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Abstract. Sketch-based image editing aims to synthesize and modify
photos based on the structural information provided by the human-
drawn sketches. Since sketches are difficult to collect, previous methods
mainly use edge maps instead of sketches to train models (referred to
as edge-based models). However, human-drawn sketches display great
structural discrepancy with edge maps, thus failing edge-based models.
Moreover, sketches often demonstrate huge variety among different users,
demanding even higher generalizability and robustness for the editing
model to work. In this paper, we propose Deep Plastic Surgery, a novel,
robust and controllable image editing framework that allows users to
interactively edit images using hand-drawn sketch inputs. We present a
sketch refinement strategy, as inspired by the coarse-to-fine drawing pro-
cess of the artists, which we show can help our model well adapt to casual
and varied sketches without the need for real sketch training data. Our
model further provides a refinement level control parameter that enables
users to flexibly define how “reliable” the input sketch should be consid-
ered for the final output, balancing between sketch faithfulness and out-
put verisimilitude (as the two goals might contradict if the input sketch
is drawn poorly). To achieve the multi-level refinement, we introduce a
style-based module for level conditioning, which allows adaptive feature
representations for different levels in a singe network. Extensive experi-
mental results demonstrate the superiority of our approach in improving
the visual quality and user controllablity of image editing over the state-
of-the-art methods. Our project and code are available at https://github.
com/TAMU-VITA/DeepPS.
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1 Introduction

Human-drawn sketches reflect people’s abstract expression of objects. They are
highly concise yet expressive: usually several lines can reflect the important mor-
phological features of an object, and even imply more semantic-level information.
Meanwhile, sketches are easily editable: such an advantage is further amplified
by the increasing popularity of touch-screen devices. Sketching thus becomes one
of the most important ways that people illustrate their ideas and interact with
devices. Motivated by the above, a series of sketch-based image synthesis and
editing methods have been proposed in recent years. The common main idea
underlying these methods is to train an image-to-image translation network to
map a sketch to its corresponding color image. That can be extended to an
image completion task where an additional mask is provided to specify the area
for modification. These methods enable novice users to edit the photo by simply
drawing lines, rather than resorting complicated tools to process the photo itself.

Fig. 1. Our Deep Plastic Surgery framework allows users to synthesize (left) and edit
(middle, right) photos based on hand-drawn sketches. Our model is robust to tolerate
the drawing errors and achieves the controllability on sketch faithfulness. For each
group, we show the user input and our refined sketch in the left column, and the final
output in the right column with the original photo in the upper right corner. The
bottom row shows our results under an increasing refinement level, with a red box to
indicate the user selection. Note that our model requires no real sketch for training.
(Color figure online)

Due to the difficulty of collecting pairs of sketches and color images as train-
ing data, existing works [11,12,22] typically exploit edge maps (detected from
color images) as “surrogates” for real sketches, and train their models on the
paired edge-photo datasets. Despite certain success in shoe, handbag and face
synthesis, edge maps look apparently different from the human drawings, the
latter often being more causal, varied or even wild. As a result, those methods
often generalize poorly when their inputs become human-drawn sketches, limit-
ing their real-world usage. To resolve this bottleneck, researchers have studied
edge pre-processing [22], yet with limited performance improvement gained so
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Fig. 2. Illustration of the sketch-to-image translation spectrum. Our model differs from
existing models in that we allow users to define how “reliable” the input sketch should
be considered for the final output, thus balancing between sketch faithfulness and
output verisimilitude, which has not been well studied in previous approaches. As edge-
based models, ContexualGAN [20] and our model realize verisimilitude without real
sketch data for training, and our model further achieves controllability and efficiency.

(a) Edge map (ℓ=0) (c) Rough sketch (ℓ=0.75)(b) Fine sketch (ℓ=0.25) (d) Poor sketch (ℓ=1)

Fig. 3. Our model works robustly on various sketches by setting refinement level �
adaptive to the quality of the input sketches, i.e., higher � for poorer sketches.

far. Some human-drawn sketch datasets have also been collected [24,39] to train
sketch-based models [3,18]. However, the collection is too laborious to extend to
larger scales or to meet all data subject needs.

