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Although research on image understanding has been actively conducted, its focus
has been on single object recognition and object detection. With the success
of deep learning, the recognition and detection accuracy for a single object has
improved significantly, becoming comparable to human recognition accuracy [17].
Previous works extract features from an input image using Convolutional Neural
Networks (CNNs), and then the extracted features are used for recognition.
However, single-object recognition and detection tasks for a single object cannot
estimate the relationship between objects, which is essential for understanding
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Abstract. Recognizing the relationship between multiple objects in an
image is essential for a deeper understanding of the meaning of the image.
However, current visual recognition methods are still far from reaching
human-level accuracy. Recent approaches have tackled this task by com-
bining image features with semantic and spatial features, but the way
they relate them to each other is weak, mostly because the spatial context
in the image feature is lost. In this paper, we propose the bounding-box
channels, a novel architecture capable of relating the semantic, spatial,
and image features strongly. Our network learns bounding-box channels,
which are initialized according to the position and the label of objects,
and concatenated to the image features extracted from such objects.
Then, they are input together to the relationship estimator. This allows
retaining the spatial information in the image features, and strongly
associate them with the semantic and spatial features. This way, our
method is capable of effectively emphasizing the features in the object
area for a better modeling of the relationships within objects. Our evalua-
tion results show the efficacy of our architecture outperforming previous
works in visual relationship detection. In addition, we experimentally
show that our bounding-box channels have a high generalization ability.
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Fig. 1. Visual relationship detection (VRD) is the task of detecting relationships
between objects in an image. Visual-relationship instances, or triplets, follow the
subject-predicate-object pattern.

Visual relationship detection (VRD) is a very recent task that tackles this
problem. The purpose of VRD is to recognize predicates that represent the rela-
tionship between two objects (e.g., person wears helmet), in addition to rec-
ognizing and detecting single objects, as shown in Fig. 1. In other words, the
purpose of VRD is detecting subject-predicate-object triplets in images. When
thinking about solving the VRD task, humans leverage the following three fea-
tures: the image features, which represent the visual attributes of objects, the
semantic features, which represent the combination of subject-object class labels,
and the spatial features, which represent object positions in the image. There-
fore, previous research in VRD [1,6,9,15,24,26,27] employs these three types
of features. Previous works have attempted to extract these features in a vari-
ety of ways. In [6,9,13,15,25,26], semantic features are extracted from the label
of the detected objects. For spatial features, in [6,15,22,24,26,27] the coordi-
nate values of the object candidate area have been used. Alternatively, previous
works [1,9,23] proposed extracting the spatial features from a binary mask filled
with zeros except for the area of the object pairs. In spite to the efforts of
the aforementioned approaches, the task of recognizing the relationship between
objects it is still far from achieving human-level recognition accuracy. One of
the main reasons is that the spatial information contained in the image features
has not been successfully leveraged yet. For example, several image recognition
approaches flatten image features, but this eliminates the spatial information
contained in the image features.

In this paper, in order to improve the accuracy of VRD, we propose a novel
feature fusion method, the bounding-box channels, which are capable of modeling
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together image features with semantic and spatial features without discarding
spatial information (i.e., feature flattening). In our bounding-box channels, spa-
tial information such as the location and overlap of the objects, is represented
by adding channels to the image features. This allows for a strong association
between the image features of each subject and object and their respective spa-
tial information. Semantic features are also employed in the construction of the
bounding-box channels to achieve a strong binding of all three features. Conse-
quently, the relationship estimation network can learn a better model that leads
to a better accuracy.
The contributions of this research are as follows:

— We propose the bounding-box channels, a new feature fusion method for
visual relationship detection. It allows strongly combining semantic and spa-
tial features with the image features for a boost in performance, without
discarding spatial information.

— Our bounding-box channels follow a clear and straightforward implementa-
tion, and can be potentially used as replacements of the semantic and spatial
feature extractors of other VRD methods.

— We provide extensive experimentation to show the generalization ability of
our bounding-box channels, outperforming previous methods.

2 Related Work

Before the actual visual relationship detection, it is necessary to detect the
image areas that contain objects and classify them. This is performed by object
detection methods.

