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Abstract. Understanding interaction is an essential part of video action
detection. We propose the Asynchronous Interaction Aggregation net-
work (AIA) that leverages different interactions to boost action detec-
tion. There are two key designs in it: one is the Interaction Aggrega-
tion structure (IA) adopting a uniform paradigm to model and integrate
multiple types of interaction; the other is the Asynchronous Memory
Update algorithm (AMU) that enables us to achieve better performance
by modeling very long-term interaction dynamically without huge com-
putation cost. We provide empirical evidence to show that our network
can gain notable accuracy from the integrative interactions and is easy
to train end-to-end. Our method reports the new state-of-the-art per-
formance on AVA dataset, with 3.7 mAP gain (12.6% relative improve-
ment) on validation split comparing to our strong baseline. The results
on datasets UCF101-24 and EPIC-Kitchens further illustrate the effec-
tiveness of our approach. Source code will be made public at: https://
github.com/MVIG-SJTU/AlphAction.

Keywords: Action detection · Video understanding · Interaction ·
Memory

1 Introduction

The task of action detection (spatio-temporal action localization) aims at detect-
ing and recognizing actions in space and time. As an essential task of video
understanding, it has a variety of applications such as abnormal behavior detec-
tion and autonomous driving. On top of spatial representation and temporal
features [3,10,21,27], the interaction relationships [13,29,39,47] are crucial for
understanding actions. Take Fig. 1 for example. The appearance of the man, the
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Target Fram
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She is close to the man

She prepared the tea

She puts down the teacup

Serve sth. to sb.

Fig. 1. Interaction Aggregation. In this target frame, we can tell that the women is
serving tea to the man with following clues: (1) She is close to the man. (2) She
puts down the tea cup before the man. (3) She prepared the tea a few seconds ago.
These three clues correspond respectively the person-person, person-object and tem-
poral interactions

tea cup as well as the previous movement of the woman help to predict the action
of the woman. In this paper, we propose a new framework which emphasizes on
the interactions for action detection.

Interactions can be briefly considered as the relationship between the target
person and context. Many existing works try to explore interactions in videos,
but there are two problems in the current methods: (1) Previous methods such
as [13,15] focus on a single type of interaction (eg. person-object). They can only
boost one specific kind of actions. Methods such as [46] intend to merge differ-
ent interactions, but they model them separately. Information of one interaction
can’t contribute to another interaction modeling. How to find interactions cor-
rectly in video and use them for action detection remains challenging. (2) The
long-term temporal interaction is important but hard to track. Methods which
use temporal convolution [10,21,27] have very limited temporal reception due
to the resource challenge. Methods such as [41] require a duplicated feature
extracting pre-process which is not practical in reality.

In this work, we propose a new framework, the Asynchronous Interaction
Aggregation network (AIA), who explores three kinds of interactions (person-
person, person-object, and temporal interaction) that cover nearly all kinds of
person-context interactions in the video. As a first try, AIA makes them work
cooperatively in a hierarchical structure to capture higher level spatial-temporal
features and more precise attentions. There are two main designs in our net-
work: the Interaction Aggregation (IA) structure and the Asynchronous Memory
Update (AMU) algorithm.

The former design, IA structure, explores and integrates all three types of
interaction in a deep structure. More specifically, it consists of multiple elemental
interaction blocks, of each enhances the target features with one type of inter-
action. These three types of interaction blocks are nested along the depth of IA
structure. One block may use the result of previous interactions blocks. Thus,
IA structure is able to model interactions precisely using information across
different types.
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Jointly training with long memory features is infeasible due to the large size
of video data. The AMU algorithm is therefore proposed to estimate intractable
features during training. We adopt a memory-like structure to store the spatial
features and propose a series of write-read algorithm to update the content in
memory: features extracted from target clips at each iteration are written to a
memory pool and they can be retrieved in subsequent iterations to model tem-
poral interaction. This effective strategy enables us to train the whole network
in an end-to-end manner and the computational complexity doesn’t increase lin-
early with the length of temporal memory features. In comparison to previous
solution [41] that extracted features in advance, the AMU is much simpler and
achieves better performance.

