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Abstract. This paper investigates the principles of embedding learning
to tackle the challenging semi-supervised video object segmentation. Dif-
ferent from previous practices that only explore the embedding learning
using pixels from foreground object (s), we consider background should
be equally treated and thus propose Collaborative video object segmenta-
tion by Foreground-Background Integration (CFBI) approach. Our CFBI
implicitly imposes the feature embedding from the target foreground
object and its corresponding background to be contrastive, promoting
the segmentation results accordingly. With the feature embedding from
both foreground and background, our CFBI performs the matching pro-
cess between the reference and the predicted sequence from both pixel
and instance levels, making the CFBI be robust to various object scales.
We conduct extensive experiments on three popular benchmarks, i.e.,
DAVIS 2016, DAVIS 2017, and YouTube-VOS. Our CFBI achieves the
performance (J&F) of 89.4%, 81.9%, and 81.4%, respectively, outper-
forming all the other state-of-the-art methods. Code: https://github.
com/z-x-yang/CFBI.
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1 Introduction

Video Object Segmentation (VOS) is a fundamental task in computer vision with
many potential applications, including augmented reality [25] and self-driving
cars [44]. In this paper, we focus on semi-supervised VOS, which targets on
segmenting a particular object across the entire video sequence based on the
object mask given at the first frame. The development of semi-supervised VOS
can benefit many related tasks, such as video instance segmentation [13,41] and
interactive video object segmentation [21,24,26].
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Early VOS works [2,23,35] rely on fine-tuning with the first frame in evalua-
tion, which heavily slows down the inference speed. Recent works (e.g., [27,34,42])
aim to avoid fine-tuning and achieve better run-time. In these works, STMVOS [27]
introduces memory networks to learn to read sequence information and outper-
forms all the fine-tuning based methods. However, STMVOS relies on simulating
extensive frame sequences using large image datasets [7,12,15,22,32] for training.
The simulated data significantly boosts the performance of STMVOS but makes
the training procedure elaborate. Without simulated data, FEELVOS [34] adopts
a semantic pixel-wise embedding together with a global (between the first and cur-
rent frames) and a local (between the previous and current frames)matchingmech-
anism to guide the prediction. The matching mechanism is simple and fast, but the
performance is not comparable with STMVOS.

Reference (t=1) Prediction (t=T)

w/o CI

w/ CI  
(ours)

Fig. 1. CI means collaborative integration.
There are two foreground sheep (pink and
blue). In the top line, the contempt of back-
ground matching leads to a confusion of sheep’s
prediction. In the bottom line, we relieve the
confusion problem by introducing background
matching (dot-line arrow). (Color figure online)

Even though the efforts men-
tioned above have made signifi-
cant progress, current state-of-the-
art works pay little attention to
the feature embedding of back-
ground region in videos and only
focus on exploring robust match-
ing strategies for the foreground
object (s). Intuitively, it is easy to
extract the foreground region from
a video when precisely remov-
ing all the background. Moreover,
modern video scenes commonly
focus on many similar objects,
such as the cars in car racing, the
people in a conference, and the
animals on a farm. For these cases,
the contempt of integrating foreground and background embeddings traps VOS
in an unexpected background confusion problem. As shown in Fig. 1, if we focus
on only the foreground matching like FEELVOS, a similar and same kind of
object (sheep here) in the background is easy to confuse the prediction of the
foreground object. Such an observation motivates us that the background should
be equally treated compared with the foreground so that better feature embed-
ding can be learned to relieve the background confusion and promote the accu-
racy of VOS.

We propose a novel framework for Collaborative video object segmentation by
Foreground-Background Integration (CFBI) based on the above motivation. Dif-
ferent from the above methods, we not only extract the embedding and do match
for the foreground target in the reference frame, but also for the background
region to relieve the background confusion. Besides, our framework extracts two
types of embedding (i.e., pixel-level, and instance-level embedding) for each
video frame to cover different scales of features. Like FEELVOS, we employ
pixel-level embedding to match all the objects’ details with the same global &
local mechanism. However, the pixel-level matching is not sufficient and robust
to match those objects with larger scales and may bring unexpected noises due to
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the pixel-wise diversity. Thus we introduce instance-level embedding to help the
segmentation of large-scale objects by using attention mechanisms. Moreover, we
propose a collaborative ensembler to aggregate the foreground & background and
pixel-level & instance-level information and learn the collaborative relationship
among them implicitly. For better convergence, we take a balanced random-crop
scheme in training to avoid learned attributes being biased to the background
attributes. All these proposed strategies can significantly improve the quality
of the learned collaborative embeddings for conducting VOS while keeping the
network simple yet effective simultaneously.

