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Abstract. We present a novel end-to-end framework named as GSNet
(Geometric and Scene-aware Network), which jointly estimates 6DoF
poses and reconstructs detailed 3D car shapes from single urban street
view. GSNet utilizes a unique four-way feature extraction and fusion
scheme and directly regresses 6DoF poses and shapes in a single forward
pass. Extensive experiments show that our diverse feature extraction and
fusion scheme can greatly improve model performance. Based on a divide-
and-conquer 3D shape representation strategy, GSNet reconstructs 3D
vehicle shape with great detail (1352 vertices and 2700 faces). This dense
mesh representation further leads us to consider geometrical consistency
and scene context, and inspires a new multi-objective loss function to
regularize network training, which in turn improves the accuracy of 6D
pose estimation and validates the merit of jointly performing both tasks.
We evaluate GSNet on the largest multi-task ApolloCar3D benchmark
and achieve state-of-the-art performance both quantitatively and quali-
tatively. Project page is available at https://lkeab.github.io/gsnet/.

Keywords: Vehicle pose and shape reconstruction · 3D traffic scene
understanding

1 Introduction

Traffic scene understanding is an active area in autonomous driving, where one
emerging and challenging task is to perceive 3D attributes (including trans-
lation, rotation and shape) of vehicle instances in a dynamic environment as
Fig. 1 shows. Compared to other scene representations such as 2D/3D bounding
boxes [5,27,37], semantic masks [7,40] and depth maps [60], representing traffic
scene with 6D object pose and detailed 3D shape is more informative for spatial
reasoning and motion planning of self-driving cars.
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Fig. 1. Joint vehicle pose and shape reconstruction results of our GSNet, where (a)
is the input RGB image, (b) shows the reconstructed 3D car meshes projected onto
the original image, (c) is a novel aerial view of the reconstructed 3D traffic scene.
Corresponding car instances in (b) and (c) are depicted in the same color. (Color
figure online)

Due to the lack of depth information in monocular RGB images, many exist-
ing works resort to stereo camera rigs [27,28] or expensive LiDAR [21,62,63].
However, they are limited by constrained perception range [27] or sparse 3D
points for distant regions in the front view [48]. When using only a single RGB
image, works that jointly reconstruct vehicle pose and shape can be classified
into two categories: fitting-based and direct regression-based. Fitting-based meth-
ods [3,48,49] use a two-stage strategy where they first extract 2D image cues
such as bounding boxes and keypoints and then fit a 3D template vehicle to best
match its 2D image observations. The second stage is a post-processing step
that is usually time-consuming due to iterative non-linear optimization, making
it less applicable for real-time autonomous driving. On the contrary, regression-
based methods [22,48] directly predict 3D pose/shape parameters with a single
efficient forward pass of a deep network and is gaining increasing popularity with
the growing scale of autonomous driving datasets.

Despite the recent regression-based methods having achieved remarkable per-
formance for joint vehicle pose estimation and 3D shape reconstruction, we point
out some unexplored yet valuable research questions: (1) Most regression-based
networks [22,26,48] inherit classical 2D object detection architectures that solely
use region of interest (ROI) features to regress 3D parameters. How other poten-
tial feature representation can improve network performance is less studied. (2)
Deep networks require huge amounts of supervision [18], where useful super-
visory signals other than manually annotated input-target pairs are favorable.
Consistency brought by projective geometry is one possibility, yet the optimal
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design is still under-explored. Render-and-compare loss was used in [22] but it
suffers from ambiguities where similar 2D projected masks can correspond to
different 3D unknown parameters. For example, a mask similar to the ground
truth mask is produced after changing the ground truth 3D pose by 180◦ around
the symmetry axis, i.e., the prediction is not penalized enough despite being
incorrect. (3) Previous regression-based works only penalize prediction error for
single car instance and separate it from its environmental context, but a traffic
scene includes the interaction between multiple instances and the relationship
between instances with the physical world. We argue that considering these extra
information can improve the training of a deep network.

