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Abstract. For many years, multi-object tracking benchmarks have
focused on a handful of categories. Motivated primarily by surveillance
and self-driving applications, these datasets provide tracks for people,
vehicles, and animals, ignoring the vast majority of objects in the world.
By contrast, in the related field of object detection, the introduction
of large-scale, diverse datasets (e.g., COCO) have fostered significant
progress in developing highly robust solutions. To bridge this gap, we
introduce a similarly diverse dataset for Tracking Any Object (TAO)
(http://taodataset.org/). It consists of 2,907 high resolution videos, cap-
tured in diverse environments, which are half a minute long on aver-
age. Importantly, we adopt a bottom-up approach for discovering a large
vocabulary of 833 categories, an order of magnitude more than prior
tracking benchmarks. To this end, we ask annotators to label objects
that move at any point in the video, and give names to them post fac-
tum. Our vocabulary is both significantly larger and qualitatively differ-
ent from existing tracking datasets. To ensure scalability of annotation,
we employ a federated approach that focuses manual effort on labeling
tracks for those relevant objects in a video (e.g., those that move). We
perform an extensive evaluation of state-of-the-art trackers and make a
number of important discoveries regarding large-vocabulary tracking in
an open-world. In particular, we show that existing single- and multi-
object trackers struggle when applied to this scenario in the wild, and
that detection-based, multi-object trackers are in fact competitive with
user-initialized ones. We hope that our dataset and analysis will boost
further progress in the tracking community.
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1 Introduction

A key component in the success of modern object detection methods was the
introduction of large-scale, diverse benchmarks, such as MS COCO [38] and
LVIS [27]. By contrast, multi-object tracking datasets tend to be small [40,56],
biased towards short videos [65], and, most importantly, focused on a very small
vocabulary of categories [40,56,60] (see Table1l). As can be seen from Fig.1,
they predominantly target people and vehicles. Due to the lack of proper bench-
marks, the community has shifted towards solutions tailored to the few videos
used for evaluation. Indeed, Bergmann et al. [5] have recently and convincingly
demonstrated that simple baselines perform on par with state-of-the-art (SOTA)
multi-object trackers.
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Fig. 1. (left) Super-category distribution in existing multi-object tracking datasets
compared to TAO and COCO [38]. Previous work focused on people, vehicles and
animals. By contrast, our bottom-up category discovery results in a more diverse dis-
tribution, covering many small, hand-held objects that are especially challenging from
the tracking perspective. (right) Wordcloud of TAO categories, weighted by number of
instances, and colored according to their supercategory.

In this work we introduce a large-scale benchmark for Tracking Any Object
(TAO). Our dataset features 2,907 high resolution videos captured in diverse
environments, which are 30s long on average, and has tracks labeled for 833
object categories. We compare the statistics of TAO to existing multi-object
tracking benchmarks in Table1 and Fig.1, and demonstrate that it improves
upon them both in terms of complexity and in terms of diversity (see Fig.2
for representative frames from TAO). Collecting such a dataset presents three
main challenges: (1) how to select a large number of diverse, long, high-quality
videos; (2) how to define a set of categories covering all the objects that might
be of interest for tracking; and (3) how to label tracks for these categories at a
realistic cost. Below we summarize our approach for addressing these challenges.
A detailed description of dataset collection is provided in Sect. 4.

Existing datasets tend to focus on one or just a few domains when selecting
the videos, such as outdoor scenes in MOT [40], or road scenes in KITTI [24].
This results in methods that fail when applied in the wild. To avoid this bias, we
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construct TAO with videos from as many environments as possible. We include
indoor videos from Charades [52], movie scenes from AVA [26], outdoor videos
from LaSOT [21], road-scenes from ArgoVerse [14], and a diverse sample of
videos from HACS [68] and YFCC100M [54]. We ensure all videos are of high
quality, with the smallest dimension larger or equal to 480px, and contain at
least 2 moving objects. Table 1 reports the full statistics of the collected videos,
showing that TAO provides an evaluation suite that is significantly larger, longer,
and more diverse than prior work. Note that TAO contains fewer training videos
than recent tracking datasets, as we intentionally dedicate the majority of videos
for in-the-wild benchmark evaluation, the focus of our effort.

Table 1. Statistics of major multi-object tracking datasets. TAO is by far the largest
dataset in terms of the number of classes and total duration of evaluation videos. In
addition, we ensure that each video is challenging (long, containing several moving
objects) and high quality.