We perform extensive experiments on DAVIS [30,31], and YouTube-VOS [40]
to validate the effectiveness of the proposed CFBI approach. Without any bells
and whistles (such as the use of simulated data, fine-tuning or post-processing),
CFBI outperforms all other state-of-the-art methods on the validation splits
of DAVIS 2016 (ours, J &F 89.4%), DAVIS 2017 (81.9%) and YouTube-VOS
(81.4%) while keeping a competitive single-object inference speed of about 5
FPS. By additionally applying multi-scale & flip augmentation at the testing
stage, the accuracy can be further boosted to 90.1%, 83.3% and 82.7%, respec-
tively. We hope our simple yet effective CFBI will serve as a solid baseline and
help ease VOS’s future research.

2 Related Work

Semi-supervised Video Object Segmentation. Many previous methods for
semi-supervised VOS rely on fine-tuning at test time. Among them, OSVOS [2]
and MoNet [39] fine-tune the network on the first-frame ground-truth at test
time. OnAVOS [35] extends the first-frame fine-tuning by an online adaptation
mechanism, i.e., online fine-tuning. MaskTrack [29] uses optical flow to propagate
the segmentation mask from one frame to the next. PReMVOS [23] combines four
different neural networks (including an optical flow network [11]) using extensive
fine-tuning and a merging algorithm. Despite achieving promising results, all
these methods are seriously slowed down by fine-tuning during inference.

Some other recent works (e.g., [6,42]) aim to avoid fine-tuning and achieve a
better run-time. OSMN [42] employs two networks to extract the instance-level
information and make segmentation predictions, respectively. PML [5] learns
a pixel-wise embedding with the nearest neighbor classifier. Similar to PML,
VideoMatch [18] uses a soft matching layer that maps the pixels of the current
frame to the first frame in a learned embedding space. Following PML and Video-
Match, FEELVOS [34] extends the pixel-level matching mechanism by addition-
ally matching between the current frame and the previous frame. Compared
to the methods with fine-tuning, FEELVOS achieves a much higher speed, but
there is still a gap inaccuracy. Like FEELVOS, RGMP [38] and STMVOS [27]
does not require any fine-tuning. STMVOS, which leverages a memory network
to store and read the information from past frames, outperforms all the previ-
ous methods. However, STMVOS relies on an elaborate training procedure using
extensive simulated data generated from multiple datasets. Moreover, the above
methods do not focus on background matching.
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Fig. 2. An overview of CFBI. F-G denotes Foreground-Background. We use red and
blue to indicate foreground and background separately. The deeper the red or blue
color, the higher the confidence. Given the first frame (t = 1), previous frame (t =
T − 1), and current frame (t = T ), we firstly extract their pixel-wise embedding by
using a backbone network. Second, we separate the first and previous frame embeddings
into the foreground and background pixels based on their masks. After that, we use F-G
pixel-level matching and instance-level attention to guide our collaborative ensembler
network to generate a prediction. (Color figure online)

Our CFBI utilizes both the pixel-level and instance-level embeddings to guide
prediction. Furthermore, we propose a collaborative integration method by addi-
tionally learning background embedding.

Attention Mechanisms. Recent works introduce the attention mechanism into
convolutional networks (e.g., [9,14]). Following them, SE-Nets [17] introduced a
lightweight gating mechanism that focuses on enhancing the representational
power of the convolutional network by modeling channel attention. Inspired
by SE-Nets, CFBI uses an instance-level average pooling method to embed
collaborative instance information from pixel-level embeddings. After that, we
conduct a channel-wise attention mechanism to help guide prediction. Com-
pared to OSMN, which employs an additional convolutional network to extract
instance-level embedding, our instance-level attention method is more efficient
and lightweight.