As a compromise, it is valuable to study the adaption of edge-based models
to the sketches. ContextualGAN [20] presents an intuitive solution. It retrieves
the nearest neighbor of the input sketch from the learned generative edge-image
manifolds, which relaxes the sketch constraint to trade for the image naturalness.
However, neither edge-based models [11,12,22] nor ContextualGAN [20] allows
for any user controllability on the sketch faithfulness, i.e., to what extent we
should stick to the given sketch? The former categories of methods completely
hinge on the input sketch even it might yield highly unnatural outputs; while
the latter mainly searches from natural manifolds and may produce visually
disparate results from the sketch specification. That leaves little room for users
to calibrate between freedom of sketching and the overall image verisimilitude:
an important desirable feature for interactive photo editing.

In view of the above, we are motivated to investigate a new problem of
controllable sketch-based image editing, that can work robustly on varied human-
drawn sketches. Our main idea is to refine the sketches to approach the structural
features of the edge maps, therefore avoiding the tedious collection of sketch data
for training, while enabling users to control the refinement level freely. Figure 1
intuitively demonstrates our task: to improve the model’s robustness to various
sketch inputs by allowing users to navigate around editing results under different
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refinement levels and select the most desired one. The challenge of this problem
lies in two aspects. First, in the absence of real sketches as reference, we have
no paired or unpaired data to directly establish a mapping between sketches
and edge maps. Second, in order to achieve controllability, it is necessary to
extend the above mapping to a multi-level progress, which remains to be an
open question. Please refer to Fig. 2 to get a sense of the difference between the
proposed controllable model from common sketch-to-image translation models.

In this paper, we present Deep Plastic Surgery, a novel sketch-based image
editing framework to achieve both robustness on hand-drawn sketch inputs,
and the controllability on sketch faithfulness. Our key idea arises from our
observation on the coarse-to-fine drawing process of the human artists: they first
draw coarse outlines to specify the approximate areas where the final fine-level
lines are located. Those are then gradually refined to converge to the final sharper
lines. Inspired by so, we propose a dilation-based sketch refinement method.
Instead of directly feeding the network with the sketch itself, we only specify the
approximate region covering the final lines, created by edge dilation, which forces
the network to find the mapping between the coarse-level sketches and fine-level
edges. The level of coarseness can be specified and adjusted by setting the dilation
radius. Finally, we treat sketches under different coarse levels as different stylized
versions of the fine-level lines, and use the scale-aware style transfer to recover
fine lines by removing their dilation-based styles. Our method only requires color
images and their edge maps to train and can adapt to diversified sketch input.
It can work as a plug-in for existing edge-based models, providing refinement for
their inputs to boost their performance. Figure 3 shows an overall performance
of our method on various sketches.

Our contributions are summarized as three-folds:

– We explore a new problem of controllable sketch-based image editing, to
adapt edge-based models to human-drawn sketches, where the users have
the freedom to balance the sketch faithfulness with the output verisimilitude.

– We propose a sketch refinement method using coarse-to-fine dilations, follow-
ing the drawing process of artists in real world.

– We propose a style-based network architecture, which successfully learns to
refine the input sketches into diverse and continuous levels.

2 Related Work

Sketch-Based Image Synthesis. Using the easily accessible edge maps to sim-
ulate sketches, edge-based models [6,11,25] are trained to map edges to their cor-
responding photos. By introducing masks, they are extended to image inpainting
tasks to modify the specified photo areas [12,22,38] or provide users with sketch
recommendations [7]. However, the drastic structural discrepancy between edges
and human-drawn sketches makes these models less generalizable to sketches. As
sketches draw increasing attentions and some datasets [24,39] are released, the
discrepancy can be narrowed [3,18]. But existing datasets are far from enough
and collecting sketches in large scale is still too expensive.
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The most related method to our problem setting is ContextualGAN [20]
that also aims to adapt edge-based models to sketches. It solves this problem by
learning a generative edge-image manifold through GANs, and searching nearest
neighbors to the input sketch in this manifold. As previously discussed, Contex-
tualGAN offers no controllablity, and the influence of the sketch input might be
limited for the final output. As can be seen in Fig. 10, ContextualGAN cannot
well preseve some key sketch features. Besides, the nearest neighbor search costs
time-consuming iterative back-propagation. It also relies on the generative man-
ifolds provided by GANs, which can become hard to train as image resolution
grows higher. Thus, results reported in [20] are of a limited 64×64 size. By com-
parison, our method is able to refine 256 × 256 sketches in a fast feed-forward
way, with their refinement level controllable to better preserve the shape and
details of the sketches and to facilitate flexible and user-friendly image editing.

