidence score from the bounding box
candidates and project it to 3D using the depth map for that frame (see Fig. 7).

Ours: We compare our full end-to-end model against using a pretrained VoteNet
backbone with a trained GRU [7] for selecting a matching bounding box.

6.1 Task Difficulty

To understand how informative the input description is beyond capturing the
object category, we analyze the performance of the methods on “unique” and
“multiple” subsets with 1,875 and 7,663 samples from val split, respectively. The
“unique” subset contains samples where only one unique object from a certain
category matches the description, while the “multiple” subset contains ambigu-
ous cases where there are multiple objects of the same category. For instance, if
there is only one refrigerator in a scene, it is sufficient to identify that the sen-
tence refers to a refrigerator. In contrast, if there are multiple objects of the same
category in a scene (e.g., chair), the full description must be taken into account.
From the OracleCatRand baseline, we see that information from the description,
other than the object category, is necessary to disambiguate between multiple
objects (see Table 4 Acc@0.5IoU multiple). From the OracleRefer baseline, we
see that using our fused language module, we are able to improve beyond over
selecting a random object of the same category (multiple Acc@0.5IoU increases
from 17.84% to 32.00%), but we often fail to identify the correct object category
(unique Acc@0.5IoU drops from 100.0% to 73.55%).
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Table 4. Comparison of localization results obtained by our ScanRefer and baseline
models. We measure percentage of predictions whose IoU with the ground truth boxes
are greater than 0.25 and 0.5. We also report scores on “unique” and “multiple” subsets;
unique means that there is only a single object of its class in the scene. We outperform
all baselines by a significant margin.

Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

OracleCatRand (GT boxes +
RandCat)

100.00 100.00 18.09 17.84 29.99 29.76

OracleRefer (GT boxes +
GRU)

74.09 73.55 32.57 32.00 40.63 40.06

VoteNetRand (VoteNet [48]
+ RandCat)

34.34 19.35 5.73 2.81 10.00 5.28

VoteNetBest (VoteNet [48] +
Best)

88.85 85.50 46.63 46.42 55.10 54.33

SCRC [22] + backproj 24.03 9.22 17.77 5.97 18.70 6.45

One-stage [67] + backproj 29.32 22.82 18.72 6.49 20.38 9.04

Ours (VoteNet [48] + GRU) 55.09 37.66 26.37 16.03 32.49 20.53

Ours (end-to-end) 63.04 39.95 28.91 18.17 35.53 22.39

Test results (ScanRefer benchmark)

OracleRefer (GT boxes +
GRU)

72.37 71.84 31.81 31.26 39.69 39.13

VoteNetBest (VoteNet [48] +
Best)

86.78 83.85 45.54 45.33 53.82 53.07

Ours (VoteNet [48] + GRU) 57.67 36.96 28.31 15.16 34.90 20.05

Ours (end-to-end) 62.90 40.31 30.88 16.54 38.06 21.87

6.2 Quantitative Analysis

We evaluate the performance of our model against baselines on the val and
the hidden test split of ScanRefer which serves as the ScanRefer benchmark
(see Table 4). Note that for all results using Ours and VoteNet for object pro-
posal, we take the average of 5 differently seeded subsamplings (of seed points
and vote points) during inference (see supplemental for more details on experi-
mental variance). Training the detection backbone jointly with the localization
module (end-to-end) leads to a better performance when compared to the model
trained separately (VoteNet [48] + GRU). However, as the accuracy gap between
VoteNetBest and ours (end-to-end) indicates, there is still room for improving
the match between language inputs and the visual signals. For the val split, we
also include additional experiments on the 2D baselines and a comparison with
VoteNetRand. With just category information, VoteNetRand is able to perform
relatively well on the “unique” subset, but has trouble identifying the correct
object in the “multiple” case. However, the gap between the VoteNetRand and
OracleCatRand for the “unique” case shows that 3D object detection still need
to be improved. Our method is able to improve over the bounding box predic-