Dataset Classes|Videos Avg length  |Tracks/videoMin Ann. |Total

(s) resolution fps Eval

length (s)
Eval |Train

MOT17 [40] 1 7 7135.4 112 640 x 480 |30 248
KITTI [24] 2 29 21/12.6 52 1242 x 375 |10 365
UA-DETRAC [60]| 4 40/ 60|56 57.6 960 x 540 |5 2,240
ImageNet-Vid [48] 30 1,314/4,000/10.6 2.4 480 x 270  |~25 [13,928
YTVIS [65] 40 645|2,238/4.6 1.7 320 x 240 |5 2,967
TAO (ours) 833 2,407/ 500(36.8 5.9 640 x 480 |1 88,605

Given the selected videos, we must choose what to annotate. Most datasets
are constructed with a top-down approach, where categories of interest are pre-
defined by benchmark curators. That is, curators first select the subset of cate-
gories deemed relevant for the task, and then collect images or videos expressly
for these categories [19,38,55]. This approach naturally introduces curator bias.
An alternative strategy is bottom-up, open-world discovery of what objects are
present in the data. Here, the vocabulary emerges post factum [26,27,69], an app-
roach that dates back to LabelMe [49]. Inspired by this line of work, we devise
the following strategy to discover an ontology of objects relevant for tracking:
first annotators are asked to label all objects that either move by themselves or
are moved by people. They then give names to the labeled objects, resulting in a
vocabulary that is not only significantly larger, but is also qualitatively different
from that of any existing tracking dataset (see Fig.1). To facilitate training of
object detectors, that can be later used by multi-object trackers on our dataset,
we encourage annotators to choose categories that exists in the LVIS dataset [27].
If no appropriate category can be found in the LVIS vocabulary, annotators can
provide free-form names (see Sect. 4.2 for details).

Exhaustively labeling tracks for such a large collection of objects in 2,907 long
videos is prohibitively expensive. Instead, we extend the federated annotation
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approach proposed in [27] to the tracking domain. In particular, we ask the
annotators to label tracks for up to 10 objects in every video. We then separately
collect exhaustive labels for every category for a subset of videos, indicating
whether all the instances of the category have been labeled in the video. During
evaluation of a particular category, we use only videos with exhaustive labels
for computing precision and all videos for computing recall. This allows us to
reliably measure methods’ performance at a fraction of the cost of exhaustively
annotating the videos. We use the LVIS federated mAP metric [27] for evaluation,
replacing 2D IoU with 3D IoU [65]. For detailed comparisons, we further report
the standard MOT challenge [40] metrics in supplementary.

Fig.2. Representative frames from TAO, showing videos sourced from multiple
domains with annotations at two different timesteps.

Equipped with TAO, we set out to answer several questions about the state of
the tracking community. In particular, in Sect.5 we report the following discov-
eries: (1) SOTA trackers struggle to generalize to a large vocabulary of objects,
particularly for infrequent object categories in the tail; (2) while trackers work
significantly better for the most-explored category of people, tracking people in
diverse scenarios (e.g., frequent occlusions or camera motion) remains challeng-
ing; (3) when scaled to a large object vocabulary, multi-object trackers become
competitive with user-initialized trackers, despite the latter being provided with
a ground truth initializations. We hope that these insights will help to define the
most promising directions for future research.

2 Related Work

The domain of object tracking is subdivided based on how tracks are initialized.
Our work falls into the multi-object tracking category, where all objects out
of a fixed vocabulary of classes must be detected and tracked. Other formula-
tions include user-initialized and saliency-based tracking. In this section, we first
review the most relevant benchmarks datasets in each of these areas, and then
discuss SOTA methods for multi-object and user-initialized tracking.



440 A. Dave et al.

2.1 Benchmarks

Multi-object tracking (MOT) is the task of tracking an unknown number
of objects from a known set of categories. Most MOT benchmarks [23,24,40,
60] focus on either people or vehicles (see Fig.1), motivated by surveillance
and self-driving applications. Moreover, they tend to include only a few dozen
videos, captured in outdoor or road environments, encouraging methods that
are overly adapted to the benchmark and do not generalize to different scenarios
(see Tablel). In contrast, TAO focuses on diversity both in the category and
visual domain distribution, resulting in a realistic benchmark for tracking any
object.

