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Abstract. Super-resolution is an ill-posed problem, since it allows for
multiple predictions for a given low-resolution image. This fundamental
fact is largely ignored by state-of-the-art deep learning based approaches.
These methods instead train a deterministic mapping using combinations
of reconstruction and adversarial losses. In this work, we therefore pro-
pose SRFlow: a normalizing flow based super-resolution method capa-
ble of learning the conditional distribution of the output given the low-
resolution input. Our model is trained in a principled manner using a
single loss, namely the negative log-likelihood. SRFlow therefore directly
accounts for the ill-posed nature of the problem, and learns to predict
diverse photo-realistic high-resolution images. Moreover, we utilize the
strong image posterior learned by SRFlow to design flexible image manip-
ulation techniques, capable of enhancing super-resolved images by, e.g.,
transferring content from other images. We perform extensive experi-
ments on faces, as well as on super-resolution in general. SRFlow out-
performs state-of-the-art GAN-based approaches in terms of both PSNR
and perceptual quality metrics, while allowing for diversity through the
exploration of the space of super-resolved solutions. Code: git.io/Jfpyu.

1 Introduction

Single image super-resolution (SR) is an active research topic with several impor-
tant applications. It aims to enhance the resolution of a given image by adding
missing high-frequency information. Super-resolution is therefore a fundamen-
tally ill-posed problem. In fact, for a given low-resolution (LR) image, there exist
infinitely many compatible high-resolution (HR) predictions. This poses severe
challenges when designing deep learning based super-resolution approaches.

Initial deep learning approaches [11,12,19,21,23] employ feed-forward archi-
tectures trained using standard L2 or L1 reconstruction losses. While these meth-
ods achieve impressive PSNR, they tend to generate blurry predictions. This
shortcoming stems from discarding the ill-posed nature of the SR problem. The
employed L2 and L1 reconstruction losses favor the prediction of an average over
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Fig. 1. While prior work trains a deterministic mapping, SRFlow learns the distribu-
tion of photo-realistic HR images for a given LR image. This allows us to explicitly
account for the ill-posed nature of the SR problem, and to sample diverse images. (8×
upscaling)

the plausible HR solutions, leading to the significant reduction of high-frequency
details. To address this problem, more recent approaches [2,15,22,38,46,53] inte-
grate adversarial training and perceptual loss functions. While achieving sharper
images with better perceptual quality, such methods only predict a single SR
output, which does not fully account for the ill-posed nature of the SR problem.

We address the limitations of the aforementioned approaches by learning the
conditional distribution of plausible HR images given the input LR image. To
this end, we design a conditional normalizing flow [10,37] architecture for image
super-resolution. Thanks to the exact log-likelihood training enabled by the flow
formulation, our approach can model expressive distributions over the HR image
space. This allows our network to learn the generation of photo-realistic SR
images that are consistent with the input LR image, without any additional
constraints or losses. Given an LR image, our approach can sample multiple
diverse SR images from the learned distribution. In contrast to conventional
methods, our network can thus explore the space of SR images (see Fig. 1).

Compared to standard Generative Adversarial Network (GAN) based SR
approaches [22,46], the proposed flow-based solution exhibits a few key advan-
tages. First, our method naturally learns to generate diverse SR samples without
suffering from mode-collapse, which is particularly problematic in the conditional
GAN setting [17,29]. Second, while GAN-based SR networks require multiple
losses with careful parameter tuning, our network is stably trained with a single
loss: the negative log-likelihood. Third, the flow network employs a fully invert-
ible encoder, capable of mapping any input HR image to the latent flow-space
and ensuring exact reconstruction. This allows us to develop powerful image
manipulation techniques for editing the predicted SR or any existing HR image.

Contributions: We propose SRFlow, a flow-based super-resolution network
capable of accurately learning the distribution of realistic HR images correspond-
ing to the input LR image. In particular, the main contributions of this work are
as follows: (i) We are the first to design a conditional normalizing flow archi-
tecture that achieves state-of-the-art super-resolution quality. (ii) We harness
the strong HR distribution learned by SRFlow to develop novel techniques for



SRFlow 717

controlled image manipulation and editing. (iii) Although only trained for super-
resolution, we show that SRFlow is capable of image denoising and restoration.
(iv) Comprehensive experiments for face and general image super-resolution
show that our approach outperforms state-of-the-art GAN-based methods for
both perceptual and reconstruction-based metrics.