In summary, our key contributions are: (1) A deep IA structure that inte-
grates a diversity of person-context interactions for robust action detection and
(2) an AMU algorithm to estimate the memory features dynamically. We per-
form an extensive ablation study on the AVA [17] dataset for spatio-temporal
action localization task. Our method shows a huge boost on performance, which
yields the new state-of-the-art on both validation and test set. We also test
our method on dataset UCF101-24 [32] and a segment level action recognition
dataset EPIC-Kitchens [6]. Results further validate its generality.

2 Related Works

Video Classification. Various 3D CNN models [21,33,34,36] have been devel-
oped to handle video input. To leverage the huge image dataset, I3D [3] has
been proposed to benefit from ImageNet[7] pre-training. In [4,8,27,35,44], the
3D kernels in above models are simulated by temporal filters and spatial filters
which can significantly decrease the model size.

Previous two-stream methods [11,30] use optical flow to extract motion infor-
mation, while recent work SlowFast [10] manages to do so using only RGB frames
with different sample rates.

Spatio-temporal Action Detection. Action detection is more difficult than
action classification because the model needs to not only predict the action labels
but also localize the action in time and space. Most of the recent approaches
[10,12,17,19,42] follow the object detection frameworks [14,28] by classifying the
features generated by the detected bounding boxes. In contrast to our method,
their results depend only on the cropped features. While all the other information
is discarded and contributes nothing to the final prediction.

Attention Mechanism for Videos. The transformer [37] consists of several
stacked self-attention layers and fully connected layers. Non-Local [38] concludes
that the previous self-attention model can be viewed as a form of classical com-
puter vision method of non-local means [2]. Hence a generic non-local block[38]
is introduced. This structure enables models to compute the response by relating
the features at different time or space, which makes the attention mechanism
applicable for video-related tasks like action classification. The non-local block
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Fig. 2. Pipeline of the proposed AIA. a. We crop features of persons and objects from
the extracted video features. b. Person features, object features and memory features
from the feature pool Ω in c are fed to IA in order to integrate multiple interactions.
The output of IA is passed to the final classifier for predictions. c. Our AMU algorithm
reads memory features from feature pool and writes fresh person features to it

also plays an important role in [41] where the model references information from
the long-term feature bank via a non-local feature bank operator.

3 Proposed Method

In this section, we will describe our method that localizes actions in space and
time. Our approach aims at modeling and aggregating various interactions to
achieve better action detection performance. In Sect. 3.1, we describe two impor-
tant types of instance level features in short clips and the memory features in
long videos. In Sect. 3.2, the Interaction Aggregation structure (IA) is explored
to gather knowledge of interactions. In Sect. 3.3, we introduce the Asynchronous
Memory Update algorithm (AMU) to alleviate the problem of heavy compu-
tation and memory consumption in temporal interaction modeling. The overall
pipeline of our method is demonstrated in Fig. 2.

3.1 Instance Level and Temporal Memory Features

To model interactions in video, we need to find correctly what the queried per-
son is interacted with. Previous works such as [38] calculate the interactions
among all the pixels in feature map. Being computational expensive, these brute-
force methods struggle to learn interactions among pixels due to the limited
size of video dataset. Thus we go down to consider how to obtain concentrated
interacted features. We observe that persons are often interacting with concrete
objects and other persons. Therefore, we extract object and person embedding
as the instance level features. In addition, video frames are usually highly cor-
related, thus we keep the long-term person features as the memory features.
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Instance level features are cropped from the video features. Since computing
the whole long video is impossible, we split it to consecutive short video clips
[v1, v2, . . . , vT ]. The d-dimensional features of the tth clip vt are extracted using
a video backbone model: ft = F(vt, φF ) where φF is the parameters.

A detector is applied on the middle frame of vt to get person boxes and
object boxes. Based on the detected bounding boxes, we apply RoIAlign [18] to
crop the person and object features out from extracted features ft. The person
and object features in vt are denoted respectively as Pt and Ot.

One clip is only a short session and misses the temporal global seman-
tics. In order to model the temporal interaction, we keep tracks of memory
features. The memory features consist of person features in consecutive clips:
Mt = [Pt−L, . . . , Pt, . . . , Pt+L], where (2L + 1) is the size of clip-wise reception
field. In practice, a certain number of persons are sampled from each neighbor
clip.

The three features above have semantic meaning and contain concentrated
information to recognize actions. With these three features, we are now able to
model semantic interactions explicitly.