Several works have attempted to extend the MOT task to a wider vocabulary
of categories. In particular, the ImageNet-Vid [48] benchmark provides exhaus-
tive trajectories annotations for objects of 30 categories in 1314 videos. While this
dataset is both larger and more diverse than standard MOT benchmarks, videos
tend to be relatively short and the categories cover only animals and vehicles.
The recent YTVIS dataset [65] has the most broad vocabulary to date, covering
40 classes, but the majority of the categories still correspond to people, vehicles
and animals. Moreover, the videos are 5s long on average, making the track-
ing problem considerably easier in many cases. Unlike previous work, we take
a bottom-up approach for defining the vocabulary. This results in not only the
largest set of categories among MOT datasets to date, but also in a qualitatively
different category distribution. In addition, our dataset is over 7 times larger
than YTVIS in the number of frames. The recent VidOR dataset [51] explores
Video Object Relations, including tracks for a large vocabulary of objects. But,
since ViDOR focuses on relations rather than tracks, object trajectories tend to
be missing or incomplete, making it hard to repurpose for tracker benchmark-
ing. In contrast, we ensure TAO maintains high quality for both accuracy and
completeness of labels (see supplementary for a quantitative analysis).

Finally, several recent works have proposed to label masks instead of bound-
ing boxes for benchmarking multi-object tracking [56,65]. In collecting TAO we
made a conscious choice to prioritize scale and diversity of the benchmark over
pixel-accurate labeling. Instance mask annotations are significantly more expen-
sive to collect than bounding boxes, and we show empirically that tracking at
the box level is already a challenging task that current methods fail to solve.

User-initialized tracking forgoes a fixed vocabulary of categories and instead
relies on the user to provide bounding box annotations for objects at need to be
tracked at test time [21,30,34,55,61] (in particular, the VOT challenge [34] has
driven the progress in this field for many years). The benchmarks in this category
tend to be larger and more diverse than their MOT counterparts, but most still
offer a tradeoff between the number of videos and the average length of the
videos (see supplementary). Moreover, even if the task itself is category-agnostic,
empirical distribution of categories in the benchmarks tends to be heavily skewed
towards a few common objects. We study whether this bias in category selection
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results in methods failing to generalize to more challenging objects by evaluating
state-of-the-art user-initialized trackers on TAO in Sect. 5.2.

Semi-supervised video object segmentation differs from user-initialized
tracking in that both the input to the tracker and the output are object masks,
not boxes [43,64]. As a result, such datasets are a lot more expensive to col-
lect, and videos tend to be extremely short. The main focus of the works in
this domain [12,33,57] is on accurate mask propagation, not solving challenging
identity association problems, thus their effort is complementary to ours.

Saliency-based tracking is an intriguing direction towards open-world track-
ing, where the objects of interest are defined not with a fixed vocabulary
of categories, or manual annotations, but with bottom-up, motion- [42,43] or
appearance-based [13,59] saliency cues. Our work similarly uses motion-based
saliency to define a comprehensive vocabulary of categories, but presents a sig-
nificantly larger benchmark with class labels for each object, enabling the use
and evaluation of large-vocabulary object recognition approaches.

2.2 Algorithms

Multi-object trackers for people and other categories have historically been
studied by separate communities. The former have been mainly developed on
the MOT benchmark [40] and follow the tracking-by-detection paradigm, link-
ing outputs of person detectors in an offline, graph-based framework [3,4,10,20].
These methods mainly differ in the way they define the edge cost in the
graph. Classical approaches use overlap between detections in consecutive
frames [31,44,67]. More recent methods define edge costs based on appear-
ance similarity [41,47], or motion-based models [1,15,16,35,45,50]. Very recently,
Bergmann et al. [5] proposed a simple baseline approach for tracking people that
performs on par with SOTA by repurposing an object detector’s bounding box
regression capability to predict the position of an object in the next frame. All
these methods have been developed and evaluated on the relatively small MOT
dataset, containing 14 videos captured in very similar environments. By contrast,
TAO provides a much richer, more diverse set of videos, encouraging trackers
more robust to tracking challenges such as occlusion and camera motion.