Image-to-Image Translation. Image-to-image translation networks have been
proposed to translate an image from a source domain into a target domain.
Isola et al. [11] designed a general image-to-image translation framework named
pix2pix to map semantic label maps or edge maps into photos. Follow-ups involve
the diversification of the generated images [41], high-resolution translation [30],
and multi-domain translation [4,34,35]. This framework requires that images
in two domains exist as pairs for training. Zhu et al. [40] suggested a cycle
consistency constraint to map the translated image back to its original version,
which successfully trained CycleGAN on unpaired data. By assuming a shared
latent space across two domains, UNIT [17] and MUNIT [10] are proposed upon
CycleGAN to improve the translation quality and diversity.

Image Inpanting. Image inpanting aims to reconstruct the missing parts of an
image. Early work [2] smoothly propagates pixel values from the known region
to the missing region. To deal with large missing areas, examplar-based methods
are proposed to synthesize textures by sampling pixels or patches from the known
region in a greedy [5,28] or global [1,16,31] manner. However, the aforementioned
methods only reuse information of known areas, but cannot create unseen con-
tent. In parallel, data-driven methods [8,26,29] are proposed to achieve creative
image inpanting or extrapolation by retrieving, aligning and blending images of
similar scenes from external data. Recent models such as Context Encoder [21]
and DeepFill [37,38] build upon the powerful deep neural networks to leverage
the extra data for semantic completion, which supports fast intelligent image
editing for high-resolution images [33] and free-form masks [38].

3 The Deep Plastic Surgery Algorithm

As illustrated in Fig. 4, given an edge-based image editing model F trained
on edge-image pairs {Sgt, Igt}, our goal is to adapt F to human-draw sketches
through a novel sketch refinement network G that can be trained without sketch
data. G aims to refine the input sketch to match the fine edge maps Sgt. The
output is then fed into F to obtain final editing results. Our model is further
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conditioned by a control parameter � ∈ [0, 1] indicating the refinement level,
where larger � corresponds to greater refinement.

Fig. 4. Framework overview. A novel sketch refinement network G is proposed to
refine the rough sketch S� modelled as dilated drawable regions to match the fine edges
Sgt. The refined output Sgen is fed into a pretrained edge-based model F to obtain the
final editing result Iout. A parameter � is introduced to control the refinement level. It
is realized by encoding � into style codes and performing a style-based adjustment over
the outputs fin of the convolutional layers of G to remove the dilation-based styles.

Rough sketches form a cyan drawable region 
to indicate where the fine sketches should lie

Fig. 5. Rough sketch (left) to fine sketch (middle). The sketches in the red boxes
are enlarged and overlayed on the right. Image is copyrighted by Krenz Cushart [27].
(Color figure online)

3.1 Sketch Refinement via Dilation

Our sketch refinement method is inspired by the coarse-to-fine drawing process
of human artists. As shown in Fig. 5, artists usually begin new illustrations with
inaccurate rough sketches with many redundant lines to determine the shape
of an object. These sketches are gradually fintuned by merge lines, tweaking
details and fixing mistakes to obtain the final line drawings. When overlaying
the final lines on the rough sketches, we find that the redundant lines in the
rough sketches form a drawable region to indicate where the final lines should lie
(tinted in cyan in Fig. 5). Thus the coarse-to-fine drawing process is essentially
a process of continuously reducing the drawable region.

Based on the observation, we define our sketch refinement as an image-to-
image translation task between rough and fine sketches, where in our problem,
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(a) Input edge (d) Difference map (c) Dilate(b) Deform + discard

Fig. 6. Rough sketch synthesis. (a) Sgt. (b) Deformed edges with lines discarded. (c)
Ω(Sgt). (d) Overlay red Sgt above Ω(Sgt) with discarded lines tinted in cyan.