3.2 Interaction Modeling and Aggregation

How do we leverage these extracted features? For a target person, there are
multiple detected objects and persons. The main challenge is how to correctly pay
more attention to the objects or the persons that the target person is interacted
with. In this section, we introduce first our Interaction Block that can adaptively
model each type of interactions in a uniform structure. Then we describe our
Interaction Aggregation (IA) structure that aggregates multiple interactions.

Overview. Given different human Pt, object Ot and memory features Mt, the
proposed IA structure outputs action features At = E(Pt, Ot,Mt, φE), where
φE denotes the parameters in the IA structure. At is then passed to the final
classifier for final predictions.

The hierarchical IA structure consists of multiple interaction blocks. Each of
them is tailored for a single type of interactions. The interaction blocks are deep
nested with other blocks to efficiently integrate different interactions for higher
level features and more precise attentions.

Interaction Block. The structure of interaction block is adapted from Trans-
former Block originally proposed in [37] whose specific design basically follows
[38,41]. Briefly speaking, one of the two inputs is used as the query and the other
is mapped to key and value. Through the dot-product attention, which is the
output of the softmax layer in Fig. 3 a, the block is able to select value features
that are highly activated to the query features and merge them to enhance the
query features. There are three types of interaction blocks in our design, which
are P-Block, O-Block and M-Block.

–P-Block: P-Block models person-person interaction in the same clip. It is
helpful for recognizing actions like listening and talking. Since the query input
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Fig. 3. Interaction Block and IA structure. a. The O-Block: the query input is the
feature of the target person and the key/value input is the feature of objects. The
P-Block and M-Block are similar. b. Serial IA. c. Dense Serial IA

is already the person features or the enhanced person features, we take the
key/value input the same as the query input.
–O-Block: In O-Block, we aim to distill person-object interactions such as
pushing and carrying an object. Our key/value input is the detected object
features Ot. In the case where detected objects are too many, we sample based
on detection scores. Figure 3a is an illustration of O-Block.
–M-Block: Some actions have strong logical connections along the temporal
dimension like opening and closing. We model this type of interaction as
temporal interactions. To operate this type, we take memory features Mt as
key/value input of an M-Block.

Interaction Aggregation Structure. The Interaction Blocks extract three
types of interaction. We now propose two IA structures to integrate these differ-
ent interactions. The proposed IA structures are the naive parallel IA, the serial
IA and the dense serial IA. For clarity, we use P, O, and M to represent the
P-Block, O-Block, and M-Block respectively.

–Parallel IA: A naive approach is to model different interactions separately
and merge them at last. As displayed in Fig. 4a, each branch follows similar
structure to [13] that treats one type of interactions without the knowledge
of other interactions. We argue that the parallel structure struggles to find
interaction precisely. We illustrate the attention of the last P-Block in Fig. 4c
by displaying the output of the softmax layer for different persons. As we can
see, the target person is apparently watching and listening to the man in red.
However, the P-block pays similar attention to two men.
–Serial IA: The knowledge across different interactions is helpful for recog-
nizing interactions. We propose the serial IA to aggregate different types of
interactions. As shown in Fig. 3b, different types of interaction blocks are
stacked in sequence. The queried features are enhanced in one interaction
block and then passed to an interaction block of a different type. Figure 4f
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Fig. 4. We visualize attention by displaying the output of the softmax layer in P-Block.
The original output contains the attention to zero padding person. We remove those
meaningless attention and normalize the rest attention to 1

and 4g demonstrate the advantage of serial IA: The first P-block can not
differ the importance of the man in left and the man in middle. After gaining
knowledge from O-block and M-block, the second P-block is able to pay more
attention to man in left who is talking to the target person. Comparing to the
attention in parallel IA (Fig. 4c), our serial IA is better in finding interactions.
–Dense Serial IA: In above structures, the connections between interaction
blocks are totally manually designed and the input of an interaction block
is simply the output of another one. We expect the model to further learn
which interaction features to take by itself. With this in mind, we propose the
Dense Serial IA extension. In Dense Serial IA, each interaction block takes all
the outputs of previous blocks and aggregates them using a learnable weight.
Formally, the query of the ith block can be represent as

Qt,i =
∑

j∈C

Wj � Et,j , (1)

where � denotes the element-wise multiplication, C is the set of indices of pre-
vious blocks, Wj is a learnable d-dimenional vector normalized with a Softmax
function among C, Et,j is the enhanced output features from the jth block.
Dense Serial IA is illustrated in Fig. 3c.