The more general multi-object tracking scenario is usually studied using
ImageNet-Vid [48]. Methods in this group also use offline, graph-based opti-
mization to link frame-level detections into tracks. To define the edge potentials,
in addition to box overlap, Feichtenhofer et al. [22] propose a similarity embed-
ding, which is learned jointly with the detector. Kang et al. [32] directly predict
short tubelets, and Xiao et al. [63] incorporate a spatio-temporal memory mod-
ule inside a detector. Inspired by [5], we show that a simple baseline relying on
the Viterbi algorithm for linking detections [22,25] performs on par with the
aforementioned methods on ImageNet-Vid. We then use this baseline for evalu-
ating generic multi-object tracking on TAO in Sect. 5.2, and demonstrate that
it struggles when faced with a large vocabulary and a diverse data distribution.
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User-initialized trackers tend to rely on a Siamese network architecture that
was first introduced for signature verification [11], and later adapted for track-
ing [7,18,29,53]. They learn a patch-level distance embedding and find the closest
patch to the one annotated in the first frame in the following frames. To simplify
the matching problem, state-of-the-art approaches limit the search space to the
region in which the object was localized in the previous frame. Recently there
have been several attempts to introduce some ideas from CNN architectures for
object detection into Siamese trackers. In particular, Li et al. [37] use the simi-
larity map obtained by matching the object template to the test frame as input
to an RPN-like module adapted from Faster-RCNN [46]. Later this architecture
was extended by introducing hard negative mining and template updating [71],
as well as mask prediction [58]. In another line of work, Siamese-based track-
ers have been augmented with a target discrimination module to improve their
robustness to distractors [9,17]. We evaluate several state-of-the-art methods in
this paradigm for which public implementation is available [9,17,18,36,58] on
TAO, and demonstrate that they achieve only a moderate improvement over
our multi-object tracking baseline, despite being provided with a ground truth
initialization for each track (see Sect. 5.2 for details).

3 Dataset Design

Our primary goal is a large-scale video dataset with a diverse vocabulary of
labeled objects to evaluate trackers in the wild. This requires designing a strategy
for (1) video collection, (2) vocabulary discovery, (3) scalable annotation, and
(4) evaluation. We detail our strategies for (2-4) below, and defer (1) to Sect. 4.1.

Category Discovery. Rather than manually defining a set of categories, we dis-
cover an object vocabulary from unlabeled videos which span diverse operating
domains. Our focus is on dynamic objects in the world. Towards this end, we ask
annotators to mark all objects that move in our collection of videos, without any
object vocabulary in mind. We then construct a vocabulary by giving names for
all the discovered objects, following the recent trend for open-world dataset col-
lection [27,69]. In particular, annotators are asked to provide a free-form name
for every object, but are encouraged to select a category from the LVIS [27]
vocabulary whenever possible. We detail this process further in Sect. 4.2.

Federation. Given this vocabulary, one option might be to exhaustively label
all instances of each category in all videos. Unfortunately, exhaustive annotation
of a large vocabulary is expensive, even for images [27]. We choose to use our
labeling budget instead on collecting a large-scale, diverse dataset, by extending
the federated annotation protocol [27] from image datasets to videos. Rather
than labeling every video v with every category ¢, we define three subsets of
our dataset for each category: P,, containing videos where all instances of ¢ are
labeled, N., videos with no instance of ¢ present in the video, and U, videos
where some instances of ¢ are annotated. Videos not belonging to any of these
subsets are ignored when evaluating category c. For each category ¢, we only use
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videos in P. and N, to measure the precision of trackers, and videos in P. and
U. to measure recall. We describe how to define P., N., and U, in Sect. 4.2.

Granularity of Annotations. To collect TAO, we choose to prioritize scale
and diversity of the data at the cost of annotation granularity. In particular, we
label tracks at 1 frame per second with bounding box labels but don’t annotate
segmentation masks. This allows us to label 833 categories in 2,907 videos at a
relatively modest cost. Our decision is motivated by the observation of [55] that
dense frame labeling does not change the relative performance of the methods.

Evaluation and Metric. Traditionally, multi-object tracking datasets use
either the CLEAR MOT metrics [6,24,40] or a 3D intersection-over-union (IoU)
based metric [48,65]. We report the former in supplementary (with modifications
for large-vocabularies of classes, including multi-class aggregation and federa-
tion), but focus our experiments on the latter. To formally define 3D IoU, let
G ={g1,...,97} and D = {dy,...,dr} be a groundtruth and predicted track

for a video with T' frames. 3D IoU is defined as: IoUsq(D, G) = PIHEF AL

o Ez;l g+Udy ’
an object is not present at time ¢, we assign g; to an empty bounding box, and

similarly for a missing detection. We choose 3D IoU (with a threshold of 0.5) as
the default metric for TAO, and provide further analysis in supplementary.
Similar to standard object detection metrics, (3D) IoU together with (track)
confidence can be used to compute mean average precision across categories. For
methods that provide a score for each frame in a track, we use the average frame
score as the track score. Following [27], we measure precision for a category ¢ in
video v only if all instances of the category are verified to be labeled in it.

