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Abstract. Convolution exploits locality for efficiency at a cost of miss-
ing long range context. Self-attention has been adopted to augment
CNNs with non-local interactions. Recent works prove it possible to stack
self-attention layers to obtain a fully attentional network by restricting
the attention to a local region. In this paper, we attempt to remove this
constraint by factorizing 2D self-attention into two 1D self-attentions.
This reduces computation complexity and allows performing attention
within a larger or even global region. In companion, we also propose
a position-sensitive self-attention design. Combining both yields our
position-sensitive axial-attention layer, a novel building block that one
could stack to form axial-attention models for image classification and
dense prediction. We demonstrate the effectiveness of our model on
four large-scale datasets. In particular, our model outperforms all exist-
ing stand-alone self-attention models on ImageNet. Our Axial-DeepLab
improves 2.8% PQ over bottom-up state-of-the-art on COCO test-dev.
This previous state-of-the-art is attained by our small variant that is
3.8× parameter-efficient and 27× computation-efficient. Axial-DeepLab
also achieves state-of-the-art results on Mapillary Vistas and Cityscapes.

Keywords: Bottom-up panoptic segmentation · Self-attention

1 Introduction

Convolution is a core building block in computer vision. Early algorithms employ
convolutional filters to blur images, extract edges, or detect features. It has been
heavily exploited in modern neural networks [46,47] due to its efficiency and
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generalization ability, in comparison to fully connected models [2]. The success
of convolution mainly comes from two properties: translation equivariance, and
locality. Translation equivariance, although not exact [93], aligns well with the
nature of imaging and thus generalizes the model to different positions or to
images of different sizes. Locality, on the other hand, reduces parameter counts
and M-Adds. However, it makes modeling long range relations challenging.

A rich set of literature has discussed approaches to modeling long range inter-
actions in convolutional neural networks (CNNs). Some employ atrous convolu-
tions [12,33,64,74], larger kernel [67], or image pyramids [82,94], either designed
by hand or searched by algorithms [11,57,99]. Another line of works adopts atten-
tion mechanisms. Attention shows its ability of modeling long range interactions
in language modeling [80,85], speech recognition [10,21], and neural captioning
[88]. Attention has since been extended to vision, giving significant boosts to
image classification [6], object detection [36], semantic segmentation [39], video
classification [84], and adversarial defense [86]. These works enrich CNNs with
non-local or long-range attention modules.

Recently, stacking attention layers as stand-alone models without any spatial
convolution has been proposed [37,65] and shown promising results. However,
naive attention is computationally expensive, especially on large inputs. Apply-
ing local constraints to attention, proposed by [37,65], reduces the cost and
enables building fully attentional models. However, local constraints limit model
receptive field, which is crucial to tasks such as segmentation, especially on
high-resolution inputs. In this work, we propose to adopt axial-attention [32,39],
which not only allows efficient computation, but recovers the large receptive
field in stand-alone attention models. The core idea is to factorize 2D attention
into two 1D attentions along height- and width-axis sequentially. Its efficiency
enables us to attend over large regions and build models to learn long range
or even global interactions. Additionally, most previous attention modules do
not utilize positional information, which degrades attention’s ability in modeling
position-dependent interactions, like shapes or objects at multiple scales. Recent
works [6,37,65] introduce positional terms to attention, but in a context-agnostic
way. In this paper, we augment the positional terms to be context-dependent,
making our attention position-sensitive, with marginal costs.

We show the effectiveness of our axial-attention models on ImageNet [70]
for classification, and on three datasets (COCO [56], Mapillary Vistas [62],
and Cityscapes [22]) for panoptic segmentation [45], instance segmentation, and
semantic segmentation. In particular, on ImageNet, we build an Axial-ResNet
by replacing the 3 × 3 convolution in all residual blocks [31] with our position-
sensitive axial-attention layer, and we further make it fully attentional [65] by
adopting axial-attention layers in the ‘stem’. As a result, our Axial-ResNet
attains state-of-the-art results among stand-alone attention models on ImageNet.
For segmentation tasks, we convert Axial-ResNet to Axial-DeepLab by replac-
ing the backbones in Panoptic-DeepLab [18]. On COCO [56], our Axial-DeepLab
outperforms the current bottom-up state-of-the-art, Panoptic-DeepLab [19], by
2.8% PQ on test-dev set. We also show state-of-the-art segmentation results on
Mapillary Vistas [62], and Cityscapes [22].
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To summarize, our contributions are four-fold:

– The proposed method is the first attempt to build stand-alone attention mod-
els with large or global receptive field.