We investigate these above questions and propose GSNet (Geometric and
Scene-aware Network), an end-to-end multi-task network that can estimate
6DoF car pose and reconstruct dense 3D shape simultaneously. We go beyond
the ROI features and systematically study how other visual features that encode
geometrical and visibility information can improve the network performance,
where a simple yet effective four-way feature fusion scheme is adopted. Equipped
with a dense 3D shape representation achieved by a divide-and-conquer strategy,
we further design a multi-objective loss function to effectively improve network
learning as validated by extensive experiments. This loss function considers geo-
metric consistency using the projection of 66 semantic keypoints instead of masks
which effectively reduces the ambiguity issue. It also incorporates a scene-aware
term considering both inter-instance and instance-environment constraints.

In summary, our contributions are: (1) A novel end-to-end network that
can jointly reconstruct 3D pose and dense shape of vehicles, achieving state-
of-the-art performance on the largest multi-task ApolloCar3D benchmark [48].
(2) We propose an effective approach to extract and fuse diverse visual features,
where systematic ablation study is shown to validate its effectiveness. (3) GSNet
reconstructs fine-grained 3D meshes (1352 vertices) by our divide-and-conquer
shape representation for vehicle instances rather than just 3D bounding boxes,
wireframes [67] or retrieval [3,48]. (4) We design a new hybrid loss function to
promote network performance, which considers both geometric consistency and
scene constraints. This loss is made possible by the dense shape reconstruction,
which in turn promotes the 6D pose estimation precision and sheds light on the
benefit of jointly performing both tasks.

2 Related Work

Monocular 6DoF Pose Estimation. Traditionally, 6D object pose estima-
tion is handled by creating correspondences between the object’s known 3D
model and 2D pixel locations, followed by Perspective-n-Point (PnP) algo-
rithm [39,45,54]. For recent works, [2,13] construct templates and calculate the
similarity score to obtain the best matching position on the image. In [38,45,59],
2D regional image features are extracted and matched with the features on
3D model to establish 2D-3D relation which thus require sufficient textures for
matching. A single-shot deep CNN is proposed in [51] which regresses 6D object
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pose in one stage while in [50] a two-stage method is used: 1) SSD [35] for detect-
ing bounding boxes and identities; 2) augmented autoencoder predicts object
rotation using domain randomization [52]. Most recently, Hu et al. [14] intro-
duces a segmentation-based method by combining local pose prediction from
each visible part of the objects. Comparing to the cases in self-driving scenar-
ios, these methods [16,42,59] are applied to indoor scenes with a small variance
in translation especially along the longitudinal axis. Although using keypoints
information, our model does not treat pose estimation as a PnP problem and is
trained end-to-end.

Monocular 3D Shape Reconstruction. With the advent of large-scale shape
datasets [4] and the progress of data-driven approaches, 3D shape reconstruction
from a single image based on convolutional neural networks is drawing increasing
interests. Most of these approaches [19,30,43,44,47,56,61,66] focus on general
objects in the indoor scene or in the wild [15], where single object is shot in
a close distance and occupies the majority of image area. Different from them,
GSNet is targeted for more complicated traffic environment with far more vehicle
instances to reconstruct per image, where some of them are even under occlusion
at a long distance (over 50 m away).

Joint Vehicle Pose and Shape Reconstruction. 3D traffic scene under-
standing from a single RGB image is drawing increasing interests in recent
years. However, many of these approaches only predict object orientation with
3D bounding boxes [1,6,29,33,46,60,62]. When it comes to 3D vehicle shape
reconstruction, since the KITTI dataset [11] labels cars using 3D bounding
boxes with no detailed 3D shape annotation, existing works mainly use wire-
frames [20,26,55,67] or retrieve from CAD objects [3,36,48,57]. In [64], the
authors utilize 3D wireframe vehicle models to jointly estimate multiple objects
in a scene and find that more detailed representations of object shape are highly
beneficial to 3D scene understanding. DeepMANTA [3] adopts a coarse-to-fine
refinement strategy to first regress 2D bounding box positions and generate
3D bounding boxes and finally obtain pose estimation results via 3D template
fitting [25] by using the matched skeleton template to best fit its 2D image obser-
vations, which requires no image with 3D ground truth. Most related to ours,
3D-RCNN [22] regresses 3D poses and deformable shape parameters in a sin-
gle forward pass, but it uses coarse voxel shape representation and the proposed
render-and-compare loss causes ambiguity during training. Direct-based [48] fur-
ther augments 3D-RCNN by adding mask pooling and offset flow. In contrast
to these prior works, GSNet produces a more fine-grained 3D shape represen-
tation of vehicles by effective four-way feature fusion and divide-and-conquer
shape reconstruction, which further inspires a geometrical scene aware loss to
regularize network training with rich supervisory signals.