3 Method

Overview. Learning foreground feature embedding has been well explored by
previous practices (e.g., [34,42]). OSMN proposed to conduct an instance-level
matching, but such a matching scheme fails to consider the feature diversity
among the details of the target’s appearance and results in coarse predictions.
PML and FEELVOS alternatively adopt the pixel-level matching by matching
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each pixel of the target, which effectively takes the feature diversity into account
and achieves promising performance. Nevertheless, performing pixel-level match-
ing may bring unexpected noises in the case of some pixels from the background
are with a similar appearance to the ones from the foreground (Fig. 1).

To overcome the problems raised by the above methods and promote the
foreground objects from the background, we present Collaborative video object
segmentation by Foreground-Background Integration (CFBI), as shown in Fig. 2.
We use red and blue to indicate foreground and background separately. First,
beyond learning feature embedding from foreground pixels, our CFBI also con-
siders embedding learning from background pixels for collaboration. Such a
learning scheme will encourage the feature embedding from the target object
and its corresponding background to be contrastive, promoting the segmenta-
tion results accordingly. Second, we further conduct the embedding matching
from both pixel-level and instance-level with the collaboration of pixels from
the foreground and background. For the pixel-level matching, we improve the
robustness of the local matching under various object moving rates. For the
instance-level matching, we design an instance-level attention mechanism to aug-
ment the pixel-level matching efficiently. Moreover, to implicitly aggregate the
learned foreground & background and pixel-level & instance-level information,
we employ a collaborative ensembler to construct large receptive fields and make
precise predictions.

3.1 Collaborative Pixel-Level Matching

For the pixel-level matching, we adopt a global and local matching mechanism
similar to FEELVOS for introducing the guided information from the first and
previous frames, respectively. Unlike previous methods [5,34], we additionally
incorporate background information and apply multiple windows in the local
matching, which is shown in the middle of Fig. 2.

For incorporating background information, we firstly redesign the pixel dis-
tance of [34] to further distinguish the foreground and background. Let Bt and
Ft denote the pixel sets of background and all the foreground objects of frame
t, respectively. We define a new distance between pixel p of the current frame T
and pixel q of frame t in terms of their corresponding embedding, ep and eq, by

Dt(p, q) =

{
1 − 2

1+exp(||ep−eq||2+bB) if q ∈ Bt

1 − 2
1+exp(||ep−eq||2+bF ) if q ∈ Ft

, (1)

where bB and bF are trainable background bias and foreground bias. We intro-
duce these two biases to make our model be able further to learn the difference
between foreground distance and background distance.

Foreground-Background Global Matching. Let Pt denote the set of all
pixels (with a stride of 4) at time t and Pt,o ⊆ Pt is the set of pixels at time
t which belongs to the foreground object o. The global foreground matching
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between one pixel p of the current frame T and the pixels of the first reference
frame (i.e., t = 1) is,

GT,o(p) = min
q∈P1,o

D1(p, q). (2)

Similarly, let Pt,o = Pt\Pt,o denote the set of relative background pixels of object
o at time t, and the global background matching is,

GT,o(p) = min
q∈P1,o

D1(p, q). (3)

Foreground-Background Multi-Local Matching.
[Slow moving rate]

[Fast moving rate]

Fig. 3. The moving rate of objects
across two adjacent frames is
largely variable for different
sequences. Examples are from
YouTube-VOS [40].

In FEELVOS, the local matching is limited
in only one fixed extent of neighboring pix-
els, but the offset of objects across two adja-
cent frames in VOS is variable, as shown in
Fig. 3. Thus, we propose to apply the local
matching mechanism on different scales and
let the network learn how to select an appro-
priate local scale, which makes our frame-
work more robust to various moving rates
of objects. Notably, we use the intermediate
results of the local matching with the largest
window to calculate on other windows. Thus,
the increase of computational resources of our
multi-local matching is negligible.

Formally, let K = {k1, k2, ..., kn} denote
all the neighborhood sizes and H(p, k) denote
the neighborhood set of pixels that are at
most k pixels away from p in both x and y
directions, our foreground multi-local match-
ing between the current frame T and its pre-
vious frame T − 1 is

MLT,o(p,K) = {LT,o(p, k1), LT,o(p, k2), ..., LT,o(p, kn)}, (4)

where

LT,o(p, k) =

{
minq∈Pp,k

T−1,o
DT−1(p, q) if Pp,k

T−1,o �= ∅
1 otherwise

. (5)