ℓ=0 ℓ=0.25 ℓ=1ℓ=0.5 ℓ=0.75ℓ=0 ℓ=0.25 ℓ=1ℓ=0.5 ℓ=0.75

(a) pix2pix (b) Our multi-level model

Fig. 7. Sketch refinement at different level �. Top row: S� with different dilation radii.
Bottom row: (a) Refinement results by pix2pix [11] trained separately for each level.
(b) Refinement results by our proposed single model with multi-level control.

fine sketches Sgt are edge maps extracted from Igt using HED edge detector [32]
and rough sketches are modelled as drawable regions Ω(Sgt) completely covering
Sgt. In the following, we present our dilation-based drawable region generation
method to automatically generate Ω(Sgt) based on Sgt to form our training data.

Rough Sketch Data Generation. The pipeline of our drawable region gen-
eration is shown in Fig. 6. The main idea is to expand lines into areas by dila-
tion operations used in mathematical morphology. However, directly learning to
translate a dilated line back to itself will only make the network to simply extract
the skeleton centered at the region without refining the sketches. Thus the fine
lines are first randomly deformed before dilation. Supposing the radius of dila-
tion is r, then we limit the offset of each pixel after deformation to no more than
r, so that the ground truth fine lines are not centered at the drawable region but
still fully covered by it, as shown in Fig. 6(d). In addition, noticing that artists
will also infer new structures or details from the draft (see the upper lip pointed
by the red arrow of Fig. 5), we further discard partial lines by removing random
patches from the full sketches. By doing so, our network is motivated to learn
to complete the incomplete structures such as the cyan lines in Fig. 6(d). Line
deformation and discarding are only applied during the training phase.

Leveraging our dilation-based drawable region generation algorithm, suffi-
cient paired data {Ω(Sgt), Sgt} is obtained. Intuitively, larger drawable regions
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provide more room for line-fintuning, which means a higher refinement level. To
verify our idea of coarse-to-fine refinement, we train a basic image-to-image
translation model of pix2pix [11] to map Ω(Sgt) to Sgt and use a separate model
for each dilation radius. As shown in Fig. 7(a), the rough facial structures are
refined and a growing refinement is observed as the radius increases. This prop-
erty makes it possible for convenient sketch editing control. In the next section,
we will detail how we incorporate sketch refinement into one single model with
effective level control, whose overall performance is illustrated in Fig. 7(b). The
advantage is that coarse-level refinement can benefit from the learned robust
fine-level features, thus achieving better performance.

3.2 Controllable Sketch-Based Image Editing

In our image editing task, we have a target photo Igt as input, upon which a
mask M is given to indicate the editing region. Users draw sketches S to serve as
a shape guidance for the model to fill the masked region. The model will adjust
S so that it better fits the contextual structures of Igt, with the refinement level
determined by a parameter �.

Our training requires no human-drawn sketches. Instead, we use edge maps
Sgt = HED(Igt) [32] and generate their corresponding drawable regions Ω(Sgt).
As analyzed in Sect. 3.1, the refinement level is positively correlated with the
dilation radius r. Therefore, we incorporate � in the drawable region generation
process (denoted as Ω�(·)) to control r, where r = �R with R the maximum
allowable radius. The final drawable region with respect to � takes the form of
S� = Ω�(Sgt) � M where � is the element-wise multiplication operator. Then
we are going to train G to map S� back to the fine Sgt based on the contextual
condition Iin = Igt � (1 − M), the spatial condition M and the level condi-
tion �. Figure 4 shows an overview of our network architecture. G receives a
concatenation of Iin, S� and M , with middle layers controlled by �, and yields
a four-channel tensor: the completed RGB channel image Igen and the refined
one channel sketch Sgen, i.e., (Igen, Sgen) = G(Iin, S�,M, �). Here, we task the
network with photo generation to enforce the perceptual guidance on the edge
generation. It also enables our model to work independently if F is unavailable.
Finally, a discriminator D is added to improve the results through adversarial
learning.

Style-Based Refinement Level Control. As we will show later, conditioning
by label concatenation or feature interpolation [36] fails to properly condition
G about the refinement level. Inspired by AdaIN-based style transfer [9] and
image generation [15], we propose an effective style-based control module to
address this issue. Specifically, sketches at different coarse levels can be con-
sidered to have different styles. And G is tasked to destylize them to obtain
the original Sgt. In AdaIN [9], styles are modelled as the mean and variance
of the features and are transferred via distribution scaling and shifting (i.e.,
normalization+denormalization). Note that the same operation can also be used
for its reverse process, i.e., destylization. To this end, as illustrated by Fig. 4, we
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propose to use a multi-layer perceptron to decode the condition � into a global
style code. For each convolution layer expect the first and the last ones in G, we
have two affiliated linear layers to map the style code to the local style mean
and variance for AdaIN-based destylization.