3 Pose and Shape Representation

6DoF Pose. The 6DoF pose for each instance consists of the 3D translation
T and 3D rotation R. T is represented by the object center coordinate Cobj =
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{x, y, z} in the camera coordinate system Ccam. Rotation R defines the rotation
Euler angles about X,Y,Z axes of the object coordinate system Cobj .

Divide-and-Conquer Shape Representation. We represent vehicle shape
with dense mesh consisting of 1352 vertices and 2700 faces, which is much more
fine-grained compared to the volume representation used in [22]. We start with
the CAD meshes provided by the ApolloCar3D database [48], which has differ-
ent topology and vertex number for each car type. We convert them into the
same topology with a fixed number of vertices by deforming a sphere using the
SoftRas [34] method.

Fig. 2. Illustration of our divide-and-conquer 3D shape reconstruction module, where
we obtain four independent PCA models for each shape cluster. Instance shape recon-
struction is achieved by reconstructing shape in each cluster and blend them with the
respective classification probabilities. This strategy achieves lower shape reconstruction
error compared to other methods as shown in Table 4.

To ease the training of neural network for shape reconstruction, we reduce the
shape representation dimension with principle component analysis (PCA) [41].
However, applying PCA to all available meshes directly [9,23,24] is sub-optimal
due to the large variation of car types and shapes. We thus adopt a divide-and-
conquer strategy as shown in Fig. 2. We first cluster a total of 79 CAD models
into four subsets with K-Means algorithm utilizing the shape similarity between
car meshes. For each subset, we separately learn a low dimensional shape basis
with PCA. Denote a subset of k vehicle meshes as M = {m1,m2, ...,mk}, we use
PCA to find n ≤ 10 dimensional shape basis, S̄ ∈ R

N×n, where N � n. During
inference, the network classifies the input instance into the 4 clusters and predicts
the principle component coefficient for each cluster. The final shape is blended
from the four meshes weighted by the classification score. With this strategy,
we achieve lower shape reconstruction error than directly applying PCA to all
meshes or retrieval which is detailed in our ablation study.
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4 Network Architecture Design

Figure 3 shows the overall architecture of our GSNet for joint car pose and shape
reconstruction. We design and extract four types of features from a complex
traffic scene, after which a fusion scheme is proposed to aggregate them. Finally,
multi-task prediction is done in parallel to estimate 3D translation, rotation and
shape via the intermediate fused representations.

Fig. 3. Overview of our GSNet for joint vehicle pose and shape reconstruction. We
use region-based 2D object detector [12] and a built-in heatmap regression branch
to obtain ROI features, detected boxes, keypoint coordinates (global locations in the
whole image) and corresponding heatmap (local positions and visibility in sub-region).
GSNet performs an effective fusion of four-way input representations and builds three
parallel branches respectively for 3D translation, rotation and shape estimation. 3D
shape reconstruction is detailed in Fig. 2 and our hybrid loss function is illustrated in
Sect. 5.

Diverse Feature Extraction and Representation. Existing methods [22,59]
only use ROI features to regress 3D parameters, but we argue that using diverse
features can better extract useful information in a complex traffic scene. Given
an input image, we first use a region-based 2D object detector [12] to detect car
instances and obtain its global location. Based on the bounding boxes, ROI pool-
ing is used to extract appearance features for each instance. In a parallel branch,
each detected instance is fed to a fully-convolutional sub-network to obtain
2D keypoint heatmaps and coordinates. The coordinates encode rich geomet-
ric information that can hardly be obtained with ROI features alone [65], while
the heatmaps encode part visibility to help the network discriminate occluded
instances.