Here, Pp,k
T−1,o := PT−1,o ∩ H(p, k) denotes the pixels in the local window (or

neighborhood). And our background multi-local matching is

MLT,o(p,K) = {LT,o(p, k1), LT,o(p, k2), ..., LT,o(p, kn)}, (6)

where

LT,o(p, k) =

{
min

q∈Pp,k
T−1,o

DT−1(p, q) if Pp,k

T−1,o �= ∅
1 otherwise

. (7)

Here similarly, Pp,k

T−1,o := PT−1,o ∩ H(p, k).
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In addition to the global and multi-local matching maps, we concatenate the
pixel-level embedding feature and mask of the previous frame with the current
frame feature. FEELVOS demonstrates the effectiveness of concatenating the
previous mask. Following this, we empirically find that introducing the previous
embedding can further improve the performance (J &F) by about 0.5%.

In summary, the output of our collaborative pixel-level matching is a con-
catenation of (1) the pixel-level embedding of the current frame, (2) the pixel-
level embedding and mask of the previous frame, (3) the multi-local matching
map and (4) the global matching map, as shown in the bottom box of Fig. 2.

Collaborative 
Instance-level  

Guidance Vector

FC

Non-linear

Res-Block

Scale

1 × 1 × 4Ce

1 × 1 × C

1 × 1 × C

H ×W × C

Fig. 4. The trainable
part of the instance-level
attention. Ce denotes
the channel dimension
of pixel-wise embedding.
H, W , C denote the
height, width, chan-
nel dimension of CE
features.

3.2 Collaborative Instance-Level Attention

As shown in the right of Fig. 2, we further design a Col-
laborative instance-level attention mechanism to guide
the segmentation for large-scale objects.

After getting the pixel-level embeddings of the first
and previous frames, we separate them into foreground
and background pixels (i.e., P1,o, P1,o, PT−1,o, and
PT−1,o) according to their masks. Then, we apply
channel-wise average pooling on each group of pixels to
generate a total of four instance-level embedding vec-
tors and concatenate these vectors into one collabora-
tive instance-level guidance vector. Thus, the guidance
vector contains the information from both the first and
previous frames, and both the foreground and back-
ground regions.

In order to efficiently utilize the instance-level infor-
mation, we employ an attention mechanism to adjust
our Collaborative Ensembler (CE). We show a detailed
illustration in Fig. 4. Inspired by SE-Nets [17], we lever-
age a fully-connected (FC) layer (we found this setting
is better than using two FC layers as adopted by SE-
Net) and a non-linear activation function to construct
a gate for the input of each Res-Block in the CE. The
gate will adjust the scale of the input feature channel-wisely.

By introducing collaborative instance-level attention, we can leverage a full
scale of foreground-background information to guide the prediction further. The
information with a large (instance-level) receptive field is useful to relieve local
ambiguities [33], which is inevitable with a small (pixel-wise) receptive field.

3.3 Collaborative Ensembler (CE)

In the lower right of Fig. 2, we design a collaborative ensembler for making large
receptive fields to aggregate pixel-level and instance-level information and implic-
itly learn the collaborative relationship between foreground and background.
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Inspired by ResNets [16] and Deeplabs [3,4], which both have shown sig-
nificant representational power in image segmentation tasks, our CE uses a
downsample-upsample structure, which contains three stages of Res-Blocks [16]
and an Atrous Spatial Pyramid Pooling (ASPP) [4] module. The number of
Res-Blocks in Stage 1, 2, and 3 are 2, 3, 3 in order. Besides, we employ
dilated convolutional layers to improve the receptive fields efficiently. The
dilated rates of the 3 × 3 convolutional layer of Res-Blocks in one stage are
separately 1, 2, 4 ( or 1, 2 for Stage 1). At the beginning of Stage 2 and
Stage 3, the feature maps will be downsampled by the first Res-Block with
a stride of 2. After these three stages, we employ an ASPP and a Decoder [4]
module to increase the receptive fields further, upsample the scale of feature
and fine-tune the prediction collaborated with the low-level backbone features.

(a) Normal

t = T + 1

t = 1
t = T − 1

t = T

(b) Balanced

Fig. 5. When using normal random-crop, some
red windows contain few or no foreground pix-
els. For reliving this problem, we propose bal-
anced random-crop.

4 Implementation
Details

For better convergence, we mod-
ify the random-crop augmentation
and the training method in previ-
ous methods [27,34].