4 Dataset Collection

4.1 Video Selection

Most video datasets focus on one or a few domains. For instance, MOT bench-
marks [40] correspond to urban, outdoor scenes featuring crowds, while AVA [26]
contains produced films, typically capturing actors with close shots in carefully
staged scenes. As a result, methods developed on any single dataset (and hence
domain) fail to generalize in the wild. To avoid this bias, we constructed TAO
by selecting videos from a variety of sources to ensure scene and object diversity.

Diversity. In particular, we used datasets for action recognition, self-driving
cars, user-initialized tracking, and in-the-wild Flickr videos. In the action recog-
nition domain we selected 3 datasets: Charades [52], AVA [26], and HACS [68].
Charades features complex human-human and human-object interactions, but
all videos are indoor with limited camera motion. By contrast, AVA has a much
wider variety of scenes and cinematographic styles but is scripted. HACS pro-
vides unscripted, in-the-wild videos. These action datasets are naturally focused
on people and objects with which people interact. To include other animals and
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vehicles, we source clips from LaSOT [21] (a benchmark for user-initialized track-
ing), BDD [66] and ArgoVerse [14] (benchmarks for self-driving cars). LaSOT
is a diverse collection whereas BDD and ArgoVerse consist entirely of outdoor,
urban scenes. Finally we sample in-the-wild videos from the YFCC100M [54]
Flickr collection.

Quality. The videos are automatically filtered to remove short videos and videos
with a resolution below 480p. For longer videos, as in AVA, we use [39] to extract
scenes without shot changes. In addition, we manually reviewed each sampled
video to ensure it is high quality: i.e., we removed grainy videos as well as
videos with excessive camera motion or shot changes. Finally, to focus on the
most challenging tracking scenarios, we only kept videos that contain at least 2
moving objects. The full statistics of the collected videos are provided in Table 1.
We point out that many prior video datasets tend to limit one or more quality
dimensions (in terms of resolution, length, or number of videos) in order to
keep evaluation and processing times manageable. In contrast, we believe that
in order to truly enable tracking in the open-world, we need to appropriately
scale benchmarks.

exhaustive : {person}
non-exhaustive : {camel}
negative : {bicycle, mirror}

Fig. 3. Our federated video annotation pipeline. First (a), annotators mine and track
moving objects. Second (b), annotators categorize tracks using the LVIS vocabulary
or free-form text, producing the labeled tracks (c). Finally, annotators identify cate-
gories that are exhaustively annotated or verified to be absent. In (d), ‘person’s are
identified as being exhaustively annotated, ‘camel’s are present but not exhaustively
annotated and ‘bicycle’s and ‘mirror’s are verified as absent. These labels allow accu-
rately penalizing false-positives and missed detections for exhaustively annotated and
verified categories.

4.2 Annotation Pipeline

Our annotation pipeline is illustrated in Fig. 3. We designed it to separate low-
level tracking from high-level semantic labeling. As pointed out by others [2],
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semantic labeling can be subtle and error-prone because of ambiguities and
corner-cases that arise in category boundaries. By separating tasks into low vs
high-level, we are able to take advantage of unskilled annotators for the former
and highly-vetted workers for the latter.

Object Mining and Tracking. We combine object mining and track labeling
into a single stage. Given the videos described above, we ask annotators to
mark objects that move at any point in the video. To avoid overspending our
annotation budget on a few crowded videos, we limited the number of labeled
objects per video to 10. Note that this stage is category-agnostic: annotators are
not instructed to look for objects from any specific vocabulary, but instead to
use motion as a saliency cue for mining relevant objects. They are then asked
to label these objects throughout the video with bounding boxes at 1 frame-
per-second. Finally, the tracks are verified by one independent annotator. This
process is illustrated in Fig. 3, where we can see that 6 objects are discovered
and tracked.

Object Categorization. Next, we collected category labels for objects discov-
ered in the previous stage and simultaneously constructed the dataset vocab-
ulary. We focus on the large vocabulary from the LVIS [27] object detection
dataset, which contains 1,230 synsets discovered in a bottom-up manner similar
to ours. Doing so also allows us to make use of LVIS as a training set of rele-
vant object detectors (which we later use within a tracking pipeline to produce
strong baselines - Sect. 5.1). Because maintaining a mental list of 1,230 categories
is challenging even for expert annotators, we use an auto-complete annotation
interface to suggest categories from the LVIS vocabulary (Fig.3(b)). The auto-
complete interface displays classes with a matching synset (e.g., “person.n.01”),
name, synonym, and finally those with a matching definition. Interestingly, we
find that some objects discovered in TAO, such as “door” or “marker cap”, do
not exist in LVIS. To accommodate such important exceptions, we allow annota-
tors to label objects with free-form text if they do not fit in the LVIS vocabulary.
Overall, annotators labeled 16,144 objects (95%) with 488 LVIS categories, and
894 objects (5%) with 345 free-form categories. We use the 488 LVIS categories
for MOT experiments (because detectors can be trained on LVIS), but use all
categories for user-initialized tracking experiments in supplementary.