Detected boxes are represented as 2D box center (bx, by), width bw and height
bh in pixel space. Camera intrinsic calibration matrix is [fx, 0, px; 0, fy, py; 0, 0, 1]
where fx, fy are focal lengths in pixel units and (px, py) is the principal point at
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the image center. We transform bx, by, bw, bh from pixel space to the correspond-
ing coordinates ux, uy, uw, uh in the world frame:

ux =
(bx − px)z

fx
, uy =

(by − py)z
fy

, uw =
bw

fx
, uh =

bh

fy
, (1)

where z is the fixed scale factor. For keypoint localization, we use the 66
semantic keypoints for cars defined in [48]. A 2D keypoint is represented as
pk = {xk, yk, vk}, where {xk, yk} are the image coordinates and vk denotes
visibility. In implementation, we adapt [12] pre-trained for human pose estima-
tion on COCO to initialize the keypoint localization branch. For extracting ROI
features, we use FPN [31] as our backbone.

Fusion Scheme. We convert the extracted four-way inputs into 1D represen-
tation separately and decide which features to use for completing each task by
prior knowledge. For global keypoint positions and detected boxes, we apply two
fully-connected layers to convert them into higher level feature. For ROI feature
maps and heatmaps, we adopt sequential convolutional operations with stride 2
to reduce their spatial size to 1×1 while keeping the channel number unchanged.

Instead of blindly using all features for prediction, we fuse different feature
types that are most informative for each prediction branch. The translation T
mainly affects the object location and scale during the imaging process, thus
we concatenate the ROI feature, 2D keypoint feature and box position feature
for translation regression. The rotation R determines the image appearance of
the object given its 3D shape and texture, thus we utilize the fusion of ROI
feature, heatmap feature and the keypoint feature as input. For estimating shape
parameters S, we aggregate the ROI and heatmap features.

Multi-task Prediction. We design three parallel estimation branches (trans-
lation, rotation and shape reconstruction) as shown in Fig. 3 since they are inde-
pendent, where each branch directly regresses the targets with mutual benefits.
Note that parts of input features such as ROI heatmap and keypoint positions
are shared in different branches, which can be jointly optimized and is benefi-
cial as shown by our experiments. In contrast to previous methods that predict
translation or depth using a discretization policy [10], GSNet can directly regress
the translation vector and achieve accurate result without any post processing or
further refinement. For the shape reconstruction branch, the network classify the
input instance and estimates the low-dimensional parameters (less than 30) for
four clusters as described in Sect. 3.

5 Geometrical and Scene-Aware Supervision

To provide GSNet with rich supervisory signals, we design a composite loss
functions consisting of multiple terms. Apart from ordinary regression losses, it
also strives for geometrical consistency and considers scene-level constraints in
both inter- and intra-instance manners.
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Fig. 4. The hybrid loss function for optimizing the GSNet. The scene-aware loss con-
sists of two parts, Lp glo for multiple car instances resting on common ground and
Lp loc for each single car at a fine-grained level. For geometrical consistency, camera
intrinsics are used to project the predicted 3D semantic vertices on a car mesh to image
and compared with the 2D detections.

Achieve Geometrical Consistency by Projecting Keypoints. With the
rich geometric details of the 3D vehicles as shown in Fig. 4, we exploit the 2D-
3D keypoints correspondence using a pinhole camera model to provide extra
supervision signal. For a 3D semantic keypoint pk = (x0, y0, z0) on the predicted
mesh with translation Tpred and rotation Rpred, the reprojection equation is:

Prepro = s

⎡
⎣

u0

v0
1

⎤
⎦ = k[Rpred|Tpred]pk, (2)

where k is the camera intrinsic matrix and (u0, v0) is the projection point in
pixels units. For the ith projected keypoint pi = (ui, vi), the reprojection loss is

Lkpt i = ‖pi − p̄i‖22 , (3)

where p̄i = (ūi, v̄i) is the corresponding image evidence given by our heatmap
regression module. The total loss Lkpts for n semantic keypoints in a car instance
is

Lkpts =
n∑

i=1

Lkpt iVi, (4)

where Vi is a boolean value indicating the visibility of ith keypoint in the image.
This reprojection loss is differentiable and can be easily incorporated in the
end-to-end training process. The correspondence of 2D keypoints and 3D mesh
vertices is needed to compute the loss and we determine it by ourselves. We
project each 3D vertex on the ground truth mesh to image plane and find its
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nearest neighboring 2D points. The 66 3D vertices whose 2D projections have the
most 2D annotated neighbors are selected as the corresponding 3D landmarks.
We also provide an ablation experiment on the influence of keypoints number in
the supplementary file.