2.1 Object Detection

In recent years, the performance of object detectors has improved significantly
through the use of deep learning. R-CNN [3] was a pioneer method in using
convolutional neural networks (CNNs) for object detection. R-CNN uses a slid-
ing window approach to input image patches to a CNN and performs object
classification and regression of the bounding box (rectangular area containing
the object). This method allowed for a significant improvement in object detec-
tion accuracy, but it has some limitations. First, the computational cost is huge
because all windows are processed by the CNN. Second, since the size and posi-
tion of the sliding window are static, some objects are misdetected. To solve this,
Fast R-CNN [2] was proposed. In Fast R-CNN, image segmentation is applied to
the whole image, and windows are generated dinamically by selecting regions of
interest (Rol). Then, the CNN processes the whole image and classification and
regression are performed only in the generated windows. This way, the computa-
tion cost is reduced and the accuracy is improved. Later, Faster R-CNN [17] was
proposed, further improving computation time and accuracy by using a CNN to
generate Rol.
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Apart from the aforementioned methods, SSD [12] and YOLO [16], which
are faster than the above methods, and FPN [10], which can detect objects of
various scales, were also proposed. However, for the sake of comparison with pre-
vious VRD methods, directly using the detection results of R-CNN is a common
practice [13,27].

2.2 Visual Relationship Detection

VRD aims to a deeper understanding of the meaning of an image by estimating
the relationship between pairs of detected objects. A large number of VRD
methods [1,6,9,13,15,19,22-27] have been recently proposed, which share the
same three type of features: image, semantic and spatial.

Needless to say, image features play an important role when considering the
relationship between objects. For example, in the case of the subject-object pair
man-chair, several possible relationships can be considered (e.g., “sitting”, “next
to”), but if an image is given, the possibilities are reduced to one. Previous works
in image feature extraction proposed using multiple feature maps of a CNN, such
as VGG16 [18]. The image feature map can be also obtained by cropping the
feature map of the whole image by the smallest rectangular region containing
subject and object using Rol Pooling [2] or Rol Alignment [4]. These feature
extraction methods are widely used in various image recognition tasks including
object detection, and their effectiveness has been thoroughly validated.

Semantic features are also an important element in VRD. For example, when
considering the relationship between a man and a horse, our prior knowledge tells
us that the relation “man rides on a horse” is more probable than “man wears a
horse”. In order to provide such information, previous works extracted semantic
features from the predicted class label of detected objects [9,13,15,22,25,27].
Previous works proposed two semantic feature extraction approaches. The first
approach uses the word2vec embedding [14]. The class labels of the object pair
were embedded in word2vec and processed by a fully-connected layer network,
whose output is the semantic features. The second approach used the posterior
probability distribution expressed by Eq. 1 [1,20,23,26].

P(pls,o0) = NspO/Nso (1)

In Eq. 1, p, s, and o represents the labels of predicate, subject, and object
respectively. Ngpo, is the number of subject-predicate-object triplets, and N, is
the number of subject-object pairs, both are emerged in the training set. This
posterior probability distribution was used as the semantic features.

Last but not least, spatial features are crucial to detect spatial relationships
like “on” and “under”. For example, when estimating the relationship between
a bottle and a table, if the image area of the bottle is located above the area of
the table, the relationship is probably “a bottle on a table”. In order to model
these spatial relationships, two spatial feature extraction approaches were mainly
proposed in previous work. The first approach used spatial scalar values (e.g.,
the distance between the centers of the pair of bounding boxes, the relative size
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of objects), concatenated them into a vector and passed them through fully-
connected layers, to output the spatial features [6,15,22,24,26,27]. The second
approach created binary images whose pixels are nonzero in the bounding box
and zero otherwise, and feed it to a CNN to extract the spatial features [1,9,23].

As described above, a lot of approaches for extracting each feature were pro-
posed. However, there was no deep consideration on how to effectively associate
them together to learn a better model. Most of previous approaches either mod-
eled each feature separately [13,15,25,26] or simply flattened and concatenated
each feature [1,9,19,22,24]. However, the former approach could not effectively
combine the spatial information in the image features and the spatial features,
because they process the image features and the spatial features separately. Sim-
ilarly, the latter approach loses the spatial information contained in the image
features due to flattening.