214 D. Z. Chen et al.

Fig. 8. Qualitative results from baseline methods and ScanRefer. Predicted boxes are
marked green if they have an IoU score higher than 0.5, otherwise they are marked
red. We show examples where our method produced good predictions (blue block) as
well as failure cases (orange block). Image best viewed in color. (Color figure online)

tions from VoteNetRand, and leverages additional information in the description
to differentiate between ambiguous objects. It adapts better to the 3D context
compared to the 2D methods (SCRC and One-stage) which is limited by the
view of a single frame (see Fig. 7 and Fig. 8).
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Table 5. Ablation study with different features. We measure the percentages of pre-
dictions whose IoU with the ground truth boxes are greater than 0.25 and 0.5. Unique
means that there is only a single object of its class in the scene.

Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Ours (xyz) 50.83 31.81 24.38 13.98 29.51 17.43

Ours (xyz+rgb) 51.22 32.09 24.50 14.51 29.68 17.92

Ours (xyz+rgb+normals) 54.24 33.71 25.44 15.53 31.05 19.05

Ours (xyz+multiview) 56.69 35.32 25.83 14.26 31.63 19.75

Ours (xyz+multiview+normals) 55.27 35.51 25.95 16.29 31.64 20.02

Ours (xyz+lobjcls) 58.92 35.01 28.27 16.99 34.21 20.49

Ours (xyz+rgb+lobjcls) 60.11 37.89 27.21 16.49 33.59 20.65

Ours (xyz+rgb+normals+lobjcls) 60.54 39.19 26.95 16.69 33.47 21.06

Ours (xyz+multiview+lobjcls) 61.16 39.02 26.49 16.69 34.71 21.87

Ours

(xyz+multiview+normals+lobjcls)

63.04 39.95 28.91 18.17 35.53 22.39

6.3 Qualitative Analysis

Figure 8 shows results produced by OracleRefer, One-stage, and our method. The
successful localization cases in the green boxes show our architecture can handle
the semantic correlation between the scene contexts and the textual descriptions.
In contrast, even provided with a pool of ground truth proposals, OracleRefer
sometimes still fails to predict correct bounding boxes, while One-stage is limited
by the single view and hence cannot produce accurate bounding boxes in 3D
space. The failure case of OracleRefer suggests that our fusion & localization
module can still be improved. Some failure cases of our method are displayed
in the orange block in Fig. 8, indicating that our architecture cannot handle all
spatial relations to distinguish between ambiguous objects.

6.4 Ablation Studies

We conduct an ablation study on our model to examine what components and
point cloud features contribute to the performance (see Table 5).

Does a Language-Based Object Classifier Help? To show the effectiveness
of the extra supervision on input descriptions, we conduct an experiment with
the language to object classifier (+lobjcls) and without. Architectures with a
language to object classifier outperform ones without it. This indicates that it is
helpful to predict the category of the target object based on the input description.

Do Colors Help? We compare our method trained with the geometry and
multi-view image features (xyz+multiview+lobjcls) with a model trained with
only geometry (xyz+lobjcls) and one trained with RGB values from the recon-
structed meshes (xyz+rgb+lobjcls). ScanRefer trained with geometry and pre-
processed multi-view image features outperforms the other two models. The
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performance of models with color information are higher than those that use
only geometry.

Do Other Features Help? We include normals from the ScanNet meshes
to the input point cloud features and compare performance against networks
trained without them. The additional 3D information improves performance.
Our architecture trained with geometry, multi-view features, and normals
(xyz+multiview+ normals+lobjcls) achieves the best performance among all
ablations.

7 Conclusion

In this work, we introduce the task of localizing a target object in a 3D point
cloud using natural language descriptions. We collect the ScanReferdataset which
contains 51,583 unique descriptions for 11,046 objects from 800 ScanNet [8]
scenes. We propose an end-to-end method for localizing an object with a free-
formed description as reference, which first proposes point clusters of interest and
then matches them to the embeddings of the input sentence. Our architecture is
capable of learning the semantic similarities of the given contexts and regressing
the bounding boxes for the target objects. Overall, we hope that our new dataset
and method will enable future research in the 3D visual language field.
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