– We propose position-sensitive attention layer that makes better use of posi-
tional information without adding much computational cost.

– We show that axial attention works well, not only as a stand-alone model
on image classification, but also as a backbone on panoptic segmentation,
instance segmentation, and segmantic segmentation.

– Our Axial-DeepLab improves significantly over bottom-up state-of-the-art on
COCO, achieving comparable performance of two-stage methods. We also sur-
pass previous state-of-the-art methods on Mapillary Vistas and Cityscapes.

2 Related Work

Top-Down Panoptic Segmentation: Most state-of-the-art panoptic segmen-
tation models employ a two-stage approach where object proposals are firstly
generated followed by sequential processing of each proposal. We refer to such
approaches as top-down or proposal-based methods. Mask R-CNN [30] is com-
monly deployed in the pipeline for instance segmentation, paired with a light-
weight stuff segmentation branch. For example, Panoptic FPN [44] incorporates a
semantic segmentation head to Mask R-CNN [30], while Porzi et al . [68] append
a light-weight DeepLab-inspired module [13] to the multi-scale features from
FPN [55]. Additionally, some extra modules are designed to resolve the over-
lapping instance predictions by Mask R-CNN. TASCNet [49] and AUNet [52]
propose a module to guide the fusion between ‘thing’ and ‘stuff’ predictions,
while Liu et al . [61] adopt a Spatial Ranking module. UPSNet [87] develops an
efficient parameter-free panoptic head for fusing ‘thing’ and ‘stuff’, which is fur-
ther explored by Li et al . [50] for end-to-end training of panoptic segmentation
models. AdaptIS [77] uses point proposals to generate instance masks.

Bottom-up Panoptic Segmentation: In contrast to top-down approaches,
bottom-up or proposal-free methods for panoptic segmentation typically start
with the semantic segmentation prediction followed by grouping ‘thing’ pixels
into clusters to obtain instance segmentation. DeeperLab [89] predicts bound-
ing box four corners and object centers for class-agnostic instance segmentation.
SSAP [28] exploits the pixel-pair affinity pyramid [60] enabled by an efficient
graph partition method [43]. BBFNet [7] obtains instance segmentation results
by Watershed transform [4,81] and Hough-voting [5,48]. Recently, Panoptic-
DeepLab [19], a simple, fast, and strong approach for bottom-up panoptic seg-
mentation, employs a class-agnostic instance segmentation branch involving a
simple instance center regression [42,63,79], coupled with DeepLab semantic
segmentation outputs [12,14,15]. Panoptic-DeepLab has achieved state-of-the-
art results on several benchmarks, and our method builds on top of it.

Self-attention: Attention, introduced by [3] for the encoder-decoder in a neural
sequence-to-sequence model, is developed to capture correspondence of tokens
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between two sequences. In contrast, self-attention is defined as applying attention
to a single context instead of across multiple modalities. Its ability to directly
encode long-range interactions and its parallelizability, has led to state-of-the-art
performance for various tasks [24,25,38,53,66,72,80]. Recently, self-attention has
been applied to computer vision, by augmenting CNNs with non-local or long-
range modules. Non-local neural networks [84] show that self-attention is an
instantiation of non-local means [9] and achieve gains on many vision tasks such
as video classification and object detection. Additionally, [6,17] show improve-
ments on image classification by combining features from self-attention and con-
volution. State-of-the-art results on video action recognition tasks [17] are also
achieved in this way. On semantic segmentation, self-attention is developed as
a context aggregation module that captures multi-scale context [26,39,95,98].
Efficient attention methods are proposed to reduce its complexity [39,53,73].
Additionally, CNNs augmented with non-local means [9] are shown to be more
robust to adversarial attacks [86]. Besides discriminative tasks, self-attention is
also applied to generative modeling of images [8,32,91]. Recently, [37,65] show
that self-attention layers alone could be stacked to form a fully attentional model
by restricting the receptive field of self-attention to a local square region. Encour-
aging results are shown on both image classification and object detection. In this
work, we follow this direction of research and propose a stand-alone self-attention
model with large or global receptive field, making self-attention models non-local
again. Our models are evaluated on bottom-up panoptic segmentation and show
significant improvements.