2 Related Work

Single Image SR: Super-resolution has long been a fundamental challenge
in computer vision due to its ill-posed nature. Early learning-based methods
mainly employed sparse coding based techniques [8,41,51,52] or local linear
regression [43,45,49]. The effectiveness of example-based deep learning for super-
resolution was first demonstrated by SRCNN [11], which further led to the devel-
opment of more effective network architectures [12,19,21,23]. However, these
methods do not reproduce the sharp details present in natural images due to their
reliance on L2 and L1 reconstruction losses. This was addressed in URDGN [53],
SRGAN [22] and more recent approaches [2,15,38,46] by adopting a conditional
GAN based architecture and training strategy. While these works aim to predict
one example, we undertake the more ambitious goal of learning the distribution
of all plausible reconstructions from the natural image manifold.

Stochastic SR: The problem of generating diverse super-resolutions has
received relatively little attention. This is partly due to the challenging nature
of the problem. While GANs provide an method for learning a distribution over
data [14], conditional GANs are known to be extremely susceptible to mode
collapse since they easily learn to ignore the stochastic input signal [17,29].
Therefore, most conditional GAN based approaches for super-resolution and
image-to-image translation resort to purely deterministic mappings [22,35,46].
A few recent works [4,7,30] address GAN-based stochastic SR by exploring tech-
niques to avoid mode collapse and explicitly enforcing low-resolution consistency.
In contrast to those works, we design a flow-based architecture trained using the
negative log-likelihood loss. This allows us to learn the conditional distribution of
HR images, without any additional constraints, losses, or post-processing tech-
niques to enforce low-resolution consistency. A different line of research [6,39,40]
exploit the internal patch recurrence by only training the network on the input
image itself. Recently [39] employed this strategy to learn a GAN capable of
stochastic SR generation. While this is an interesting direction, our goal is to
exploit large image datasets to learn a general distribution over the image space.

Normalizing Flow: Generative modelling of natural images poses major chal-
lenges due to the high dimensionality and complex structure of the underlying
data distribution. While GANs [14] have been explored for several vision tasks,
Normalizing Flow based models [9,10,20,37] have received much less attention.
These approaches parametrize a complex distribution py(y|θ) using an invert-
ible neural network fθ , which maps samples drawn from a simple (e.g. Gaussian)
distribution pz(z) as y = f−1

θ (z). This allows the exact negative log-likelihood
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− log py(y|θ) to be computed by applying the change-of-variable formula. The
network can thus be trained by directly minimizing the negative log-likelihood
using standard SGD-based techniques. Recent works have investigated condi-
tional flow models for point cloud generation [36,50] as well as class [24] and
image [3,48] conditional generation of images. The latter works [3,48] adapt the
widely successful Glow architecture [20] to conditional image generation by con-
catenating the encoded conditioning variable in the affine coupling layers [9,10].
The concurrent work [48] consider the SR task as an example application, but
only addressing 2× magnification and without comparisons with state-of-the-
art GAN-based methods. While we also employ the conditional flow paradigm
for its theoretically appealing properties, our work differs from these previous
approaches in several aspects. Our work is first to develop a conditional flow
architecture for SR that provides favorable or superior results compared to
state-of-the-art GAN-based methods. Second, we develop powerful flow-based
image manipulation techniques, applicable for guided SR and to editing existing
HR images. Third, we introduce new training and architectural considerations.
Lastly, we demonstrate the generality and strength of our learned image poste-
rior by applying SRFlow to image restoration tasks, unseen during training.

3 Proposed Method: SRFlow

We formulate super-resolution as the problem of learning a conditional probabil-
ity distribution over high-resolution images, given an input low-resolution image.
This approach explicitly addresses the ill-posed nature of the SR problem by aim-
ing to capture the full diversity of possible SR images from the natural image
manifold. To this end, we design a conditional normalizing flow architecture,
allowing us to learn rich distributions using exact log-likelihood based training.