Balanced Random-Crop. As
shown in Fig. 5, there is an appar-
ent imbalance between the fore-
ground and the background pixel
number on VOS datasets. Such
an issue usually makes the models
easier to be biased to background
attributes.

In order to relieve this problem, we take a balanced random-crop scheme,
which crops a sequence of frames (i.e., the first frame, the previous frame, and the
current frame) by using a same cropped window and restricts the cropped region
of the first frame to contain enough foreground information. The restriction
method is simple yet effective. To be specific, the balanced random-crop will
decide on whether the randomly cropped frame contains enough pixels from
foreground objects or not. If not, the method will continually take the cropping
operation until we obtain an expected one.

Sequential Training. In the training stage, FEELVOS predicts only one step in
one iteration, and the guidance masks come from the ground-truth data. RGMP
and STMVOS uses previous guidance information (mask or feature memory) in
training, which is more consistent with the inference stage and performs better.
In the evaluation stage, the previous guidance masks are always generated by
the network in the previous inference steps.

Following RGMP, we train the network using a sequence of consecutive
frames in each SGD iteration. In each iteration, we randomly sample a batch
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Fig. 6. Qualitative comparison with STMVOS on DAVIS 2017. In the first video,
STMVOS fails in tracking the gun after occlusion and blur. In the second video,
STMVOS is easier to partly confuse with bicycle and person.

of video sequences. For each video sequence, we randomly sample a frame as
the reference frame and a continuous N + 1 frames as the previous frame and
current frame sequence with N frames. When predicting the first frame, we use
the ground-truth of the previous frame as the previous mask. When predicting
the following frames, we use the latest prediction as the previous mask.

Training Details. Following FEELVOS, we use the DeepLabv3+ [4] archi-
tecture as the backbone for our network. However, our backbone is based on
the dilated Resnet-101 [4] instead of Xception-65 [8] for saving computational
resources. We apply batch normalization (BN) [19] in our backbone and pre-train
it on ImageNet [10] and COCO [22]. The backbone is followed by one depth-wise
separable convolution for extracting pixel-wise embedding with a stride of 4.

We initialize bB and bF to 0. For the multi-local matching, we further
downsample the embedding feature to a half size using bi-linear interpola-
tion for saving GPU memory. Besides, the window sizes in our setting are
K = {2, 4, 6, 8, 10, 12}. For the collaborative ensembler, we apply group normal-
ization (GN) [37] and gated channel transformation [43] to improving training
stability and performance when using a small batch size. For sequential training,
the current sequence’s length is N = 3, which makes a better balance between
computational resources and network performance.

We use the DAVIS 2017 [31] training set (60 videos) and the YouTube-
VOS [40] training set (3471 videos) as the training data. We downsample all
the videos to 480P resolution, which is same as the default setting in DAVIS.
We adopt SGD with a momentum of 0.9 and apply a bootstrapped cross-
entropy loss, which only considers the 15% hardest pixels. During the train-
ing stage, we freeze the parameters of BN in the backbone. For the exper-
iments on YouTube-VOS, we use a learning rate of 0.01 for 100, 000 steps
with a batch size of 4 videos (i.e., 20 frames in total) per GPU using 2
Tesla V100 GPUs. The training time on YouTube-VOS is about 5 d. For
DAVIS, we use a learning rate of 0.006 for 50, 000 steps with a batch size
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of 3 videos (i.e., 15 frames in total) per GPU using 2 GPUs. We apply flip-
ping, scaling, and balanced random-crop as data augmentations. The cropped
window size is 465 × 465. For the multi-scale testing, we apply the scales of
{1.0, 1.15, 1.3, 1.5} and {2.0, 2.15, 2.3} for YouTube-VOS and DAVIS, respec-
tively. CFBI achieves similar results in PyTorch [28] and PaddlePaddle [1].

Table 1. The quantitative evaluation on
YouTube-VOS [40]. F, S, and ∗ separately
denote fine-tuning at test time, using simu-
lated data in the training process and perform-
ing model ensemble in evaluation. CFBIMS

denotes using a multi-scale and flip strategy
in evaluation.