3.3 Asynchronous Memory Update Algorithm

Long-term memory features can provide useful temporal semantics to aid rec-
ognizing actions. Imagine a scene where a person opens the bottle cap, drinks
water, and finally closes the cap, it could be hard to detect opening and closing
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Fig. 5. Joint training with memory features is restricted by limited hardware resource.
In this minor experiment, we take a 32-frame video clip with 256 × 340 resolution as
input. The backbone is ResNet-50. During joint training (yellow line), rapidly growing
GPU memory and computation time restricted the length of memory features to be
very small value (8 in this experiment). With larger input or deeper backbone, this
problem will be more serious. Our method (cyan line) doesn’t have such problem.
(Color figure online)

with subtle movements. But knowing the context of drinking water, things get
much easier.

Resource Challenge. To capture more temporal information, we hope our Mt

can gather features from enough number of clips, however, using more clips will
increase the computation and memory consumption dramatically. Depicted with
Fig. 5, when jointly training, the memory usage and computation consumption
increase rapidly as the temporal length of Mt grows. To train on one target
person, we must propagate forward and backward (2L + 1) video clips at one
time, which consumes much more time, and even worse, cannot make full use of
enough long-term information due to limited GPU memory.

Insight. In the previous work [41], they pre-train another duplicated backbone
to extract memory features to avoid this problem. However, this method makes
use of frozen memory features, whose representation power can not be enhanced
as model training goes. We expect the memory features can be updated dynam-
ically and benefit from the improvement from parameter update in training
process. Therefore, we propose the asynchronous memory update method which
can generate effective dynamic long-term memory features and make the train-
ing process more lightweight. The details of training process with this algorithm
are presented in Algorithm 1.

A naive design could be: pass forward all clips to get memory features and
propagate current clip backward to calculate the gradients. This method allevi-
ates the memory issue but is still slow in the training speed. We could also try to
utilize the memory features like in Transformer-XL [5], but this requires training
along the sequence direction and is thus unable to access future information.

Inspired by [40], our algorithm is composed of a memory component, the
memory pool Ω and two basic operations, READ and WRITE. The memory
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Algorithm 1. Training with asynchronous memory update
Input: Video dataset V = {v(1), v(2), . . . , v(|V|)} with v(i) = [v

(i)
1 , v

(i)
2 , . . . , v

(i)
Ti

];

The whole network N , with its parameter φN ;
Output: Optimized network N with φN for inference.

// Initialization :

1: Ω = {(P̂ (i)
t ← zero vectors, δ

(i)
t ← 0) | ∀t, i}.

2: err ← ∞.
// Training Process:

3: for iter = 1 to itermax do

4: Sample a video clip v
(i)
t from dataset V.

5: for t′ = t − L to t + L do
6: if t′ �= t then

7: READ P̂
(i)
t′ and δ

(i)
t′ from memory pool Ω.

8: w
(i)
t′ = min{err/δ

(i)
t′ , δ

(i)
t′ /err}.

9: Impose penalty: P̂
(i)
t′ ← w

(i)
t′ P̂

(i)
t′ .

10: end if
11: end for
12: Extract P

(i)
t and O

(i)
t with the backbone in N .

13: Estimated memory features: M̂
(i)
t ← [P̂

(i)
t−L, . . . , P̂

(i)
t−1, P

(i)
t , P̂

(i)
t+1, . . . , P̂

(i)
t+L].

14: Forward (P
(i)
t , O

(i)
t , M

(i)
t ) with the head in N and backward to optimize φN .

15: Update err as the output of current loss function.

16: WRITE P̂
(i)
t ← P

(i)
t , δ

(i)
t ← err back to Ω.

17: end for
18: return N , φN

pool Ω records memory features. Each feature P̂
(i)
t in this pool is an estimated

value and tagged with a loss value δ
(i)
t . This loss value δ

(i)
t logs the convergence

state of the whole network. Two basic operations are invoked at each iteration
of training:

–READ: At the beginning of each iteration, given a video clip v
(i)
t from the

ith video, estimated memory features around the target clip are read from the
memory pool Ω, which are [P̂ (i)

t−L, . . . , P̂
(i)
t−1] and [P̂ (i)

t+1, . . . , P̂
(i)
t+L] specifically.