3.1 Conditional Normalizing Flows for Super-Resolution

The goal of super-resolution is to predict higher-resolution versions y of a given
low-resolution image x by generating the absent high-frequency details. While
most current approaches learn a deterministic mapping x �→ y, we aim to capture
the full conditional distribution py|x(y|x,θ) of natural HR images y correspond-
ing to the LR image x. This constitutes a more challenging task, since the model
must span a variety of possible HR images, instead of just predicting a single SR
output. Our intention is to train the parameters θ of the distribution in a purely
data-driven manner, given a large set of LR-HR training pairs {(xi,yi)}M

i=1.
The core idea of normalizing flow [9,37] is to parametrize the distribution

py|x using an invertible neural network fθ . In the conditional setting, fθ maps
an HR-LR image pair to a latent variable z = fθ (y;x). We require this function
to be invertible w.r.t. the first argument y for any LR image x. That is, the
HR image y can always be exactly reconstructed from the latent encoding z as
y = f−1

θ (z;x). By postulating a simple distribution pz(z) (e.g. a Gaussian) in
the latent space z, the conditional distribution py|x(y|x,θ) is implicitly defined
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by the mapping y = f−1
θ (z;x) of samples z ∼ pz. The key aspect of normalizing

flows is that the probability density py|x can be explicitly computed as,

py|x(y|x,θ) = pz
(
fθ (y;x)

)
∣
∣
∣
∣det

∂fθ

∂y
(y;x)

∣
∣
∣
∣ . (1)

It is derived by applying the change-of-variables formula for densities, where the
second factor is the resulting volume scaling given by the determinant of the
Jacobian ∂fθ

∂y . The expression (1) allows us to train the network by minimizing
the negative log-likelihood (NLL) for training samples pairs (x,y),

L(θ;x,y) = − log py|x(y|x,θ) = − log pz
(
fθ (y;x)

) − log
∣
∣
∣
∣det

∂fθ

∂y
(y;x)

∣
∣
∣
∣ . (2)

HR image samples y from the learned distribution py|x(y|x,θ) are generated by
applying the inverse network y = f−1

θ (z;x) to random latent variables z ∼ pz.
In order to achieve a tractable expression of the second term in (2), the

neural network fθ is decomposed into a sequence of N invertible layers hn+1 =
fn

θ (hn; gθ (x)), where h0 = y and hN = z. We let the LR image to first be
encoded by a shared deep CNN gθ (x) that extracts a rich representation suitable
for conditioning in all flow-layers, as detailed in Sect. 3.3. By applying the chain
rule along with the multiplicative property of the determinant [10], the NLL
objective in (2) can be expressed as

L(θ;x,y) = − log pz(z) −
N−1∑

n=0

log
∣
∣
∣
∣det

∂fn
θ

∂hn
(hn; gθ (x))

∣
∣
∣
∣ . (3)

We thus only need to compute the log-determinant of the Jacobian ∂fn
θ

∂hn for each
individual flow-layer fn

θ . To ensure efficient training and inference, the flow layers
fn

θ thus need to allow efficient inversion and a tractable Jacobian determinant.
This is further discussed next, where we detail the employed conditional flow
layers fn

θ in our SR architecture. Our overall network architecture for flow-based
super-resolution is depicted in Fig. 2.

3.2 Conditional Flow Layers

The design of flow-layers fn
θ requires care in order to ensure a well-conditioned

inverse and a tractable Jacobian determinant. This challenge was first addressed
in [9,10] and has recently spurred significant interest [5,13,20]. We start from the
unconditional Glow architecture [20], which is itself based on the RealNVP [10].
The flow layers employed in these architectures can be made conditional in a
straight-forward manner [3,48]. We briefly review them here along with our
introduced Affine Injector layer.

Conditional Affine Coupling: The affine coupling layer [9,10] provides a sim-
ple and powerful strategy for constructing flow-layers that are easily invertible.
It is trivially extended to the conditional setting as follows,

hn+1
A = hn

A , hn+1
B = exp

(
fn

θ,s(h
n
A;u)

) · hn
B + fn

θ,b(h
n
A;u) . (4)
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Here, hn = (hn
A,hn

B) is a partition of the activation map in the channel dimen-
sion. Moreover, u is the conditioning variable, set to the encoded LR image
u = gθ (x) in our work. Note that fn

θ ,s and fn
θ ,b represent arbitrary neural net-

works that generate the scaling and bias of hn
B . The Jacobian of (4) is triangular,

enabling the efficient computation of its log-determinant as
∑

ijk fn
θ,s(h

n
A;u)ijk.