Seen Unseen

Methods F S Avg J F J F
Validation 2018 split

AG [20] 66.1 67.8 - 60.8 -

PReM [23] � 66.9 71.4 75.9 56.5 63.7

BoLT [36] � 71.1 71.6 - 64.3 -

STM− [27] 68.2 - - - -

STM [27] � 79.4 79.7 84.2 72.8 80.9

CFBI 81.4 81.1 85.8 75.3 83.4

CFBIMS 82.7 82.2 86.8 76.9 85.0

Testing 2019 split

MST∗ [45] � 81.7 80.0 83.3 77.9 85.5

EMN∗ [46] � 81.8 80.7 84.7 77.3 84.7

CFBI 81.5 79.6 84.0 77.3 85.3

CFBIMS 82.2 80.4 84.7 77.9 85.7

5 Experiments

Following the previous state-of-
the-art method [27], we evalu-
ate our method on YouTube-
VOS [40], DAVIS 2016 [30] and
DAVIS 2017 [31]. For the evalu-
ation on YouTube-VOS, we train
our model on the YouTube-VOS
training set [40] (3471 videos). For
DAVIS, we train our model on
the DAVIS-2017 training set [31]
(60 videos). Both DAVIS 2016 and
2017 are evaluated using an identi-
cal model trained on DAVIS 2017
for a fair comparison with the pre-
vious works [27,34]. Furthermore,
we provide DAVIS results using
both DAVIS 2017 and YouTube-
VOS for training following some
latest works [27,34].

The evaluation metric is the
J score, calculated as the aver-
age IoU between the prediction and
the ground truth mask, and the
F score, calculated as an average
boundary similarity measure between the boundary of the prediction and the
ground truth, and their average value (J &F). We evaluate our results on the
official evaluation server or use the official tools.

5.1 Compare with the State-of-the-art Methods

YouTube-VOS. [40] is the latest large-scale dataset for multi-object video seg-
mentation. Compared to the popular DAVIS benchmark that consists of 120
videos, YouTube-VOS is about 37 times larger. In detail, the dataset contains
3471 videos in the training set (65 categories), 507 videos in the validation set
(additional 26 unseen categories), and 541 videos in the test set (additional
29 unseen categories). Due to the existence of unseen object categories, the
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Fig. 7. Qualitative results on DAVIS 2017 and YouTube-VOS. In the first video, we
succeed in tracking many similar-looking sheep. In the second video, our CFBI tracks
the person and the dog with a red mask after occlusion well. In the last video, CFBI
fails to segment one hand of the right person (the white box). A possible reason is that
the two persons are too similar and close. (Color figure online)

YouTube-VOS validation set is much suitable for measuring the generalization
ability of different methods.

Table 2. The quantitative evaluation on DAVIS
2016 [30] validation set. (Y) denotes using
YouTube-VOS for training.

Methods F S Avg J F t/s

OSMN [42] - - 74.0 0.14

PML [5] 77.4 75.5 79.3 0.28

VideoMatch [18] 80.9 81.0 80.8 0.32

RGMP− [38] 68.8 68.6 68.9 0.14

RGMP [38] � 81.8 81.5 82.0 0.14

A-GAME [20] (Y) 82.1 82.2 82.0 0.07

FEELVOS [34] (Y) 81.7 81.1 82.2 0.45

OnAVOS [35] � 85.0 85.7 84.2 13

PReMVOS [23] � 86.8 84.9 88.6 32.8

STMVOS [27] � 86.5 84.8 88.1 0.16

STMVOS [27] (Y) � 89.3 88.7 89.9 0.16

CFBI 86.1 85.3 86.9 0.18

CFBI (Y) 89.4 88.3 90.5 0.18

CFBIMS (Y) 90.7 89.6 91.7 9

As shown in Table 1, we
compare our method to exist-
ing methods on both Valida-
tion 2018 and Testing 2019
splits. Without using any bells
and whistles, like fine-tuning at
test time [2,35] or pre-training
on larger augmented simu-
lated data [27,38], our method
achieves an average score of
81.4%, which significantly out-
performs all other methods in
every evaluation metric. Par-
ticularly, the 81.4% result is
2.0% higher than the pre-
vious state-of-the-art method,
STMVOS, which uses exten-
sive simulated data from [7,12,
15,22,32] for training. With-
out simulated data, the perfor-
mance of STMVOS will drop
from 79.4% to 68.2%. More-
over, we further boost our performance to 82.7% by applying a multi-scale and
flip strategy during the evaluation.