In this work, we propose a novel VRD method capable of effectively modeling
image features together with spatial and semantic features. Modeling together
instead of separately and concatenating them before flattening the features
increases the accuracy and adequacy of the estimated relationship.

3 Bounding-Box Channels

This section describes our novel proposed bounding-box channels, which effec-
tively combines image, semantic, and spatial features. Due to the structure of
CNNs, the image features retain the spatial information to some extent unless
they are flattened. For example, the upper right area in an image is mapped to
the upper right area in the corresponding image features of the CNN. Contrary
to previous methods, we avoid flattening the image features in order to preserve
spatial information. In our bounding-box channels, the spatial and semantic
information of the objects is modeled in the form of channels that are directly
added to the image features. This allows for a strong association between the
image features of each subject and object and their respective spatial informa-
tion, hence the relationship estimation network can learn a better model that
leads to a better accuracy.

Image Feature: In our method, the image features F; € RHXWXni are
obtained from the feature map extracted from the backbone CNN such as
VGG16 [18] aligned with the smallest area containing the bounding boxes of
the subject-object pair by RolAlign [4]. H and W are the height and width of
the image features, and n; is the number of channels of the image features.

Spatial Feature: As shown in Fig. 2, we encode the positions of the objects by
leveraging the bounding box of the subject-object pair in the image used to extract
the image features. We build two tensors C, C, € R¥*XWX"e with the same height
H and width W as the image features F;, and a number of channels n..
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Fig. 2. Overview of how to construct the bounding-box channels. F; is the aligned
image feature. The words are transformed into the semantic features ws and w, via
word2vec and fully-connected layers. In Cy, the inner region of the bounding box is
filled with ws, and the outer region is filled with a learnable parameter ps. C, is filled
with w, and p, in the same way. Finally, we concatenate F;, Cs and C, in the channel
direction, and fed into CNN to create our bounding-box channels fiso.
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Semantic Feature: As our semantic features, the words of the detected subject-
object pair classes are embedded in word2vec [14]. In our implementation, we
use the pretrained word2vec model and fix its weights. The obtained pair of
word vectors are concatenated and mapped to n. dimensions by fully-connected
layers; we denote them w, and w, . Also, learn two n. dimensional vectors, which
are ps and p,, respectively.

Aggregation: For C;, we fill the inner and outer regions representing the
bounding box of the subject with ws and ps respectively. Similarly, for C,, we
fill the inner and outer regions representing the bounding box of the object with
w, and p, respectively. Finally, we concatenate F;, Cs, and C, in the channel
direction, and fed into CNN to create our bounding-box channels f;s, € R".
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Fig. 3. Overview of the proposed BBCNet for visual relationship detection. First, a
candidate set of subject-object pairs in the image is output by the object detection
module. In our case, we use Faster R-CNN and its region proposal network (RPN).
Second, for each subject-object pair, we extract the image features F; from these candi-
date regions by Rol Align [4] and make C;s and C, from the results of object detection
as explained in Sect. 3. Finally, relationship estimation is conducted for each set of
subject-object pair. The image, semantic, and spatial features are modeled together,
which allows for a more accurate relationship estimation.
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4 Bounding-Box Channels Network

We demonstrate the efficacy of our proposed bounding-box channels with our
Bounding-Box Channels Network (BBCNet). Figure 3 shows the pipeline of our
proposed BBCNet. The BBCNet consists of an object detection module and
a relationship estimation module. First, an object detection module outputs
the candidate set of subject-object pairs in the image. Second, we extract the
image features F; from the smallest area containing the bounding boxes of these
candidate regions by Rol Align [4] and make Cs and C,, from the results of object
detection as explained in Sect. 3. Finally, relationship estimation is conducted
for each set of subject-object pair.