Fig. 2. SRFlow’s conditional normalizing flow architecture. Our model con-
sists of an invertible flow network fθ , conditioned on an encoding (green) of the low-
resolution image. The flow network operates at multiple scale levels (gray). The input
is processed through a series of flow-steps (blue), each consisting of four different lay-
ers. Through exact log-likelihood training, our network learns to transform a Gaussian
density pz(z) to the conditional HR-image distribution py|x(y|x, θ). During training,
an LR-HR (x,y) image pair is input in order to compute the negative log-likelihood
loss. During inference, the network operates in the reverse direction by inputting the
LR image along with a random variables z = (zl)

L
l=1 ∼ pz, which generates sample SR

images from the learned distribution py|x. (Color figure online)

Invertible 1 × 1 Convolution: General convolutional layers are often
intractable to invert or evaluate the determinant of. However, [20] demonstrated
that a 1 × 1 convolution hn+1

ij = Whn
ij can be efficiently integrated since it acts

on each spatial coordinate (i, j) independently, which leads to a block-diagonal
structure. We use the non-factorized formulation in [20].

Actnorm: This provides a channel-wise normalization through a learned scaling
and bias. We keep this layer in its standard un-conditional form [20].

Squeeze: It is important to process the activations at different scales in order to
capture correlations and structures over larger distances. The squeeze layer [20]
provides an invertible means to halving the resolution of the activation map hn

by reshaping each spatial 2 × 2 neighborhood into the channel dimension.

Affine Injector: To achieve more direct information transfer from the low-
resolution image encoding u = gθ (x) to the flow branch, we additionally intro-
duce the affine injector layer. In contrast to the conditional affine coupling layer,
our affine injector layer directly affects all channels and spatial locations in the
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activation map hn. This is achieved by predicting an element-wise scaling and
bias using only the conditional encoding u,

hn+1 = exp
(
fn

θ ,s(u)
) · hn + fθ,b(u) . (5)

Here, fθ,s and fθ,s can be any network. The inverse of (5) is trivially obtained
as hn = exp(−fn

θ ,s(u)) · (hn+1 − fn
θ,b(u)) and the log-determinant is given by∑

ijk fn
θ,s(u)ijk. Here, the sum ranges over all spatial i, j and channel indices k.

3.3 Architecture

Our SRFlow architecture, depicted in Fig. 2, consists of the invertible flow net-
work fθ and the LR encoder gθ . The flow network is organized into L levels, each
operating at a resolution of H

2l
× W

2l
, where l ∈ {1, . . . , L} is the level number and

H × W is the HR resolution. Each level itself contains K number of flow-steps.

Flow-Step: Each flow-step in our approach consists of four different layers,
as visualized in Fig. 2. The Actnorm if applied first, followed by the 1 × 1
convolution. We then apply the two conditional layers, first the Affine Injector
followed by the Conditional Affine Coupling.

Level Transitions: Each level first performs a squeeze operation that effec-
tively halves the spatial resolution. We observed that this layer can lead to
checkerboard artifacts in the reconstructed image, since it is only based on pixel
re-ordering. To learn a better transition between the levels, we therefore remove
the conditional layers first few flow steps after the squeeze (see Fig. 2). This
allows the network to learn a linear invertible interpolation between neighboring
pixels. Similar to [20], we split off 50% of the channels before the next squeeze
layer. Our latent variables (zl)L

l=1 thus model variations in the image at different
resolutions, as visualized in Fig. 2.

Low-Resolution Encoding Network gθ : SRFlow allows for the use of any
differentiable architecture for the LR encoding network gθ , since it does not need
to be invertible. Our approach can therefore benefit from the advances in stan-
dard feed-forward SR architectures. In particular, we adopt the popular CNN
architecture based on Residual-in-Residual Dense Blocks (RRDB) [46], which
builds upon [22,23]. It employs multiple residual and dense skip connections,
without any batch normalization layers. We first discard the final upsampling
layers in the RRDB architecture since we are only interested in the underlying
representation and not the SR prediction. In order to capture a richer repre-
sentation of the LR image at multiple levels, we additionally concatenate the
activations after each RRDB block to form the final output of gθ .

Details: We employ K = 16 flow-steps at each level, with two additional uncon-
ditional flow-steps after each squeeze layer (discussed above). We use L = 3 and
L = 4 levels for SR factors 4× and 8× respectively. For general image SR, we use
the standard 23-block RRDB architecture [46] for the LR encoder gθ . For faces,
we reduce to 8 blocks for efficiency. The networks fn

θ ,s and fn
θ ,b in the conditional

affine coupling (4) and the affine injector (5) are constructed using two shared
convolutional layers with ReLU, followed by a final convolution.
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3.4 Training Details

We train our entire SRFlow network using the negative log-likelihood loss (3).
We sample batches of 16 LR-HR image pairs (x,y). During training, we use an
HR patch size of 160 × 160. As optimizer we use Adam with a starting learning
rate of 5 · 10−4, which is halved at 50%, 75%, 90% and 95% of the total training
iterations. To increase training efficiency, we first pre-train the LR encoder gθ

using an L1 loss for 200k iterations. We then train our full SRFlow architecture
using only the loss (3) for 200k iterations. Our network takes 5 d to train on a
single NVIDIA V100 GPU. Further details are provided in the supplementary.