We also compare our method with two of the best results on the Testing 2019
split, i.e., Rank 1 (EMN [46]) and Rank 2 (MST [45]) results in the 2nd Large-
scale Video Object Segmentation Challenge. Without applying model ensemble,
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our single-model result (82.2%) outperforms the Rank 1 result (81.8%) in the
unseen and average metrics, which further demonstrates our generalization abil-
ity and effectiveness.

DAVIS 2016. [30] contains 20 videos annotated with high-quality masks each
for a single target object. We compare our CFBI method with state-of-the-art
methods in Table 2. On the DAVIS-2016 validation set, our method trained with
an additional YouTube-VOS training set achieves an average score of 89.4%,
which is slightly better than STMVOS (89.3%), a method using simulated data
as mentioned before. The accuracy gap between CFBI and STMVOS on DAVIS
is smaller than the gap on YouTube-VOS. A possible reason is that DAVIS is
too small and easy to over-fit. Compare to a much fair baseline (i.e., FEELVOS)
whose setting is same to ours, the proposed CFBI not only achieves much bet-
ter accuracy (89.4% vs.81.7%) but also maintains a comparable fast inference
speed (0.18s vs.0.45s). After applying multi-scale and flip for evaluation, we can
improve the performance from 89.4% to 90.1%. However, this strategy will cost
much more inference time (9s).

Table 3. The quantitative evaluation on
DAVIS-2017 [31].

Methods F S Avg J F
Validation split

OSMN [42] 54.8 52.5 57.1

VideoMatch [18] 62.4 56.5 68.2

OnAVOS [35] � 63.6 61.0 66.1

RGMP [38] � 66.7 64.8 68.6

A-GAME [20] (Y) 70.0 67.2 72.7

FEELVOS [34] (Y) 71.5 69.1 74.0

PReMVOS [23] � 77.8 73.9 81.7

STMVOS [27] � 71.6 69.2 74.0

STMVOS [27] (Y) � 81.8 79.2 84.3

CFBI 74.9 72.1 77.7

CFBI (Y) 81.9 79.1 84.6

CFBIMS (Y) 83.3 80.5 86.0

Testing split

OSMN [42] 41.3 37.7 44.9

OnAVOS [35] � 56.5 53.4 59.6

RGMP [38] � 52.9 51.3 54.4

FEELVOS [34] (Y) 57.8 55.2 60.5

PReMVOS [23] � 71.6 67.5 75.7

STMVOS [27] (Y) � 72.2 69.3 75.2

CFBI (Y) 74.8 71.1 78.5

CFBIMS (Y) 77.5 73.8 81.1

DAVIS 2017. [31] is a multi-object
extension of DAVIS 2016. The val-
idation set of DAVIS 2017 consists
of 59 objects in 30 videos. Next, we
evaluate the generalization ability of
our model on the popular DAVIS-
2017 benchmark.

As shown in Table 3, our CFBI
makes significantly improvement
over FEELVOS (81.9% vs. 71.5%).
Besides, our CFBI without using
simulated data is slightly bet-
ter than the previous state-of-the-
art method, STMVOS (81.9% vs.
81.8%). We show some examples
compared with STMVOS in Fig. 6.
Same as previous experiments, the
augmentation in evaluation can fur-
ther boost the results to a higher
score of 83.3%. We also evaluate
our method on the testing split of
DAVIS 2017, which is much more
challenging than the validation split.
As shown in Table 3, we significantly
outperforms STMVOS (72.2%) by
2.6%. By applying augmentation,
we can further boost the result to
77.5%. The strong results prove
that our method has the best gen-
eralization ability among the latest methods.
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Qualitative Results. We show more results of CFBI on the validation set of
DAVIS 2017 (81.9%) and YouTube-VOS (81.4%) in Fig. 7. It can be seen that
CFBI is capable of producing accurate segmentation under challenging situa-
tions, such as large motion, occlusion, blur, and similar objects. In the sheep
video, CFBI succeeds in tracking five selected sheep inside a crowded flock. In
the judo video, CFBI fails to segment one hand of the right person. A possible
reason is that the two persons are too similar in appearance and too close in
position. Besides, their hands are with blur appearance due to the fast motion.

5.2 Ablation Study

Table 4. Ablation of background
embedding. P and I separately
denote the pixel-level match-
ing and instance-level attention.
∗ denotes removing the foreground
and background bias.