In previous VRD works, three types of features are leveraged for relation-
ship estimation: image, semantic and spatial features. Our bounding-box chan-
nel module computes these three types of features for each candidate set of
subject-object pair. The bounding-box channel module concatenates the image
features extracted from the smallest rectangular region containing subject and
object, the semantic features, and the spatial features (see Sect. 3). This way,
the bounding-box channels are built. Our bounding-box channels are fed to a
single layer CNN and two fully-connected layers to attain logit scores for each
predicate class. As illustrated in Fig. 3, we obtain the probability distribution
for each predicate class via sigmoid normalization. In multi-class classification
tasks, classification is generally performed using softmax normalization. How-
ever, in VRD task, multiple predicate may be correct for one subject-object pair.
For example, in Fig. 3, not only person on bike but also person rides bike can
be correct. For such problem settings, not softmax normalization but sigmoid
normalization is appropriate.



Bounding-Box Channels for Visual Relationship Detection 689

Predicate Detection Phrase Detection
N “al

l A

Relationship Detection
N ~

Fig. 4. We evaluate the performance of our method for visual relationship detection in
the three tasks proposed in [13]: predicate detection, phrase detection and relationship
detection. For predicate detection, classes and bounding boxes of objects are given in
addition to an image, and the output is the predicate. Phrase detection and relationship
detection take a single image, and output a set containing a pair of related objects or
the individual related objects, respectively. In predicate detection, the given pair of
objects is always related.

5 Experiments

5.1 Dataset

For our experiments, we used the Visual Relationship Detection (VRD)
dataset [13] and the Visual Genome dataset [8], which are widely used to evaluate
the performance of VRD methods. The VRD dataset contains 5000 images, with
100 object categories, and 70 predicate (relationship) categories among pairs of
objects. Besides the categories, images are annotated with bounding boxes sur-
rounding the objects. In total, VRD dataset contains 37993 subject-predicate-
object triplets, of which 6672 are unique. We evaluate our method using the
default splits, which contain 4000 training images and 1000 test images. The
Visual Genome dataset contains 108073 images, with 150 object categories, and
50 predicate categories among pairs of objects. It is labeled in the same way as
the VRD dataset. Our experiments follow the same train/test splits as [19].

5.2 Experimental Settings

VRD: We evaluate the proposed method in three relevant VRD tasks: predicate
detection, phrase detection and relationship detection. The outline of each task
is shown in Fig. 4.
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The predicate detection task (left) aims to estimate the relationship between
object pairs in an input image, given the object class labels and the surrounding
bounding boxes. In other words, this task assumes an object detector with perfect
accuracy, and thus, the predicate detection accuracy is not influenced by the
object detection accuracy. Next, the phrase detection task (middle) aims to
localize set boxes that include a pair of related objects in an input image, and
then predict the corresponding predicate for each box. Lastly, the relationship
detection task (right) aims to localize individual objects boxes in the input image,
and then predict the relevant predicates between each pair of them. In phrase
detection and relationship detection, not all object pairs have a relationship
and, in contrast to the predicate detection task, the performance of the phrase
detection and the relationship detection is largely influenced by the performance
of the object detection.

Following the original paper that proposed the VRD dataset [13], we use
Recall@50 (R@50) and Recall@100 (R@100) as our evaluation metrics. RQK
computes the fraction of true positive relationships over the total relevant rela-
tionships among the top K predictions with the highest confidence (probability).
Another reason for using recall is that, since the annotations do not contain all
possible objects and relationships, the mean average precision (mAP) metric is
usually low and not representative of the actual performance, as some predicted
relationships, even if correct, they may not be included in the ground truth. Eval-
uating only the top prediction per object pair may mistakenly penalize correct
predictions since annotators have bias over several plausible predicates. So we
treat the number of chosen predictions per object pair (k) as a hyper-parameter,
and report R@n for different k’s for comparison with other methods. Since the
number of predicates is 70, k = 70 is equivalent to evaluating all predictions
w.r.t. the two detected objects.

Visual Genome: We evaluate the proposed method in two relevant VRD tasks:
predicate classification (PRDCLS) and scene graph detection (SGDET) [19].
PRDCLS is equivalent to predicate detection, and SGDET is equivalent to
relationship detection.

5.3 Implementation Details

In our method, the image, semantic, and spatial features are extracted from an
input image (Fig. 3).