Fig. 3. Random 8× SR samples gen-
erated by SRFlow using a temperature
τ = 0.8. LR image is shown in top left.

Source Target Transferred Source Target Transferred

Fig. 4. Latent space transfer from the
region marked by the box to the target
image. (8×)

Datasets: For face super-resolution, we use the CelebA [25] dataset. Similar
to [18,20], we pre-process the dataset by cropping aligned patches, which are
resized to the HR resolution of 160 × 160. We employ the full train split (160k
images). For general SR, we use the same training data as ESRGAN [46], con-
sisting of the train split of 800 DIV2k [1] along with 2650 images from Flickr2K.
The LR images are constructed using the standard MATLAB bicubic kernel.

4 Applications and Image Manipulations

In this section, we explore the use of our SRFlow network for a variety of applica-
tions and image manipulation tasks. Our techniques exploit two key advantages
of our SRFlow network, which are not present in GAN-based super-resolution
approaches [46]. First, our network models a distribution py|x(y|x,θ) in HR-
image space, instead of only predicting a single image. It therefore possesses great
flexibility by capturing a variety of possible HR predictions. This allows differ-
ent predictions to be explored using additional guiding information or random
sampling. Second, the flow network fθ (y;x) is a fully invertible encoder-decoder.
Hence, any HR image ỹ can be encoded into the latent space as z̃ = fθ (ỹ;x)
and exactly reconstructed as ỹ = f−1

θ (z̃;x). This bijective correspondence allows
us to flexibly operate in both the latent and image space.
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4.1 Stochastic Super-Resolution

The distribution py|x(y|x,θ) learned by our SRFlow can be explored by sampling
different SR predictions as y(i) = f−1

θ (z(i);x), z(i) ∼ pz for a given LR image
x. As commonly observed for flow-based models, the best results are achieved
when sampling with a slightly lower variance [20]. We therefore use a Gaussian
z(i)∼ N (0, τ) with variance τ (also called temperature). Results are visualized in
Fig. 3 for τ = 0.8. Our approach generates a large variety of SR images, including
differences in e.g. hair and facial attributes, while preserving consistency with
the LR image. Since our latent variables zijkl are spatially localized, specific parts
can be re-sampled, enabling more controlled interactive editing and exploration
of the SR image.

4.2 LR-Consistent Style Transfer

Our SRFlow allows transferring the style of an existing HR image ỹ when super-
resolving an LR image x. This is performed by first encoding the source HR
image as z̃ = fθ (ỹ; d↓(ỹ)), where d↓ is the down-scaling operator. The encoding
z̃ can then be used to as the latent variable for the super-resolution of x as y =
f−1

θ (z̃;x). This operation can also be performed on local regions of the image.
Examples in Fig. 4 show the transfer in the style of facial characteristics, hair
and eye color. Our SRFlow network automatically aims to ensure consistency
with the LR image without any additional constraints.

4.3 Latent Space Normalization

We develop more advanced image manipulation techniques by taking advantage
of the invertability of the SRFlow network fθ and the learned super-resolution
posterior. The core idea of our approach is to map any HR image containing
desired content to the latent space, where the latent statistics can be normalized
in order to make it consistent with the low-frequency information in the given
LR image. Let x be a low-resolution image and ỹ be any high-resolution image,
not necessarily consistent with the LR image x. For example, ỹ can be an edited
version of a super-resolved image or a guiding image for the super-resolution
image. Our goal is to achieve an HR image y, containing image content from ỹ,
but that is consistent with the LR image x.