P I Avg J F
� � 74.9 72.1 77.7

�∗ � 72.8 69.5 76.1

� 73.0 69.9 76.0

� 72.3 69.1 75.4

70.9 68.2 73.6

We analyze the ablation effect of each com-
ponent proposed in CFBI on the DAVIS-2017
validation set. Following FEELVOS, we only
use the DAVIS-2017 training set as training
data for these experiments.

Background Embedding. As shown in
Table 4, we first analyze the influence of
removing the background embedding while
keeping the foreground only as [34,42]. With-
out any background mechanisms, the result
of our method heavily drops from 74.9% to
70.9%. This result shows that it is significant
to embed both foreground and background
features collaboratively. Besides, the missing
of background information in the pixel-level matching or the instance-level atten-
tion will decrease the result to 73.0% or 72.3% separately. Thus, compared to
instance-level attention, the pixel-level matching performance is more sensitive
to the effect of background embedding. A possible reason for this phenomenon is
that the possibility of existing some background pixels similar to the foreground
is higher than some background instances. Finally, we remove the foreground
and background bias, bF and bB , from the distance metric and the result drops
to 72.8%, which further shows that the distance between foreground pixels and
the distance between background pixels should be separately considered.

Table 5. Ablation of other components.

Ablation Avg J F
0 Ours (CFBI) 74.9 72.1 77.7

1 w/o multi-local windows 73.8 70.8 76.8

2 w/o sequential training 73.3 70.8 75.7

3 w/o collaborative ensembler 73.3 70.5 76.1

4 w/o balanced random-crop 72.8 69.8 75.8

5 w/o instance-level attention 72.7 69.8 75.5

6 Baseline (FEELVOS) 68.3 65.6 70.9

Other Components. The abla-
tion study of other proposed com-
ponents is shown in Table 5. Line
0 (74.9%) is the result of pro-
posed CFBI, and Line 6 (68.3%) is
our baseline method reproduced
by us. Under the same setting,
our CFBI significantly outper-
forms the baseline.

In line 1, we use only one local
neighborhood window to conduct
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the local matching following the setting of FEELVOS, which degrades the
result from 74.9% to 73.8%. It demonstrates that our multi-local matching
module is more robust and effective than the single-local matching module of
FEELVOS. Notably, the computational complexity of multi-local matching dom-
inantly depends on the biggest local window size because we use the intermedi-
ate results of the local matching of the biggest window to calculate on smaller
windows.

In line 2, we replace our sequential training by using ground-truth masks
instead of network predictions as the previous mask. By doing this, the perfor-
mance of CFBI drops from 74.9% to 73.3%, which shows the effectiveness of our
sequential training under the same setting.

In line 3, we replace our collaborative ensembler with 4 depth-wise separable
convolutional layers. This architecture is the same as the dynamic segmentation
head of [34]. Compared to our collaborative ensembler, the dynamic segmenta-
tion head has much smaller receptive fields and performs 1.6% worse.

In line 4, we use normal random-crop instead of our balanced random-crop
during the training process. In this situation, the performance drops by 2.1% to
72.8% as well. As expected, our balanced random-crop is successful in relieving
the model form biasing to background attributes.

In line 5, we disable the use of instance-level attention as guidance informa-
tion to the collaborative ensembler, which means we only use pixel-level infor-
mation to guide the prediction. In this case, the result deteriorates even further
to 72.7, which proves that instance-level information can further help the seg-
mentation with pixel-level information.

In summary, we explain the effectiveness of each proposed component of
CFBI. For VOS, it is necessary to embed both foreground and background fea-
tures. Besides, the model will be more robust by combining pixel-level infor-
mation and instance-level information, and by using more local windows in the
matching between two continuous frames. Apart from this, the proposed bal-
anced random-crop and sequential training are useful but straightforward in
improving training performance.

6 Conclusion

This paper proposes a novel framework for video object segmentation by intro-
ducing collaborative foreground-background integration and achieves new state-
of-the-art results on three popular benchmarks. Specifically, we impose the fea-
ture embedding from the foreground target and its corresponding background to
be contrastive. Moreover, we integrate both pixel-level and instance-level embed-
dings to make our framework robust to various object scales while keeping the
network simple and fast. We hope CFBI will serve as a solid baseline and help
ease the future research of VOS and related areas, such as video object tracking
and interactive video editing.
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