–WRITE: At the end of each iteration, personal features for the target clip
P

(i)
t are written back to the memory pool Ω as estimated memory features

P̂
(i)
t , tagged with current loss value.

–Reweighting: The features we READ are written at different training steps.
Therefore, some early written features are extracted from the model whose
parameters are much different from current ones. Therefore, we impact a
penalty factor w

(i)
t′ to discard badly estimated features. We design a simple yet

effective way to compute such penalty factor by using loss tag. The difference
between the loss tag δ

(i)
t′ and current loss value is expressed as,

w
(i)
t′ = min{err/δ

(i)
t′ , δ

(i)
t′ /err}, (2)

which should be very close to 1 when the difference is small. As the network
converges, the estimated features in the memory pool are expected to be
closer and closer to the precise features and w

(i)
t′ approaches to 1.
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As shown in Fig. 5, the consumption of our algorithm has no obvious increase
in both GPU memory and computation as the length of memory features
grows, and thus we can use long enough memory features on current common
devices. With dynamic updating, the asynchronous memory features can be bet-
ter exploited than frozen ones.

4 Experiments on AVA

The Atomic Visual Actions (AVA) [17] dataset is built for spatio-temporal action
localization. In this dataset, each person is annotated with a bounding box and
multiple action labels at 1 FPS. There are 80 atomic action classes which cover
pose actions, person-person interactions and person-object interactions. This
dataset contains 235 training movie videos and 64 validation movie videos.

Since our method is originally designed for spatio-temporal action detection,
we use AVA dataset as the main benchmark to conduct detailed ablation exper-
iments. The performances are evaluated with official metric frame level mean
average precision(mAP) at spatial IoU ≥ 0.5 and only the top 60 most common
action classes are used for evaluation, according to [17].

4.1 Implementation Details

Instance Detector. We apply Faster R-CNN [28] framework to detect persons
and objects on the key frames of each clip. A model with ResNeXt-101-FPN
[23,43] backbone from maskrcnn-benchmark [26] is adopted for object detection.
It is firstly pre-trained on ImageNet [7] and then fine-tuned on MSCOCO [25]
dataset. For human detection, we further fine-tune the model on AVA for higher
detection precision.

Backbone. Our method can be easily applied to any kind of 3D CNN back-
bone. We select state-of-the-art backbone SlowFast [10] network with ResNet-50
structure as our baseline model. Basically following the recipe in [10], our back-
bone is pre-trained on Kinetics-700 [3] dataset for action classification task. This
pre-trained backbone produces 66.34% top-1 and 86.66% top-5 accuracy on the
Kinetics-700 validation set.

Training and Inference. Initialized from Kinetics pre-trained weights, we then
fine-tune the whole model with focal loss [24] on AVA dataset. The inputs of our
network are 32 RGB frames, sampled from a 64-frame raw clip with one frame
interval. Clips are scaled such that the shortest side becomes 256, and then fed
into the fully convolution backbone. We use only the ground-truth human boxes
for training and the randomly jitter them for data augmentation. For the object
boxes, we set the detection threshold to 0.5 in order to have higher recall. During
inference, detected human boxes with a confidence score larger than 0.8 are used.
We set L = 30 for memory features in our experiments. We train our network
using the SGD algorithm with batch size 64 on 16 GPU (4 clips per device).
BatchNorm(BN) [20] statistics are set frozen. We train for 27.5k iterations with
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Table 1. Ablation Experiments. We use a ResNet-50 SlowFast backbone to perform
our ablation study. Models are trained on the AVA (v2.2) training set and evaluated
on the validation set. The evaluation metric mAP is shown in %

(a) 3 Interactions (b) Num of I-Blocks (c) Interaction Order

P O M mAP
26.54

� � 28.04
� � 28.86

� � 28.92
� � � 29.26

blocks mAP
1 × {P,M,O} 29.26
2 × {P,M,O} 29.64
3 × {P,M,O} 29.61

order mAP order mAP
M → O → P 29.48 M → P → O 29.46
O → P → M 29.51 O → M → P 29.53
P → M → O 29.44 P → O → M 29.64