The latent encoding for the given image pair is computed as z̃ = fθ (ỹ;x).
Note that our network is trained to predict consistent and natural SR images for
latent variables sampled from a standard Gaussian distribution pz = N (0, I).
Since ỹ is not necessarily consistent with the LR image x, the latent variables
z̃ijkl do not have the same statistics as if independently sampled from zijkl ∼
N (0, τ). Here, τ denotes an additional temperature scaling of the desired latent
distribution. In order to achieve desired statistics, we normalize the first two
moments of collections of latent variables. In particular, if {zi}N

1 ∼ N (0, τ) are
independent, then it is well known [33] that their empirical mean μ̂ and variance
σ̂2 are distributed according to,
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μ̂ =
1
N

N∑

i=1

zi ∼ N
(
0,

τ

N

)
, σ̂2 =

1
N−1

N∑

i=1

(zi − μ̂)2 ∼ Γ

(
N−1

2
,

2τ

N−1

)
. (6)

Here, Γ (k, θ) is a gamma distribution with shape and scale parameters k and θ
respectively. For a given collection Z̃ ⊂ {zijkl} of latent variables, we normalize
their statistics by first sampling a new mean μ̂ and variance σ̂2 according to (6),
where N = |Z̃| is the size of the collection. The latent variables in the collection
are then normalized as,

ẑ =
σ̂

σ̃
(z̃ − μ̃) + μ̂ , ∀z̃ ∈ Z̃ . (7)

Here, μ̃ and σ̃2 denote the empirical mean and variance of the collection Z̃.

Source Target y Input ỹ Transferred ŷ

Fig. 5. Image content transfer for an existing
HR image (top) and an SR prediction (bottom).
Content from the source is applied directly to
the target. By applying latent space normaliza-
tion in our SRFlow, the content is integrated
and harmonized.

Original Super-Resloved Restored

D
IV

2K
PSNR↑ 22.48 23.19 27.81
SSIM↑ 0.49 0.51 0.73
LPIPS↓ 0.370 0.364 0.255

C
el
eb

A PSNR↑ 22.52 24.25 27.62
SSIM↑ 0.48 0.63 0.78
LPIPS↓ 0.326 0.172 0.143

Original Direct SR Restored

Fig. 6. Comparision of super-
resolving the LR of the original
and normalizing the latent space
for image restoration.

The normalization in (7) can be performed using different collections Z̃.
We consider three different strategies in this work. Global normalization is
performed over the entire latent space, using Z̃ = {zijkl}ijkl. For local nor-
malization, each spatial position i, j in each level l is normalized independently
as Z̃ijl = {zijkl}k. This better addresses cases where the statistics is spatially
varying. Spatial normalization is performed independently for each feature
channel k and level l, using Z̃kl = {zijkl}ij . It addresses global effects in the
image that activates certain channels, such as color shift or noise. In all three
cases, normalized latent variable ẑ is obtained by applying (7) for all collections,
which is an easily parallelized computation. The final HR image is then recon-
structed as ŷ = f−1

θ (ẑ,x). Note that our normalization procedure is stochastic,
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since a new mean μ̂ and variance σ̂2 are sampled independently for every collec-
tion of latent variables Z̃. This allows us to sample from the natural diversity of
predictions ŷ, that integrate content from ỹ. Next, we explore our latent space
normalization technique for different applications.

4.4 Image Content Transfer

Here, we aim to manipulate an HR image by transferring content from other
images. Let x be an LR image and y a corresponding HR image. If we are
manipulating a super-resolved image, then y = f−1

θ (z,x) is an SR sample of x.
However, we can also manipulate an existing HR image y by setting x = d↓(y)
to the down-scaled version of y. We then manipulate y directly in the image
space by simply inserting content from other images, as visualized in Fig. 5. To
harmonize the resulting manipulated image ỹ by ensuring consistency with the
LR image x, we compute the latent encoding z̃ = fθ (ỹ;x) and perform local
normalization of the latent variables as described in Sect. 4.3. We only normal-
ize the affected regions of the image in order to preserve the non-manipulated
content. Results are shown in Fig. 5. If desired, the emphasis on LR-consistency
can be reduced by training SRFlow with randomly misaligned HR-LR pairs,
which allows increased manipulation flexibility (see supplement).

4.5 Image Restoration

We demonstrate the strength of our learned image posterior by applying it for
image restoration tasks. Note that we here employ the same SRFlow network,
that is trained only for super-resolution, and not for the explored tasks. In par-
ticular, we investigate degradations that mainly affect the high frequencies in
the image, such as noise and compression artifacts. Let ỹ be a degraded image.
Noise and other high-frequency degradations are largely removed when down-
sampled x = d↓(ỹ). Thus a cleaner image can be obtained by applying any
super-resolution method to x. However, this generates poor results since impor-
tant image information is lost in the down-sampling process (Fig. 6, center).