Federated “Exhaustive” Labeling. Finally, we ask annotators to verify which
categories are exhaustively labeled for each video. For each category c labeled in
video v, we ask annotators whether all instances of ¢ are labeled. In Fig. 3, after
this stage, annotators marked that ‘person’ is exhaustively labeled, while ‘camel’
is not. Next, we show annotators a sampled subset of categories that are not labeled
in the video, and ask them to indicate which categories are absent in the video. In
Fig. 3, annotators indicated that ‘bicycle’ and ‘mirror’ are absent.

4.3 Dataset Splits

We split TAO into three subsets: train, validation and test, containing 500, 988
and 1,419 videos respectively. Typically, train splits tend to be larger than val and
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test. We choose to make TAO train small for several reasons. First, our primary
goal is to reliably benchmark trackers in-the-wild. Second, most MOT systems
are modularly trained using image-based detectors with hyper-parameter tuning
of the overall tracking system. We ensure TAO train is sufficiently large for
tuning, and that our large-vocabulary is aligned with the LVIS image dataset.
This allows devoting most of our annotation budget for large-scale val and held-
out test sets. We ensure that the videos in train, val and test are well-separated
(e.g., each Charades subject appears in only one split); see supp. for details.

5 Analysis of State-of-the-Art Trackers

We now use TAO to analyze how well existing multi- and single-object trackers
perform in the wild and when they fail. We tune the hyperparameters of each
tracking approach on the ‘train’ set, and report results on the ‘val’ set. To
capitalize on existing object detectors, we evaluate using the 488 LVIS categories
in TAO. We begin by shortly describing the methods used in our analysis.

5.1 Methods

Detection. We analyze how well state-of-the-art object detectors perform on
our dataset. To this end, we present results using a standard Mask R-CNN [46]
detector trained using [62] in Sect.5.2.

Multi-object Tr.ack.lng. We Table 2. ImageNet-Vid detection and track
analyze SOTA multi-object track- mAP; see text (left) for details.

ing methods on ImageNet-Vid.

We first clarify whether such Viterbi Det mAP Track mAP
approaches improve detection or porotion 73.4 [63] |-

tracking. Table 2 reports the stan- ¢ [22] v/ 79.8 _

dard ImageNet-Vid Detection and STMN [63] v 79.0 60.4

Track mAP. The ‘Detection’ row Detection |V 79.2 60.3

corresponds to a detection-only
baseline widely reported by prior
work [22,63,70]. D&T [22] and
STMN [63] are spatiotemporal architectures that produce 6-7% detection mAP
improvements over a per-frame detector. However, both D&T and STMN post-
process their per-frame outputs using the Viterbi algorithm, which iteratively
links and re-weights the confidences of per-frame detections (see [25]). When the
same post-processing is applied to a single-frame detector, one achieves nearly
the same performance gain (Table2, last row).

Our analysis reinforces the bleak view of multi-object tracking progress sug-
gested by [5]: while ever-more complex approaches have been proposed for the
task, their improvements are often attributable to simple, baseline strategies. To
foster meaningful progress on TAO, we evaluate a number of strong baselines.
We evaluate a per-frame detector trained on LVIS [27] and COCO [38], followed
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by two linking methods: SORT [8], a simple, online linker initially proposed for
tracking people, and the Viterbi post-processing step used by [22,63], in Sect. 5.2.

Person Detection and Tracking. Detecting and tracking people has been a
distinct focus in the multi-object tracking community. Sect. 5.2 compares the
above baselines to a recent SOTA people-tracker [5].

User-Initialized Tracking. We evaluate several recent user-initialized track-
ers for which public implementation is available [9,17,18,36,58]. Unfortunately,
these trackers do not classify tracked objects, and cannot directly be compared
to multi-object trackers which simultaneously detect and track objects. How-
ever, these trackers can be evaluated with an oracle classifier, enabling direct
comparisons.