Scene-Aware Loss. Observe that most of cars rest on a common ground plane
and the height of different instances is similar, thus the car centers are nearly
co-planar. For each image, we locate mesh centers for four randomly-selected
instances. Three of the centers define a plane ax+by+cz+d = 0 and denote the
remaining car center coordinate as (x1, y1, z1). As shown in Fig. 4, we introduce
the inter-instance co-planar loss Lp glo for multiple cars as:

Lp glo =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
, (5)

In addition, the centroids of the four wheels on a car should also lie in the
same plane parallel to the ground. Thanks to the dense 3D mesh reconstructed
by our multi-task network, we can readily obtain these four 3D coordinates. We
thus propose the intra-instance co-planar loss Lp loc to supplements Lp glo. It is
similar to Eq. 5 but the three points are chosen on the same instance.

Regression Losses. We use L2 loss Lmesh to penalize inaccurate 3D shape
reconstruction as:

Lmesh =

∑m
j=1

∥∥Mj − M̄j

∥∥2

2

m
, (6)

where m is total number of vertices, Mj is the jth predicted vertex and M̄j

is the ground truth vertex. For regression of 6DoF pose, we find that L1 loss
performs better than L2 loss. The loss for translation regression is

Ltrans = |Tpred − Tgt| , (7)

where Tgt and Tpred are ground-truth and predicted translation vector, respec-
tively. For regressing rotation in Euler angles, we restrict the range around each
axis [−π, π]. Since this is a unimodal task, we define the regression loss as

Lrot =

{
|Rpred − Rgt| if |Rpred − Rgt| ≤ π,

2π − |Rpred − Rgt| if |Rpred − Rgt| > π,
(8)

where Rpred and Rgt are the predicted and ground truth rotation vector.

Sub-type Classification Loss. We also classify the car instance into 34 sub-
types (sedan, minivan, SUV, etc.) and denote the classification loss as Lcls.

Final Objective Function. The final loss function L for training our GSNet
is defined as:

L = λlocLp loc + λgloLp glo + λkptsLkpts

+λmeshLmesh + λtransLtrans + λrotLrot + λclsLcls
(9)

where λs balance the above loss components. As validated by our experiments
in Sect. 6.2, this hybrid loss function design significantly promotes the network’s
performance compared to using only regression losses alone.
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6 Experiments

6.1 Datasets and Experimental Settings

ApolloCar3D. We use the most recent and largest multi-task ApolloCar3D
dataset [48] to train and evaluate GSNet. This dataset contains 5,277 high-
resolution (2,710 × 3384) images. We follow the official split where 4036 images
are used for training, 200 for validation and the remaining 1041 for testing.
Compared to KITTI [11], the instance count in ApolloCar3D is 20X larger with
far more cars per image (11.7 vs 4.8) where distant instances over 50 m are
also annotated. In addition, ApolloCar3D provides 3D shape ground truth to
evaluate shape reconstruction quantitatively, which is not available in KITTI.

Pascal3D+. We also train and evaluate GSNet on Pascal3D+ [58] dataset using
its car category. There are totally 6704 in-the-wild images with 1.19 cars per
image on average. It also provides both dense 3D shape and 6D pose annotation.

Evaluation Metrics. We follow the evaluation metrics in [48], which utilizes
instance 3D average precision (A3DP) with 10 thresholds (criteria from loose
to strict) for jointly measuring translation, rotation and 3D car shape recon-
struction accuracy. The results on the loose and strict criterion are respectively
denoted as c-l and c-s. During evaluation, Euclidean distance is used for 3D
translation while arccos distance is used for 3D rotation. For 3D shape recon-
struction, a predicted mesh is rendered into 100 views to compute IoU with the
ground truth masks and the mean IoU is used. In addition to the absolute dis-
tance error, the relative error in translation is also evaluated to emphasize the
model performance for nearby cars, which are more important for autonomous
driving. We denote A3DP evaluated in relative and absolute version as A3DP-Rel
and A3DP-Abs respectively.