Our approach can go beyond this result by directly utilizing the original
image ỹ. The degraded image along with its down-sampled variant are input
to our SRFlow network to generate the latent variable z̃ = fθ (ỹ;x). We then
perform first spatial and then local normalization of z̃, as described in Sect. 4.3.
The restored image is then predicted as ŷ = f−1

θ (ẑ,x). By, denoting the normal-
ization operation as ẑ = φ(z̃), the full restoration mapping can be expressed as
ŷ = f−1

θ (φ(fθ (ỹ; d↓(ỹ))), d↓(ỹ)). As shown visually and quantitatively in Fig. 6,
this allows us to recover a substantial amount of details from the original image
Intuitively, our approach works by mapping the degraded image ỹ to the closest
image within the learned distribution py|x(y|x,θ). Since SRFlow is not trained
with such degradations, py|x(y|x,θ) mainly models clean images. Our normal-
ization therefore automatically restores the image when it is transformed to a
more likely image according to our SR distribution py|x(y|x,θ).



726 A. Lugmayr et al.

5 Experiments

We perform comprehensive experiments for super-resolution of faces and of
generic images in comparisons with current state-of-the-art and an ablative anal-
ysis. Applications, such as image manipulation tasks, are presented in Sect. 4,
with additional results, analysis and visuals in the supplement.

Evaluation Metrics: To evaluate the perceptual distance to the Ground Truth,
we report the default LPIPS [54]. It is a learned distance metric, based on the
feature-space of a finetuned AlexNet. We report the standard fidelity oriented
metrics, Peak Signal to Noise Ratio (PSNR) and structural similarity index
(SSIM) [47], although they are known to not correlate well with the human
perception of image quality [16,22,26,28,42,44]. Furthermore, we report the no-
reference metrics NIQE [32], BRISQUE [31] and PIQUE [34]. In addition to

Table 1. Results for 8× SR of faces of CelebA. We compare using both the standard
bicubic kernel and the progressive linear kernel from [18]. We also report the diversity
in the SR output in terms of the pixel standard deviation σ.
LR ↑PSNR ↑SSIM ↓LPIPS ↑LR-PSNR ↓NIQE ↓BRISQUE ↓PIQUE ↑Diversity σ

Bicubic Bicubic 23.15 0.63 0.517 35.19 7.82 58.6 99.97 0

RRDB [46] 26.59 0.77 0.230 48.22 6.02 49.7 86.5 0

ESRGAN [46] 22.88 0.63 0.120 34.04 3.46 23.7 32.4 0

SRFlow τ = 0.8 25.24 0.71 0.110 50.85 4.20 23.2 24.0 5.21

Prog. ProgFSR [18] 23.97 0.67 0.129 41.95 3.49 28.6 33.2 0

SRFlow τ = 0.8 25.20 0.71 0.110 51.05 4.20 22.5 23.1 5.28

LR RRDB [46] ESRGAN [46] ProgFSR [18] SRFlow τ = 0.8 Ground Truth

Fig. 7. Comparison of our SRFlow with state-of-the-art for 8× face SR on CelebA.
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visual quality, consistency with the LR image is an important factor. We there-
fore evaluate this aspect by reporting the LR-PSNR, computed as the PSNR
between the downsampled SR image and the original LR image.

5.1 Face Super-Resolution

We evaluate SRFlow for face SR (8×) using 5000 images from the test split of
the CelebA dataset. We compare with bicubic, RRDB [46], ESRGAN [46], and
ProgFSR [18]. While the latter two are GAN-based, RRDB is trained using only
L1 loss. ProgFSR is a very recent SR method specifically designed for faces,
shown to outperform several prior face SR approaches in [18]. It is trained on
the full train split of CelebA, but using a bilinear kernel. For fair comparison,
we therefore separately train and evaluate SRFlow on the same kernel.

Results are provided in Table 1 and Fig. 7. Since our aim is perceptual quality,
we consider LPIPS the primary metric, as it has been shown to correlate much
better with human opinions [27,54]. SRFlow achieves more than twice as good
LPIPS distance compared to RRDB, at the cost of lower PSNR and SSIM scores.
As seen in the visual comparisons in Fig. 7, RRDB generates extremely blurry

Table 2. General image SR results on the 100 validation images of the DIV2K dataset.