Oracles. Finally, to disentangle the complexity of classification and tracking, we
use two oracles. The first, a class oracle, computes the best matching between
predicted and groundtruth tracks. Predicted tracks that match to a groundtruth
track with 3D IoU > 0.5 are assigned the corresponding groundtruth category.
Tracks that do not match to a groundtruth track are not modified, and count as
false positives. This allows us to evaluate the performance of trackers assuming
the semantic classification task is solved. The second oracle computes the best
possible assignment of per-frame detections to tracks, by comparing them with
groundtruth. When doing so, class predictions for each detection are held con-
stant. Any detections that are not matched are discarded. This oracle allows us
to analyze the best performance we could expect given a fixed set of detections.

5.2 Results

How Hard is Object Detection on TAO? We start by assessing the difficulty
of detection on TAO by evaluating the SOTA object detector [28] using detection
mAP. We train this model on LVIS and COCQO, as training on LVIS alone led to
low accuracy in detecting people. The final model achieves 27.1 mAP on TAO
val at IoU 0.5, suggesting that single-frame detection is challenging on TAO.

Do Multi-object Trackers Generalize to TAO? Table3 reports results
using tracking mAP on TAO. As a sanity check, we first evaluate a per-frame
detector by assigning each detection to its own track. As expected, this achieves
an mAP of nearly 0 (which isn’t quite 0 due to the presence of short tracks).
Next, we evaluate two multi-object tracking approaches. We compare the
Viterbi linking method to an online SORT tracker [8]. We tune SORT on our
diverse ‘train’ set, which is key for good accuracy. As the offline Viterbi algo-
rithm takes over a month to run on TAO train, we only tune the post-processing
score threshold for reporting a detection at each frame. See supplementary for
tuning details. Surprisingly, we find that the simpler, online SORT approach
outperforms Viterbi, perhaps because the latter has been heavily tuned for
ImageNet-Vid. Because of its scalablity (to many categories and long videos)
and relatively better performance, we focus on SORT for the majority of our
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Table 3. SORT and Viterbi linking pro-
vide strong baselines on TAO, but detec-
tion and tracking remain challenging.
Relabeling and linking detections from
current detectors using the class and track
oracles leads to high performance, sug-
gesting a pathway for progress on TAO.

Method Oracle Track mAP

Class | Track
Detection 0.6 Fig.4. SORT qualitative results, show-
Viterbi [22,25] 6.3 ing (left) a successful tracking result, and
SORT ,[8] 132 (right) a failure case due to semantic flicker
Detection v 31.5 o .
Viterbi [22,25] |/ 157 between similar classes, suggesting that
SORT [8] U, 30.9 larg.e—.vocabulary. tracking on TAO requires
Detection v v 33.6 additional machinery.

experiments. However, the performance of both methods remains low, suggesting
TAO presents a major challenge for the tracking community, requiring principled
novel approaches.

To better understand the nature of the complexity of TAO, we separately
measure the challenges of tracking and classification. To this end, we first eval-
uate the “track” oracle that perfectly links per-frame detections. It achieves
a stronger mAP of 31.5, compared to 13.2 for SORT. Interestingly, providing
SORT tracks with an oracle class label provides a similar improvement, boost-
ing mAP to 30.2. We posit that these improvements are orthogonal, and verify
this by combining them; we link detections with oracle tracks and assign these
tracks oracle class labels. This provides the largest delta, dramatically improv-
ing mAP to 83.6%. This suggests that large-vocabulary tracking requires jointly
improving tracking and classification accuracy (e.g., reducing semantic flicker as

shown in Fig.4).
Table 4. Person-tracking
2
How Well Can We Track People? We now results on TAO. See text

evaluate tracking on one particularly important (left).
category: people. Measuring AP for individual
categories in a federated dataset can be noisy [27],

. . Method Person AP
so we emphasize relative performance of trackers - -
rather than their absolute AP. We evaluate Track- Viterbi [22,25] |16.5
tor++ [5], the state-of-the-art method designed SORT 8] 18.5
specifically for people tracking, and compare it to Tracktor++ [5]36.7

the SORT and Viterbi baselines in Table4. We
update Tracktor++ to use the same detector used
by SORT and Viterbi, using only the ‘person’ predictions. We tune the score
threshold on TAO ‘train’, but find the method is largely robust to this param-
eter (see supp.). Tracktor4++ strongly outperforms other approaches (36.7 AP),
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while SORT modestly outperforms Viterbi (18.6 vs 16.5 AP). It is interesting to
note that SORT, which can scale to all object categories, performs noticeably
worse on all categories on average (13.2 mAP). This delta between ‘person’ and
overall is even more dramatic using the MOTA metric (6.7 overall vs 54.8 for
‘person’; see supp.). We attribute the higher accuracy for ‘person’ to two factors:
(1) a rich history of focused research on this one category, which has led to more
accurate detectors and trackers, and (2) more complex categories present sig-
nificant challenges, such as hand-held objects which exhibit frequent occlusions
during interactions.