Implementation Details. GSNet utilizes the Mask R-CNN [12] with ResNet-
101 backbone pre-trained on the COCO 2017 dataset [32] for object detection
and extracting ROI features (7×7). We discard detected objects with confidence
score less than 0.3. The λloc, λglo, λkpts, λmesh, λtrans, λrot, λcls in Eq. 9 are set to
5.0, 5.0, 0.01, 10.0, 0.5, 1.0, 0.5 to balance the loss components. During training,
we use Adam optimizer [17] with initial learning rate 0.0025 and reduce it by
half every 10 epochs for total 30 epochs. The 2D keypoint localization branch is
trained separately where we use 4,036 training images containing 40,000 labeled
vehicles with 2D keypoints and set threshold 0.1 for deciding keypoint visibility.
When building the dense shape representation, there are respectively 9, 24, 14,
32 meshes in the four clusters.

6.2 Ablation Study of Network Architecture and Loss Design

We conduct three ablation experiments on ApolloCar3D validation set to vali-
date our network design, loss functions and dense shape representation strategy.
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Table 1. Ablation study for GSNet on four-way feature fusion, which shows the rel-
evant contribution of each representation with only regression losses. Performance is
evaluated in terms of A3DP (jointly measuring translation, rotation and 3D car shape
reconstruction accuracy), where c-l indicates results on loose criterion and c-s indicates
strict criterion. GSNet exhibits a significant improvement compared to the baseline
(with only ROI features), which promotes A3DP-Rel item c-s from 3.2 10.5. T and R
in 6DoF Error respectively represent 3D translation and rotation.

2D input representationA3DP-Rel A3DP-Abs 6DoF error

ROIBoxesHeatmapkptsMean c-l c-s Mean c-l c-s T R

� 6.8 20.1 3.2 7.0 17.7 5.1 2.41 0.33

� � 12.5↑5.7 30.1↑10.4 8.9↑5.7 11.4↑4.4 26.6↑8.9 8.8↑3.7 1.56↓0.85 0.32↓0.01

� � � 13.7↑6.9 32.5↑12.4 9.2↑6.0 12.4↑5.4 29.2↑11.5 9.2↑4.1 1.53↓0.88 0.24↓0.09

� � � � 14.1↑7.332.9↑12.810.5↑7.312.8↑5.829.3↑11.69.9↑4.81.50↓0.910.24↓0.09

Is Extracting More Features Beneficial? We validate our four-way feature
extraction fusion design by varying the number of used branches as: 1) Baseline:
only using instance ROI features; 2) fusing transformed bounding box feature
with the ROI feature; 3) combining predicted heatmap feature to the input; 4)
further adding the 2D keypoint feature. The quantitative comparison is shown
in Table 1. Compared to using ROI features alone, the injection of transformed
detected boxes (center position, width and height) help provide geometric infor-
mation, which help reduce translation error by 35.2% while improves Rel-mAP
from 6.8 to 12.5 and Abs-mAP from 7.0 to 11.4. The introduction of keypoint
heatmaps is beneficial especially for rotation estimation. This extra visibility
information for the 2D keypoints reduces rotation error by 25.0% and further
promoting Rel-mAP from 12.5 to 13.7 and Abs-mAP from 11.4 to 12.4. Finally,
the 2D keypoint position branch complements the other three branches and
improves model performance consistently for different evaluation metrics.

Effectiveness of the Hybrid Loss Function. Here we fix our network archi-
tecture while varying the components of loss function to validate our loss design.
The experiments are designed as follows: 1) Baseline: adopt four-way feature
fusion architecture, but only train the network with regression and classifica-
tion losses without shape reconstruction; 2) adding 3D shape reconstruction
loss; 3) incorporating geometrical consistency loss; 4) adding scene-aware loss
but only use the inter-instance version; 5) adding the intra-instance scene-aware
component to complete the multi-task loss function. As shown in Table 2, the
reprojection consistency loss promotes 3D localization performance significantly,
where the 3D translation error reduces over 10% and Rel-mAp increases from
15.1 to 17.6. The scene-aware loss brings obvious improvement compared to
ignoring the traffic scene context, especially for the A3DP-Rel strict criterion
c-s (increasing AP from 14.2 to 19.8). In addition, using both inter-instance and
intra-instance loss components outperforms using inter-instance scene-aware loss
alone. Compared to the baseline, our hybrid loss function significantly promotes
the performance of Rel-mAp and Abs-mAp respectively to 20.2 and 18.9.
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Table 2. Ablation study for GSNet using different loss components of the hybrid
loss function, which shows the relevant contribution of each component. C0, C1, C2,
C3, C4 respectively denote pose regression loss, 3D shape reconstruction loss, geomet-
rical consistency loss, inter-instance scene-aware loss and intra-instance scene-aware
loss. GSNet exhibits a significant improvement compared to the baseline (with only
regression losses), especially in estimating the surrounding car instances as shown by
A3DP-Rel (item c-s has been significantly boosted from 10.5 to 19.8).