Loss Function. G is tasked to approach the ground truth photo and sketch:

Lrec = EIgt,M,�[‖Igen − Igt‖1 + ‖Sgen − Sgt‖1 + ‖Iout − Igt‖1], (1)

where Iout = F (Iin, Sgen,M) is the ultimate output in our problem. Here the
quality of Iout is also considered to adapt G to the pretrained F in an end-to-end
manner. Besides, perceptual loss Lperc [13] to measure the semantical similarity
of the photos is computed as

Lperc = EIgt,M,�

[∑

i

λi

(‖Φi(Igen) − Φi(Igt)‖22 + ‖Φi(Iout) − Φi(Igt)‖22
)]

, (2)

where Φi(x) is the feature map of x in the i-th layer of VGG19 [23] and λi is the
layer weight. Finally, we use hinge loss as our adversarial objective function:

LG = −EIgt,M,�[D(Igen, Sgen,M)], (3)

LD = EIgt,M,�[σ(τ + D(Igen, Sgen,M))] + EIgt,M [σ(τ − D(Igt, Sgt,M))], (4)

where τ is a margin parameter and σ is ReLU activation function.

Realistic Sketch-to-Image Translation. Under the extreme condition of
M = 1, Igt is fully masked out and our problem becomes a more challeng-
ing sketch-to-image translation problem. We experimentally find that the result
will degrade without any contextual cues from Igt. To solve this problem, we
adapt our model by removing the Iin and M inputs, and train a separate model
specifically for this task, which brings obvious quality improvement.

4 Experimental Results

4.1 Implementation Details

Dataset. We use CelebA-HQ dataset [14] with edge maps extracted by HED
edge detector [32] to train our model. The masks are generated as the randomly
rotated rectangular regions following [22]. To make a fair comparison with Con-
textualGAN [20], we also train our model on CelebA dataset [19].

Network Architecture. Our generator G utilizes the Encoder-ResBlocks-
Decoder [13] with skip connections [11] to preserve the low-level information.
Each convolutional layer is followed by AdaIN layer [9] except the first and the
last layer. The discriminator D follows the SN-PatchGAN [38] for stable and
fast training. Finally, we use pix2pix [11] as our edge-based baseline model F .

Network Training. We first train our network with � = 1 for 30 epoches, and
then train with uniformly sampled � ∈ [0, 1] for 200 epoches. The maximum
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(a) Input (c) SC-FEGAN (d) Our (ℓ=0) (e) Our (ℓ=1)(b) DeepFillv2 (f) SC-refine (ℓ=1)

Fig. 8. Comparison with state-of-the-art methods on face edting. (a) Input photos,
masks and sketches. (b) DeepFillv2 [38]. (c) SC-FEGAN [12]. (d) Our results with
� = 0. (e) Our results with � = 1. (f) SC-FEGAN using our refined sketches as input.

(a) Input (b) BicycleGAN (e) Our (ℓ=1) (f) HD-refine (ℓ=1)(d) pix2pix (ℓ=0) (c) pix2pixHD

Fig. 9. Comparison with state-of-the-art methods on face synthesis. (a) Input human-
drawn sketches. (b) BicycleGAN [41]. (c) pix2pixHD [30]. (d) pix2pix [11]. (e) Our
results with � = 1. (f) pix2pixHD using our refined sketches as input.

allowable dilation radius is set to R = 10 for CelebA-HQ dataset [14] and R = 4
for CelebA dataset [19]. For all experiments, the weight for Lrec, Lperc, LG and
LD are 100, 1, 1 and 1, respectively. To calculate Lperc, we use the conv2 1 and
conv3 1 layers of the VGG19 [23] weighted by 1 and 0.5, respectively. For hinge
loss, we set τ to 10 and 1 for G and F , respectively.

Please refer to our supplementary material and project page for more details.