DIV2K 4× DIV2K 8×
PSNR↑ SSIM↑ LPIPS↓ LR-PSNR↑ NIQE↓ BRISQUE↓ PIQUE↓ PSNR↑ SSIM↑ LPIPS↓ LR-PSNR↑ NIQE↓ BRISQUE↓ PIQUE↓

Bicubic 26.70 0.77 0.409 38.70 5.20 53.8 86.6 23.74 0.63 0.584 37.16 6.65 60.3 97.6

EDSR [23] 28.98 0.83 0.270 54.89 4.46 43.3 77.5 – – – – – – –

RRDB [46] 29.44 0.84 0.253 49.20 5.08 52.4 86.7 25.50 0.70 0.419 45.43 4.35 42.4 79.1

RankSRGAN [55] 26.55 0.75 0.128 42.33 2.45 17.2 20.1 – – – – – – –

ESRGAN [46] 26.22 0.75 0.124 39.03 2.61 22.7 26.2 22.18 0.58 0.277 31.35 2.52 20.6 25.8

SRFlow τ = 0.9 27.09 0.76 0.120 49.96 3.57 17.8 18.6 23.05 0.57 0.272 50.00 3.49 20.9 17.1

Low Resolution Bicubic EDSR [23] RRDB [46] ESRGAN [46] RankSRGAN [55] SRFlow τ = 0.9 Ground Truth

Fig. 8. Comparison to state-of-the-art for general SR on the DIV2K validation set.
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results, lacking natural high-frequency details. Compared to the GAN-based
methods, SRFlow achieves significantly better results in all reference metrics.
Interestingly, even the PSNR is superior to ESRGAN and ProgFSR, showing
that our approach preserves fidelity to the HR ground-truth, while achieving
better perceptual quality. This is partially explained by the hallucination arti-
facts that often plague GAN-based approaches, as seen in Fig. 7. Our approach
generate sharp and natural images, while avoiding such artifacts. Interestingly,
our SRFlow achieves an LR-consistency that is even better than the fidelity-
trained RRDB, while the GAN-based methods are comparatively in-consistent
with the input LR image.

5.2 General Super-Resolution

Next, we evaluate our SRFlow for general SR on the DIV2K validation set.
We compare SRFlow to bicubic, EDSR [23], RRDB [46], ESRGAN [46], and
RankSRGAN [55]. Except for EDSR, which used DIV2K, all methods including
SRFlow are trained on the train splits of DIV2K and Flickr2K (see Sect. 3.3).
For the 4× setting, we employ the provided pre-trained models. Due to lacking
availability, we trained RRDB and ESRGAN for 8× using the authors’ code.

K = 16 Steps K = 8 Steps K = 4 Steps 196 Channels 64 Channels

Fig. 9. Analysis of number of flow steps and
dimensionality in the conditional layers.

Table 3. Analysis of the impact of the
transitional linear flow steps and the
affine image injector.

DIV2K 4× PSNR↑ SSIM↑ LPIPS↓
No Lin. F-Step 26.96 0.759 0.125

No Affine Inj 26.81 0.756 0.126

SRFlow 27.09 0.763 0.125

EDSR and RRDB are trained using only reconstruction losses, thereby
achieving inferior results in terms of the perceptual LPIPS metric (Table 2).
Compared to the GAN-based methods [46,55], our SRFlow achieves significantly
better PSNR, LPIPS and LR-PSNR and favorable results in terms of PIQUE
and BRISQUE. Visualizations in Fig. 8 confirm the perceptually inferior results
of EDSR and RRDB, which generate little high-frequency details. In contrast,
SRFlow generates rich details, achieving favorable perceptual quality compared
to ESRGAN. The first row, ESRGAN generates severe discolored artifacts and
ringing patterns at several locations in the image. We find SRFlow to generate
more stable and consistent results in these circumstances.

5.3 Ablative Study

To ablate the depth and width, we train our network with different number of
flow-steps K and hidden layers in two conditional layers (4) and (5) respectively.
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Figure 9 shows results on the CelebA dataset. Decreasing the number of flow-
steps K leads to more artifacts in complex structures, such as eyes. Similarly, a
larger number of channels leads to better consistency in the reconstruction. In
Table 3 we analyze architectural choices. The Affine Image Injector increases the
fidelity, while preserving the perceptual quality. We also observe the transitional
linear flow steps (Sect. 3.3) to be beneficial.

6 Conclusion

We propose a flow-based method for super-resolution, called SRFlow. Contrary
to conventional methods, our approach learns the distribution of photo-realistic
SR images given the input LR image. This explicitly accounts for the ill-posed
nature of the SR problem and allows for the generation of diverse SR samples.
Moreover, we develop techniques for image manipulation, exploiting the strong
image posterior learned by SRFlow. In comprehensive experiments, our approach
achieves improved results compared to state-of-the-art GAN-based approaches.
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