3 Method

We begin by formally introducing our position-sensitive self-attention mecha-
nism. Then, we discuss how it is applied to axial-attention and how we build
stand-alone Axial-ResNet and Axial-DeepLab with axial-attention layers.

3.1 Position-Sensitive Self-attention

Self-attention: Self-attention mechanism is usually applied to vision models as
an add-on to augment CNNs outputs [39,84,91]. Given an input feature map
x ∈ R

h×w×din with height h, width w, and channels din, the output at position
o = (i, j), yo ∈ R

dout , is computed by pooling over the projected input as:

yo =
∑

p∈N
softmaxp(qTo kp)vp (1)

where N is the whole location lattice, and queries qo = WQxo, keys ko = WKxo,
values vo = WV xo are all linear projections of the input xo ∀o ∈ N . WQ,WK ∈
R

dq×din and WV ∈ R
dout×din are all learnable matrices. The softmaxp denotes a

softmax function applied to all possible p = (a, b) positions, which in this case
is also the whole 2D lattice.
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This mechanism pools values vp globally based on affinities xT
o W

T
QWKxp,

allowing us to capture related but non-local context in the whole feature map,
as opposed to convolution which only captures local relations.

However, self-attention is extremely expensive to compute (O(h2w2)) when
the spatial dimension of the input is large, restricting its use to only high levels of
a CNN (i.e., downsampled feature maps) or small images. Another drawback is
that the global pooling does not exploit positional information, which is critical
to capture spatial structures or shapes in vision tasks.

These two issues are mitigated in [65] by adding local constraints and posi-
tional encodings to self-attention. For each location o, a local m×m square region
is extracted to serve as a memory bank for computing the output yo. This signif-
icantly reduces its computation to O(hwm2), allowing self-attention modules to
be deployed as stand-alone layers to form a fully self-attentional neural network.
Additionally, a learned relative positional encoding term is incorporated into the
affinities, yielding a dynamic prior of where to look at in the receptive field (i.e.,
the local m × m square region). Formally, [65] proposes

yo =
∑

p∈Nm×m(o)

softmaxp(qTo kp + qTo rp−o)vp (2)

where Nm×m(o) is the local m × m square region centered around location
o = (i, j), and the learnable vector rp−o ∈ R

dq is the added relative positional
encoding. The inner product qTo rp−o measures the compatibility from location
p = (a, b) to location o = (i, j). We do not consider absolute positional encoding
qTo rp, because they do not generalize well compared to the relative counter-
part [65]. In the following paragraphs, we drop the term relative for conciseness.

In practice, dq and dout are much smaller than din, and one could extend
single-head attention in Eq. (2) to multi-head attention to capture a mixture of
affinities. In particular, multi-head attention is computed by applying N single-
head attentions in parallel on xo (with different Wn

Q,W
n
K ,Wn

V ,∀n ∈ {1, 2, . . . , N}
for the n-th head), and then obtaining the final output zo by concatenating the
results from each head, i.e., zo = concatn(yno ). Note that positional encodings
are often shared across heads, so that they introduce marginal extra parameters.

Position-Sensitivity: We notice that previous positional bias only depends on
the query pixel xo, not the key pixel xp. However, the keys xp could also have
information about which location to attend to. We therefore add a key-dependent
positional bias term kTp r

k
p−o, besides the query-dependent bias qTo r

q
p−o.