4.2 Comparisons with State-of-the-Art Methods

Face Editing and Synthesis. Figure 8 presents the qualitative comparison
on face editing with two state-of-the-art inpainting models: DeepFillv2 [38] and
SC-FEGAN [12]. The released DeepFillv2 uses no sketch guidance, which means
the reliability of the input sketch is set to zero (� = ∞). Despite being one of the
most advanced inpainting models, DeepFillv2 fails to repair the fine-scale facial
structures well, indicating the necessity of user guidance. SC-FEGAN, on the
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Input Our (ℓ=0.8,1)[19]Our (ℓ=0) Input Our (ℓ=1,1)[19]Our (ℓ=0)

(a) Comparison on face editing (b) Comparison on face synthesis

Fig. 10. Comparison with ContextualGAN [20] on face editing and face synthesis.

Table 1. User preference ratio of state-of-the-art methods.

Task Face Editing Face Synthesis Face Synthesis*

Method DeepFillv2 SC-FEGAN Ours BicycleGAN pix2pixHD Ours ContextualGAN Ours

Score 0.032 0.238 0.730 0.024 0.031 0.945 0.094 0.906

* ContextualGAN is designed for image synthesis on 64× 64 images. We have tried to extend
ContextualGAN to 256× 256. However, due to the inherent difficulty of training noise-to-image
GAN on high resolution, ContextualGAN easily falls into model collapse with poor results.
Therefore, we make a separate comparison with it on 64× 64 images in the user study.

other hand, totally follows the inaccurate sketch and yields weird faces. Similar
results can be found in the output of F when � = 0. By using a large refinement
level (� = 1), the facial details become more natural and realistic. Finally, as
an ablation study to indicate the importance of sketch-edge input adaption,
we directly feed SC-FEGAN with our refined sketch (without fine-tuning upon
SC-FEGAN), and observe improved results of SC-FEGAN.

Figure 9 shows the qualitative comparison on face synthesis with two state-of-
the-art image-to-image translation models: BicycleGAN [41] and pix2pixHD [30].
As expected, both models as well as F (pix2pix [11]) synthesize facial structures
that strictly match the inaccurate sketch inputs, producing poor results. Our
model takes sketches as “useful yet flexible” constraints, and strikes a good
balance between authenticity and consistency with the user guidance.

Comparison with ContextualGAN. As the most related work that accepts
weak sketch constraint as our model, we further compare with it in this section.
For face editing task, we implement ContextualGAN and adapt it to the com-
pletion task by additionally computing the appearance similarity between the
known part of the photo during the nearest neighbor search. As shown in
Fig. 10(a), the main downside of ContextualGAN is the distinct inpainting
boundaries, likely due to that the learned generative manifold does not fully
depict the real facial distribution. By comparison, our method produces more
natural results. Figure 10(b) shows the sketch-to-image translation results, where
the results of ContextualGAN are directly imported from the original paper.
As can be seen, although realistic, the results of ContextualGAN lose certain
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(a) No refinement (c) Baseline+DF+DC(b) Baseline (d) Full model

Fig. 11. Effect of rough sketch models. (a) Input sketch and generated image without
refinement. (b)–(d) Refinement results using different rough sketch models. (b) Base-
line: edge dilation with a fixed single dilation radius. (c) Baseline + line deformation
and discarding. (d) Edge dilation with multiple radii + line deformation and discarding.

(a) Input (c) w/ adaptation(b) w/o adaptation

Fig. 12. Effect of adaptation to F .

attributes associated with the input such as the beard. It might be because the
learned generative manifolds collapse for some uncommon attributes. As another
possible cause, the nearest neighbor search might sometimes travel too far over
the manifold, and results in found solutions less relevant to the initial points
provided by user sketches. Our method preserves these attributes much better.

In terms of efficiency, for 64×64 images in Fig. 10, our implemented Contex-
tualGAN requires about 7.89 s per image with a GeForce GTX 1080 Ti GPU,
while the proposed feed-forward method only takes about 12 ms per image.

Quantitative Evaluation. To better understand the performance of the com-
pared methods, we perform user studies for quantitative evaluations. A total of
28 face editing and 38 face synthesis cases are used and participants are asked to
select which result best balances the sketch faithfulness with the output verisimil-
itude. We finally collect totally 1,320 votes from 20 subjects and demonstrate
the preference scores in Table 1. The study shows that our method receives most
votes for both sketch detail preservation and output naturalness.

4.3 Ablation Study

In this section, we perform ablation studies to verify our model design. We test
on the challenging sketch-to-image translation task for better comparison.