For object detection, we used the Faster R-CNN [17] structure! with
ResNet50-FPN backbone [5,10] pretrained with MSCOCO [11]. First, we input
the image into the backbone CNN, and get the feature map of the whole image
and the object detection results. Next, as described in Sect. 3, we create the
bounding-box channels. When extracting the semantic features, we leverage the
word2vec model [14] pretrained with the Google News corpus and fixed weights.
We embed the object class names of subject and object separately using the

! For the sake of comparison, some experiments replace Faster R-CNN with R-CNN [3].
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word2vec model, which generates a 300-dimensional vector per word, and con-
catenate them into a 600-dimensional vector. Then, we feed this vector to two
separate fully-connected layers, and denominate the output ws and w, as our
semantic features. In this paper, we set H = 7,W = 7,n; = 512, n. = 256, and
n = 256. Our implementation is partially based on the architecture proposed in
the work of [27], but our BBCNet results outperform theirs.

We apply binary cross entropy loss to each predicted predicate class. We train
our BBCNet using the Adam optimizer [7]. We set the initial learning rate to
0.0002 for backbone, and 0.002 for the rest of the network. We train the proposed
model for 10 epochs and divide the learning rate by a factor of 5 after the 6th
and 8th epochs. We set the weight decay to 0.0005. During training, from the
training set, we sample all the positive triplets and the same number of negative
triplets. This is due to the highly imbalance nature of the problem (only a few
objects in the images are actually related).

During testing, we rank relationship proposals by multiplying the predicted
subject, object, and predicate probabilities as follows:

ptetal = piet(s) . p2et (o) - pP e (pred) (2)

where p is the probability of subject-predicate-object triplets, p?(s), p?¢t(o)
are the probability of subject and object classes respectively, and p?"¢¢(pred) is
the probability of the predicted predicate class (i.e., the output of BBCNet).
This reranking allows a fairer evaluation of the relationship detector, by giving
preference to objects that are more likely to exist in the image.

total

Table 1. Performance comparison of the phrase detection and relationship detec-
tion tasks on the entire VRD dataset. “-” indicates performances that have not been
reported in the original paper. The best performances are marked in bold. In the
upper half, we compare our performance with four state-of-the-art methods that use
the same object detection proposals. In the lower half, we compare with three state-
of-the-art methods that use more sophisticated detectors. Our method achieves the
state-of-the-art performance in almost all evaluation metrics.

Recall at Phrase detection Relationship detection
k=1 k=10 k=170 k=1 k=10 k=70
100 ‘50 100 50 100 50 100 50 100 50 100 50

w/proposals from [13]

CAT [27] - - - - 19.24 [17.60 |- - - - 17.39 |15.63
Language cues [15] 20.70 [16.89 18.37 |15.08

VRD-Full [13] 17.03 [16.17 |25.52 {20.42 [24.90 |20.04 [14.70 |13.86 |22.03 |17.43 |21.51 |17.35
LSVR [25] 19.78 |18.32 (25.92 [21.69 |25.65 |21.39 |17.07|16.08|22.64 [19.18 [22.35 |18.89
Ours 20.95/19.72(28.33/24.46(28.38(24.47|16.63 |15.87 |22.79/19.90|22.86(19.91

w/better proposals
LK distillation [22]|24.03 |23.14 |29.76 |26.47 |29.43 |26.32 |21.34 |19.17 |29.89 |22.56 |31.89 |22.68
LSVR [25] 32.85 |28.93 [39.66 [32.90 |39.64 [32.90 |26.67 |23.68 |32.63 |26.98 |32.59 (26.98
GCL [26] 36.42 |31.34 |42.12 |34.45 |42.12 |34.45 |28.62 |25.29 |33.91 |28.15 [33.91 |28.15
Ours 40.72|34.25|46.18|36.71|46.18/36.71|33.36|/28.21/38.50/30.61|38.50/30.61
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Table 2. Performance comparison of the phrase detection and relationship detection
tasks on the zero-shot data (i.e., subject-predicate-object combinations not present in
the training split) in the VRD dataset. We compare our performance with four methods
which use the object detection results reported in [13] using R-CNN [3]. Our method
outperforms the other related works in all evaluation metrics, and demonstrates high
generalization ability.