(d) IA Structure (e) Asynchronous Memory Update (f) Compare to NL

structure mAP
Parallel 28.85
Serial 29.64
Dense Serial 29.80

model params FLOPs mAP
Baseline 1.00× 1.00× 26.54
LFB(w/o AMU) 2.18× 2.12× 27.02
LFB(w/ AMU) 1.18× 1.12× 28.57
IA(w/o AMU) 2.35× 2.15× 28.07
IA(w/ AMU) 1.35× 1.15× 29.64

model mAP
Baseline 26.54
+NL 26.85
+IA(w/o M) 28.23

base learning rate 0.004 and the learning rate is reduced by a factor 10 at 17.5k
and 22.5k iteration. A linear warm-up [16] scheduler is applied for the first 2k
iterations.

4.2 Ablation Experiments

Three Interactions. We first study the importance of three kinds of interac-
tions. For each interaction type, we use at most one block in the experiment.
These blocks are then stacked in serial. To evaluate the importance of person-
object interaction, we remove the O-Block in the structure. Other interactions
are evaluated in the same way. Table 1a compares the model performance, where
used interaction types are marked with “�”. A backbone baseline without any
interaction is also listed in this table. Overall we observe that removing any of
these three type interactions results in a significant performance decrease, which
confirms that all these three interactions are important for action detection.

Number of Interaction Blocks. We then experiment with different settings
for the number of interaction blocks in our IA structure. The interaction blocks
are nested in serial structure in this experiment. In Table 1b, N × {P,M,O}
denotes N blocks are used for each interaction type, with the total number as
3N . We find that with the setting N = 2 our method can achieve the best
performance, so we use this as our default configuration.

Interaction Order. In our serial IA, different type of interactions are alter-
nately integrated in sequential. We investigate effect of different interaction order
design in Table 1c. As shown in this experiment, the performance with different
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Fig. 6. Per category results comparison on the validation set of AVA v2.2

order are quite similar, we thus choose the slightly better one P → O → M as
our default setting.

Interaction Aggregation Structure. We analyze different IA structure in
this part. Parallel IA, serial IA and the dense serial IA extension are compared
in Table 1d. As we expect, the parallel IA performs much worse than serial
structure. With dense connections between blocks, our model is able to learn
more knowledge of interactions, which further boosts the performance.

Asynchronous Memory Update. In the previous work LFB [41], the memory
features are extracted with another backbone, which is frozen during training. In
this experiment we compare our asynchronous memory features with the frozen
ones. For fair comparison, we re-implement LFB with SlowFast backbone, and
also apply our AMU algorithm to LFB. In Table 1d, we find that our asyn-
chronous memory features can gain much better performance than the frozen
method with nearly half of the parameters and computation cost. We argue that
this is because our dynamic features can provide better representation.

Comparison to Non-local Attention. Finally we compare our interaction
aggregation method with prior work non-local block [38] (NL). Following [10],
we augment the backbone with a non-local branch, where attention is computed
between the person features and global pooled features. Since there is no long-
term features in this branch, we eliminate M in this experiment. In Table 1f, we
see that our serial IA works significantly better than NL block. This confirms
that our method can better learn to find potential interactions than NL block.

4.3 Main Results

Finally, we compare our results on AVA v2.1 and v2.2 with previous methods in
Table 2. Our method surpasses all previous works on both versions.

The AVA v2.2 dataset, is the newer benchmark used in ActivityNet challenge
2019 [9]. On the validation set, our method reports a new state-of-the-art 33.11
mAP with one single model, which outperforms the strong baseline SlowFast by
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Table 2. Main results on AVA. Here, we display our best results with both
ResNet50(R50) and ResNet101(R101). “*” indicates multi-scale testing. The input
sizes are shown in frame number and sample rate. SlowFast R101 backbone models
re-implemented in this work are also displayed as “ours” for comparison.