Loss components A3DP-Rel A3DP-Abs 6DoF error

C0C1C2C3C4 Mean c-l c-s mean c-l c-s T R

� 14.1 32.9 10.5 12.8 29.3 9.9 1.50 0.24

� � 15.1↑1.0 34.8↑1.9 11.3↑0.8 15.0↑2.2 32.0↑2.7 13.0↑3.1 1.44↓0.06 0.23↓0.01

� � � 17.6↑3.5 37.3↑4.4 14.2↑3.7 16.7↑3.9 34.1↑4.8 15.4↑5.5 1.30↓0.20 0.20↓0.04

� � � � 18.8↑4.7 39.0↑6.1 16.3↑5.8 17.6↑4.8 35.3↑6.0 16.7↑6.8 1.27↓0.23 0.20↓0.04

� � � � � 20.2↑6.1 40.5↑7.6 19.8↑9.3 18.9↑6.1 37.4↑8.1 18.3↑8.4 1.23↓0.27 0.18↓0.06

Is Jointly Performing Both Tasks Helpful? We argue that jointly perform-
ing dense shape reconstruction can in turn help 6D pose estimation. Without
the introduction of the dense shape reconstruction task, we do not have access
to the reconstruction loss C1 as well as the geometrical and scene-aware losses
(C2, C3 and C4). Note that C1–C4 significantly improves estimation accuracy
for translation and rotation.

Effectiveness of the Divide-and-Conquer Strategy. Table 4 compares
model performance using different shape representations: retrieval, single PCA
shape-space model and our divide-and-conquer strategy detailed in Sect. 3.
Observe that our divide-and-conquer strategy not only reduces shape recon-
struction error for around 10%, but also boosts the overall performance for traffic
instance understanding. Also, we present shape reconstruction error distribution
across different vehicle categories in our supplementary file.

6.3 Comparison with State-of-the-Art Methods

Quantitative Comparison on ApolloCar3D. We compare GSNet with
state-of-the-art approaches that jointly reconstruct vehicle pose and shape on
ApolloCar3D dataset as shown in Table 3. The most recent regression-based
approaches are: 1) 3D-RCNN [22], which regress 3D instances from ROI fea-
tures and add geometrical consistency by designing a differentiable render-and-
compare mask loss; 2) Direct-based method in [48], which improves 3D-RCNN by
adding mask pooling and offset flow. We can see that our GSNet achieves supe-
rior results among the existing regression-based methods across the evaluation
metrics while being fast, nearly doubling the mAP performance of 3D-RCNN in
A3DP-Rel entry. Compared to the fitting-based pose estimation methods using
Epnp [25], which fit 3D template car model to 2D image observations in a time-
consuming optimization process, GSNet performs comparably in A3DP-Rel and
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A3DP-Abs metrics with a high-resolution shape reconstruction output not con-
strained by the existing CAD templates. Note that fitting-based methods con-
sume long time and thus are not feasible for time-critical applications. Also note
that A3DP-Rel is important since nearby cars are more relevant for self-driving
car to make motion planning, where GSNet improves c-l AP performance by
15.75 compared to Kpts-based [48].

Table 3. Performance comparison with state-of-the-art 3D joint vehicle pose and shape
reconstruction algorithms on ApolloCar3D dataset. Times is the average inference time
for processing each image. GSNet achieves significantly better performance than state-
of-the-art regression-based approaches (using a deep network to directly estimate the
pose/shape from pixels) with both high precision and fast speed where inference time
is critical in autonomous driving. * denotes fitting-based methods, which fits a 3D
template car model to best match its 2D image observations (requires no image with
3D ground truth) and is time-consuming.