Recall at Phrase detection Relationship detection
k=1 k=10 k=170 k=1 k=10 k=70
100 ‘50 100 50 100 50 100 |50 100 50 100 50

w/proposals from [13]

CAI [27] - - - — 6.59 [5.99 |- - - - 5.99 |5.47
Language cues [15]|— - 15.23 |10.86 |- - - - 13.43 |9.67 |- -
VRD-Full [13] 3.75(3.36 [12.57 |7.56 [12.92 |7.96 |3.52|3.13 |11.46 |7.01 |11.70 |7.13
Ours 8.81/8.13|16.51|12.57|16.60|12.66|6.42|5.99/13.77|10.09/13.94|10.27

5.4 Quantitative Evaluation

VRD: As explained in Sect. 5.2, we compare the proposed method and
related works via three evaluation metrics. For phrase detection and relation-
ship detection, we compare our performance with four state-of-the-art meth-
ods [13,15,25,27], that use the same object detection proposals reported in [13]
using R-CNN [3]. Also, we compare our performance with three state-of-the-art
methods [21,25,26] using the object detection proposals of a more complex object
detector (Faster R-CNN in our case). The phrase detection and the relationship
detection performances are reported in Table 1 and Table 2. Also, the predi-
cate detection performance is reported in Table 3. These results show that our
BBCNet achieves state-of-the-art performance, outperforming previous works in
almost all evaluation metrics on entire VRD dataset.

In particular, Table 2 and the zero-shot part in Table 3 show the results of
the performance comparison when using combinations of triplets that exist in
the test split but not in the training split (zero-shot data). A high generalization
ability for zero-shot data has an important meaning in model evaluation. A poor
generalization ability requires including all combinations of subject-predicate-
object in the training data, which is unrealistic in terms of computational com-
plexity and dataset creation. Our BBCNet achieves the highest performance
in the zero-shot VRD dataset for all evaluation metrics, which shows its high
generalization ability.

Visual Genome: As explained in Sect. 5.2, we compare the proposed method
with four state-of-the-art methods [19,23,26] via two evaluation metrics. The
scene graph detection and the predicate classification performances are reported
in Table 4, in which graph constraint means that there is only one relationship
between each object pair (that is, k = 1 in VRD dataset). These results show that
our BBCNet achieves the state-of-the-art performance in almost all evaluation
metrics for the Visual Genome dataset as well.
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Table 3. Performance comparison of the predicate detection task on the entire VRD
and zero-shot VRD data sets. Our method outperforms the other state-of-the-art
related works in all evaluation metrics on both entire set and zero-shot set. This result
shows that when the object detection is perfectly conducted, our method is the most
accurate for estimating the relationships between subject-object pairs.

Recall at Predicate detection

Entire set Zero-shot

k=1 |k=T70 k=1 |kE=T170

100/50 | 100 50 100/50 | 100 50
VRD-Full [13] 4787 |- - 8.45 - -
VTransE [24] 44.76 | - - - - -
LK distillation [22] | 54.82 |90.63 |83.97 |19.17 |76.42 |56.81
DSR [9] — 93.18 [86.01 |— 79.81 |60.90
Zoom-Net [21] 50.69 [90.59 |84.25 |- - -
CAI 4+ SCA-M [21] | 55.98 |94.56 |89.03 |— - -
Ours 57.87 |95.98 | 89.43 | 27.54 | 86.06|68.78

Table 4. Comparison with the state-of-the-art methods on Visual Genome dataset.
Graph constraint means that only one relationship is considered between each object
pair. Our method achieves the state-of-the-art performance in most evaluation metrics.

Recall at Graph constraint No graph constraint
SGDET PRDCLS SGDET | PRDCLS
100 (50 (20 (100 [50 [20 [100 [50 [100 |50

w/better proposals
Message Passing [19] 4.2 |34 |- 53.0 [44.8 |— - - -
Message Passing+ [23] |24.5 [20.7 |14.6 |61.3 |59.3 |52.7 |27.4 |22.0 83.6 |75.2
MotifNet-LeftRight [23]]30.3 |27.2 |21.4|67.1 |65.2 |58.5 |35.8 |30.5|88.3 |81.1
RelDN [26] 32.7 128.3 |21.1 |68.4 |68.4 66.9 |36.7 |30.4 |97.8 |93.8
Ours 34.3/28.5/20.4 {69.9/69.968.5/37.2/29.9 |98.2|94.7

Section 6 offers a more detailed discussion on the cause of the obtained
results.