To further investigate Tracktor++'s performance, we evaluate a simpler vari-
ant of the method from [5], which does not use appearance-based re-identification
nor pixel-level frame alignment. We find that removing these components reduces
AP from 36.7 to 25.9, suggesting these components contribute to a majority of
improvements over the baselines. Our results contrast [5], which suggests that
re-id and frame alignment are not particularly helpful. Compared to prior bench-
marks, the diversity of TAO results in a challenging testbed for person tracking
which encourages trackers robust to occlusion and camera jitter.

Do User-Initialized Trackers Generalize Better? Next, we evaluate recent

user-initialized trackers in Table 5. We provide the tracker with the groundtruth

box for each object from its first visible frame. As these trackers do not report

when an object is absent [55], we modify them to report an object as absent

when the confidence drops below a threshold tuned on TAO ‘train’ (see supp).
We compare these trackers

to SORT, supplying both with Taple 5. User-initialized trackers on ‘val’. We

a class oracle. As expected, the re-train some trackers on their train set with

use of a ground-truth initial- TAO videos removed, denoted *.

ization allows the best user-

initialized methods to outper- Method Oracle | Track mAP
form the multi-object tracker. Init[Class

. . SORT /(302
However, even with this oracle ECO [18] v v 237
box initialization and an oracle SiamMask [58] v |v  ]308
. . . SiamRPN++ LT [36]|v |v  [27.2
classifier, tracking remains chal- SiamRPN++ [36] v v/ 207
lenging on TAO. Indeed, most ATOM* [17] v |/ [30.9
DIMP* [9] v v |33.2

user-initialized trackers provide at
most modest improvements over
SORT. We provide further anal-
ysis in supplementary, showing that (1) while a more informative initialization
frame improves user-initialized tracker accuracy, SORT remains competitive, and
(2) user-initialized trackers accurately track for a few frames after init, leading
to improvements in MOTA, but provide little benefits in long-term tracking. We
hypothesize that the small improvement of user-initialized trackers over SORT
is due to the fact that the former are trained on a small vocabulary of objects
with limited occlusions, leading to methods that do not generalize to the most
challenging cases in TAO. One goal of user-initialized trackers is open-world
tracking of objects without good detectors. TAO’s large vocabulary allows us to
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analyze progress towards this goal, indicating that large-vocabulary multi-object
trackers may now address the open-world of objects as well as category-agnostic,
user-initialized trackers.

6 Discussion

Developing tracking approaches that can be deployed in-the-wild requires being
able to reliably measure their performance. With nearly 3,000 videos, TAO pro-
vides a robust evaluation benchmark. Our analysis provides new conclusions
about the state of tracking, while raising important questions for future work.

The Role of User-Initialized Tracking. User-initialized trackers aim to track
any object, without requiring category-specific detectors. In this work, we raise a
provocative question: with the advent of large vocabulary object detectors [27], to
what extent can (detection-based) multi-object trackers perform generic tracking
without user initialization? Tableb, for example, shows that large-vocabulary
datasets (such as TAO and LVIS) now allow multi-object trackers to match or
outperform user-initialization for a number of categories.

Specialized Tracking Approaches. TAO aims to measure progress in tracking
in-the-wild. A valid question is whether progress may be better achieved by
building trackers for application-specific scenarios. An indoor robot, for example,
has little need for tracking elephants. However, success in many computer vision
fields has been driven by the pursuit of generic approaches, that can then be
tailored for specific applications. We do not build one class of object detectors for
indoor scenes, and another for outdoor scenes, and yet another for surveillance
videos. We believe that tracking will similarly benefit from targeting diverse
scenarios. Of course, due to its size, TAO also lends itself to use for evaluating
trackers for specific scenarios or categories, as in Sect. 5.2 for ‘person.’

Video Object Detection. Although image-based object detectors have signif-
icantly improved in recent years, our analysis in Sect.5.1 suggests that simple
post-processing of detection outputs remains a strong baseline for detection in
videos. While we do not emphasize it in this work, TAO can also be used to
measure progress in video object detection, where the goal is not to maintain
the identity of objects, but only to reliably detect them in every video frame.
TAOQ’s large vocabulary particularly provides avenues for incorporating temporal
information to resolve classification errors, which remain challenging (see Fig. 4).
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