Model Shape
reconstruc-
tion

Regression-
based

A3DP-Rel A3DP-Abs TimesTime-
efficient

Mean c-l c-s Mean c-l c-s

DeepMANTA
(CVPR’17) [3]∗

Retrieval ✗ 16.04 23.76 19.80 20.10 30.69 23.76 3.38 s ✗

Kpts-based
(CVPR’19) [48]∗

Retrieval ✗ 16.53 24.75 19.80 20.40 31.68 24.75 8.5 s ✗

3D-RCNN
(CVPR’18) [22]

TSDF
volume [8]

✓ 10.79 17.82 11.88 16.44 29.70 19.800.29 s ✓

Direct-based
(CVPR’19) [48]

Retrieval ✓ 11.49 17.82 11.88 15.15 28.71 17.82 0.34 s ✓

Ours: GSNet Detailed
deformable
mesh

✓ 20.2140.5019.8518.9137.4218.36 0.45 s ✓

Table 4. Results comparison between GSNet
adopting retrieval, single PCA model and our
divide-and-conquer shape module on Apollo-
Car3D validation set.

Shape-space model Shape reconstruction error Rel-mAP

Retrieval 92.46 17.6

Single PCA 88.68 18.7

Divide-and-Conquer Shape Module 81.33 20.2

Table 5. Results on viewpoint esti-
mation with annotated boxes on Pas-
cal3D+ [58] for Car, where GSNet gets
highest accuracy and lowest angular
error.

Model Accπ/6 ↑ MedErr ↓
RenderForCNN [49] 0.88 6.0◦

Deep3DBox [37] 0.90 5.8◦

3D-RCNN [22] 0.96 3.0◦

Ours: GSNet 0.98 2.4◦
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Fig. 5. Qualitative comparison on the ApolloCar3D test set of different approaches by
rendering 3D mesh output projected onto the input 2D image. The first row are the
input images, the second row is the result of Direct-based [48] and the third row is
predicted by our GSNet. The bottom row shows the reconstructed meshes in 3D space.
Corresponding car instances are depicted in the same color. (Color figure online)

Fig. 6. Cross-dataset generalization of GSNet on KITTI [11] dataset. The first row are
the input images and the second row are our reconstructed 3D car meshes projected
onto the original image. Additional results are shown in our supplementary material.

Quantitative Comparison on Pascal3D+. To further validate our network,
we evaluate GSNet on the Pascal3D+ [58] dataset using its car category. We fol-
low the setting in [22,37] to evaluate the viewpoint and use Accπ/6 and MedErr
adopted in [37,53] to report results in Table 5, where the median angular error
improves by 20% from 3.0◦ to 2.4◦ compared to 3D-RCNN.

Qualitative Analysis. Figure 5 shows qualitative comparisons with other
direct regression-based methods for joint vehicle pose and shape reconstruction.
Compared with Direct-based [48], our GSNet produces more accurate 6DoF
pose estimation and 3D shape reconstruction from monocular images due to the
effective four-way feature fusion, the hybrid loss which considers both geomet-
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rical consistency and scene-level constraints and our divide-and-conquer shape
reconstruction. Although directly regressing depth based on monocular images
is considered as an ill-posed problem, our GSNet achieves high 3D estimation
accuracy (our projected masks of car meshes on input images show an almost
perfect match), particularly for instances in close proximity to the self-driving
vehicle. The last column of the figure shows that the estimation of GSNet is still
robust even in a relatively dark environment where the two left cars are heavily
occluded. The last row visualizes the predicted 3D vehicle instances.

Figure 6 shows additional qualitative results on applying GSNet on
KITTI [11]. Despite that GSNet is not trained on KITTI, the generalization
ability of our model is validated as can be seen from the accurate 6D pose
estimation and shape reconstruction of unseen vehicles. More results (including
3 temporally preceding frames of KITTI) are available in our supplementary
material.

7 Conclusion

We present an end-to-end multi-task network GSNet, which jointly reconstructs
6DoF pose and 3D shape of vehicles from single urban street view. Compared
to previous regression-based methods, GSNet not only explores more potential
feature sources and uses an effective fusion scheme to supplement ROI features,
but also provides richer supervisory signals from both geometric and scene-level
perspectives. Vehicle pose estimation and shape reconstruction are tightly inte-
grated in our system and benefit from each other, where 3D reconstruction deliv-
ers geometric scene context and greatly helps improve pose estimation precision.
Extensive experiments conducted on ApolloCar3D and Pascal3D+ have demon-
strated our state-of-the-art performance and validated the effectiveness of GSNet
with both high accuracy and fast speed.
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