5.5 Qualitative Evaluation

In order to understand the contribution of the bounding box channels (BBC),
we performed a comparison with the baseline in [27], whose architecture resem-
bles ours, but without the BBC. Figure 5 shows a the VRD results of both our
method and the baseline. Whereas the baseline outputs the relationship between
a person and different person’s belongings, our method outputs the relationship
between a person and their own belongings. Similarly, in the other example, the
relationship estimated by our method is more adequate than that of the baseline.
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jacket on person : 0.88 person wear pants : 0.74
§ i 73
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Baseline Model Ours

Fig. 5. Qualitative comparison of our method with the baseline (no bounding box
channels, as in [27]). The number over the image represents confidence of the output
triplet. Thanks to our better modeling of the image-semantic-spatial features, the rela-
tionships detected by our method (right column) are more adequate than those of the
baseline (left column).

monitor  on  desk person  wear shoes person on bike
laptop on desk person on skateboard bike on street

can on desk person wear jeans building has roof

motorcycle  on road mountain  behind boat pillow nextto  pillow
road under motorcycle mountain  behind trees monitor nextto laptop
bear on motorcycle boat in front of trees pillow next to monitor

Fig. 6. Qualitative examples of our proposed VRD method. The color of the text
corresponds to the color of the bounding box of the object (same color means same
object). “bear on motorcycle” in the lower-left image is an example of zero-shot data
(i.e., subject-predicate-object combinations not present in the training split).

The reason is that, although the baseline is able to combine the semantic features
with the image features, the spatial features do not work for removing inadequate
relationships with respect to the objects location. On the other hand, the proposed



Bounding-Box Channels for Visual Relationship Detection 695

BBC allows considering the objects position properly when estimating their rela-
tionship. Figure 6 shows supplementary results of our method. Our method is able
to estimate relationships not present in the training split (zero-shot data), as in the
case of “bear on motorcycle” in the lower-left image.

6 Discussion

6.1 Quantitative Evaluation

Our method outperforms previous works in the vast majority of the conducted
experiments. We can draw some conclusions from these results. First, our
bounding-box channels can model more discriminative features for VRD than
previous methods. The reason is that our BBCNet does not lose the spatial
information in the image features, and effectively combines image, semantic and
spatial features. Second, the word2vec based semantic feature extraction method
has high generalization ability, because similar object names are projected on
neighbor areas of the feature space. Therefore, the relationships not present in
the training split but similar with the relationships present in the training split
can be detected. For example, If the dog under chair triplet present in the train-
ing split, the cat under chair triplet is likely to be detected even it is not present
in the training split. In contrast, the generalization ability is lower in methods
whose semantic feature extraction uses the posterior probability distribution
in Eq. 1. This occurs because restricting the semantic features to the posterior
probability of the triplets included in the training set, worsens robustness against
unseen samples (i.e., zero-shot data).

6.2 Qualitative Evaluation

As explained in Sect. 5.5, our BBCNet without the bounding-box channels
(BBC) resembles the architecture of CAI [27]. Thus, these results can also be
interpreted as an ablation study that shows the improvement in performance
of a previous method by applying our BBC. But our bounding-box channels
are potentially applicable not only to the architecture of CAI [27] adopted in
this paper but also to other architectures. First, as far as the task of VRD is
concerned, the image, semantic, and spatial features can be effectively combined
by simply replacing the feature fusion modules with our bounding-box channels.
In addition, not limited to VRD, if the task uses an object candidate area and
an image, our bounding-box channels can be used to effectively combine both,
expecting an improvement in performance.

7 Conclusion

In this paper, we proposed the bounding-box channels, a feature fusion method
capable of successfully modeling together spatial and semantic features along
with image features without discarding spatial information. Our experiments
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show that our architecture is beneficial for VRD, and outperforms the previous
state-of-the-art works. As our future work, we plan to apply our bounding-box
channels to a variety of network architectures, not limited to the VRD task, to
further explore the combination of the image, semantic and spatial features.
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