Rough Sketch Modelling. We first examine the effect of our dilation-based
sketch modelling, which is the key of our sketch refinement. In Fig. 11, we perform
a comparison between different rough sketch models. The dilation prompts the
network to infer the facial details. Then the line deformation and discarding
force the network to further infer and complete the accurate facial structures. In
Fig. 11(d), we observe an improvement brought by learning multiple refinement
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ℓ=0.0 ℓ=0.4 ℓ=0.7 ℓ=1.0

Style-based 
control 
(our)

Label 
concat

Controllable 
resblocks

Fig. 13. Visual comparison on label conditioning.

(a) cartoon2photo (b) Facial attribute editing (c) Deep plastic surgery

Input Result Original photo User input Result Original photo User input Result

Fig. 14. Applications. More applications can be found in the supplemental material.

levels in one model over single level per model. The reason might be that coarse-
level refinement can benefit from the learned more robust fine-level features.

Adaptation to F . Our generator G is trained together with a fixed F , which
adapts G to F to improve the quality of the ultimate output. To verify the
effect of the adaptation, we train a model without the loss terms related to
Iout in Eqs. (1) and (2). Figure 12 presents the comparison of our model with
and without adaptation. The sketch result without adaptation has its structure
refined but some lines become indistinct. The reason might be the low proportion
of the line region in the sketch. Through adaptation, G is motivated to generate
sketches that are fully perceivable by F , which actually acts as a sketch-version
perceptual loss [13], resulting in distinct lines and high-quality photos.

Refinement Level Control. We compare the proposed style-based condition-
ing with label concatenation and controllable resblock [36] in Fig. 13. Label con-
catenation yields stacking lines like those in draft sketches. Controllable resblock
generates cleaner lines but still rough facial details. Our style-based conditioning
surpasses controllable resblock in adaptive channel-wise control, which provides
strongest results in both well-structured sketches and realistic photos.
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Fig. 15. Applications on handbag and shoe design.

Fig. 16. User interaction for error revision and spatially non-uniform refinement.

4.4 Applications

Figure 14 shows various results with facial sketch inputs. Our model shows cer-
tain robustness on realistic photo rendering from cartoons. Our model can also
edit facial attributes such as adding glasses. Finally, users can purposely perform
“plastic surgery” digitally, such as removing wrinkles, lifting the eye corners.
Alternatively, amateurs can intuitively edit the face with fairly coarse sketches
to provide a general idea, such as face-lifting and bangs, and our model will
tolerate the drawing errors and suggest a suitable “surgery” plan.

We further present our results on the handbag and shoe datasets [11] and
Sketchy dataset [24]. The results are shown in Fig. 15, where our model can
effectively design handbags and shoes.

4.5 Limitation and User Interaction

User Interactive Revision. While our approach has generated appealing
results, limitations still exist. Our method cannot revise the structural error that
exceeds the maximum allowable radius. This problem can be possibly solved by
user interaction, where users can modify the input sketch when the output is
still unsatisfactory under the maximum refinement level as shown in Fig. 16(a).

Spatially Non-uniform Refinement. Another limitation is that, when � is
large, the dilation operation will merge lines that are close to each other, which
inevitably loses some structural details. One solution is to use adaptive spa-
tially varied dilation radii. In addition, the accuracy of the structure can vary
within one sketch, which also demands spatially non-uniform sketch refinement
for more flexible controllability. Our model can be easily extended to spatially
non-uniform refinement with user interaction. As shown in Fig. 16(b), the user
first uses a low � on the whole mask region to better comply with the structure
guidance of the nose, mouth and stubble. Then, user can edit the mask and
further improve the verisimilitude of the eye region with a high �. It allows users
to improve the overall facial structure while achieving better detail preservation.
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5 Conclusion

In this paper, we raise a new a new problem of controllable sketch-based image
editing, to adapt edge-based models to human-drawn sketches, and present a
novel dilation-based sketch refinement method. Modelling the rough sketch as a
drawable region via edge dilation, the network is effectively trained to infer accu-
rate structural information. Leveraging the idea of style transfer, our network is
able to undo the edge dilation of different levels in a destylization manner for
multi-level refinement control. We validate by experiments the effectiveness and
robustness of our method. Serving as a plug-in, our model can greatly improve
the performance of edge-based models on the sketch inputs.
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