(a) Comparison on AVA v2.1. (b) Comparison on AVA v2.2.

model input pretrain val
SlowFast [10] 32 × 2 K400 26.3
LFB [41] 32 × 2 K400 27.7
I3D [12] 64 × 1 K600 21.9
SlowFast+NL [10] 32 × 2 K600 28.2
SlowFast (ours) 32 × 2 K600 -
SlowFast (ours) 32 × 2 K700 28.1
AIA R50 32 × 2 K700 28.9
AIA R101 32 × 2 K700 31.2

model input pretrain val test
SlowFast+NL [10] 32 × 2 K600 29.1 -
SlowFast+NL [10] 64 × 2 K600 29.4 -
SlowFast*, 7 ens. [10] - K600 - 34.25
SlowFast (ours) 32 × 2 K600 - -
SlowFast (ours) 32 × 2 K700 29.3 -
AIA R50 32 × 2 K700 29.80 -
AIA R101 32 × 2 K700 32.26 -
AIA R101* 32 × 2 K700 33.11 32.25
AIA R101*, 3 ens. - K700 - 34.42

Table 3. Results on UCF101-24 Split1

Method mAP Method mAP Method mAP Method mAP

ACT [22] 69.5 Gu et al. [17] 76.3 C2D (ours) 75.5 I3D (ours) 79.6

STEP [45] 75.0 Zhang et al. [46] 77.9 C2D+AIA 78.8 I3D+AIA 81.7

3.7 mAP. On the test split, we train our model on both training and validation
splits and use a relative longer scheduler. With an ensemble of three models with
different learning rates and aggregation structures, our method achieves better
performance than the winning entry of AVA challenge 2019 (an ensemble with 7
SlowFast [10] networks). The per category results for our method and SlowFast
baseline is illustrated in Fig. 6. We can observe the performance gain for each
category, especially for those who contain interactions with video context.

As shown in Table 2, we pre-train the backbone model with a new larger
Kinetics-700 for better performance. However, it is worth noting that we do
not use non-local block in our backbone model and there are some other slight
differences between our implementation and the official one [10]. As a result, our
K700 backbone model has a similar performance to the official K600 one. That
is to say, very most of the performance advantages benefit from our proposed
method instead of the backbone.

5 Experiments on UCF101-24

UCF101-24 [32] is an action detection set with 24 action categories. We conduct
experiments on the first split of this dataset following previous works and use
the corrected annotations provided by Singh et al. [31].

We experiment two different backbone models, C2D and I3D. Both of them
are pre-trained on the Kinetics-400 dataset. Other settings are basically the
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Table 4. EPIC-Kitchens validation results

Verbs Nouns Actions

top-1 top-5 top-1 top-5 top-1 top-5

Baradel [1] 40.9 – – – – –

LFB NL [41] 52.4 80.8 29.3 54.9 20.8 39.8

SlowFast (ours) 56.8 82.8 32.3 56.7 24.1 42.0

AIA-Parallel 57.6 83.9 36.3 63.0 26.4 47.4

AIA-Serial 59.2 84.2 37.2 63.2 27.7 48.0

AIA-Dense-Serial 60.0 84.6 37.2 62.1 27.1 47.8

same as AVA experiments. More implementation details are provided in Supple-
mentary Material. Table 3 shows the result on UCF101-24 test split in terms of
Frame-mAP with 0.5 IOU threshold. As we can see in the table, AIA achieves
3.3% and 2.1% improvement over two different backbones. Moreover, with a
relative weak 2D backbone, our method still achieves very competitive results.

6 Experiments on EPIC-Kitchens

To demonstrate the generalizability of AIA, we evaluate our method on the
segment level dataset EPIC-Kitchens [6]. In EPIC Kitchens, each segment is
annotated with one verb and one noun. The action is defined by their combina-
tion.

For both verb model and noun model, we use the extracted segment features
(global average pooling of ft) as query input for IA structure. Hand features and
object features are cropped and then fed into IA to model person-person and
person-object interactions. For verb model, the memory features are the segment
features. For noun model, the memory features are the object features extracted
from object detector feature map, thus the AMU algorithm is only applied to
the verb model. More details are available in Supplementary Material. From
Table 4, we observe a significant gain for all three tasks. All the variants of AIA
outperform the SlowFast baseline. Among them, the dense serial IA achieves the
best performance for the verbs test, leading to 3.2% improvement on top-1 score.
The serial IA results in 4.9% for the nouns test and 3.6% for the action test.

7 Conclusion

In this paper, we present the Asynchronous Interaction Aggregation network and
its performance in action detection. Our method reports the new start-of-the-
art on AVA dataset. Nevertheless, the performance of action detection and the
interaction recognition is far from perfect. The poor performance is probably due
to the limited video dataset. Transferring the knowledge of action and interaction
from image could be a further improvement for AIA network.
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