Similarly, the values vp do not contain any positional information in Eq. (2).
In the case of large receptive fields or memory banks, it is unlikely that yo
contains the precise location from which vp comes. Thus, previous models have
to trade-off between using smaller receptive fields (i.e., small m × m regions)
and throwing away precise spatial structures. In this work, we enable the output
yo to retrieve relative positions rvp−o, besides the content vp, based on query-key
affinities qTo kp. Formally,

yo =
∑

p∈Nm×m(o)

softmaxp(qTo kp + qTo r
q
p−o + kTp r

k
p−o)(vp + rvp−o) (3)
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Fig. 1. A non-local block (left) vs. our position-sensitive axial-attention applied along
the width-axis (right). “⊗” denotes matrix multiplication, and “⊕” denotes element-
wise sum. The softmax is performed on the last axis. Blue boxes denote 1 × 1 convo-
lutions, and red boxes denote relative positional encoding. The channels din = 128,
dq = 8, and dout = 16 is what we use in the first stage of ResNet after ‘stem’ (Color
figure online)

where the learnable rkp−o ∈ R
dq is the positional encoding for keys, and rvp−o ∈

R
dout is for values. Both vectors do not introduce many parameters, since they

are shared across attention heads in a layer, and the number of local pixels
|Nm×m(o)| is usually small.

We call this design position-sensitive self-attention (Fig. 1), which captures
long range interactions with precise positional information at a reasonable com-
putation overhead, as verified in our experiments.

3.2 Axial-Attention

The local constraint, proposed by the stand-alone self-attention models [65],
significantly reduces the computational costs in vision tasks and enables build-
ing fully self-attentional model. However, such constraint sacrifices the global
connection, making attention’s receptive field no larger than a depthwise convo-
lution with the same kernel size. Additionally, the local self-attention, performed
in local square regions, still has complexity quadratic to the region length, intro-
ducing another hyper-parameter to trade-off between performance and compu-
tation complexity. In this work, we propose to adopt axial-attention [32,39] in
stand-alone self-attention, ensuring both global connection and efficient compu-
tation. Specifically, we first define an axial-attention layer on the width-axis of
an image as simply a one dimensional position-sensitive self-attention, and use
the similar definition for the height-axis. To be concrete, the axial-attention layer
along the width-axis is defined as follows.

yo =
∑

p∈N1×m(o)

softmaxp(qTo kp + qTo r
q
p−o + kTp r

k
p−o)(vp + rvp−o) (4)
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Fig. 2. An axial-attention block, which consists of two axial-attention layers operating
along height- and width-axis sequentially. The channels din = 128, dout = 16 is what
we use in the first stage of ResNet after ‘stem’. We employ N = 8 attention heads

One axial-attention layer propagates information along one particular axis. To
capture global information, we employ two axial-attention layers consecutively
for the height-axis and width-axis, respectively. Both of the axial-attention layers
adopt the multi-head attention mechanism, as described above.

Axial-attention reduces the complexity to O(hwm). This enables global
receptive field, which is achieved by setting the span m directly to the whole
input features. Optionally, one could also use a fixed m value, in order to reduce
memory footprint on huge feature maps.

Axial-ResNet: To transform a ResNet [31] to an Axial-ResNet, we replace
the 3 × 3 convolution in the residual bottleneck block by two multi-head axial-
attention layers (one for height-axis and the other for width-axis). Optional
striding is performed on each axis after the corresponding axial-attention layer.
The two 1×1 convolutions are kept to shuffle the features. This forms our (resid-
ual) axial-attention block, as illustrated in Fig. 2, which is stacked multiple times
to obtain Axial-ResNets. Note that we do not use a 1×1 convolution in-between
the two axial-attention layers, since matrix multiplications (WQ,WK ,WV ) fol-
low immediately. Additionally, the stem (i.e., the first strided 7 × 7 convolution
and 3 × 3 max-pooling) in the original ResNet is kept, resulting in a conv-stem
model where convolution is used in the first layer and attention layers are used
everywhere else. In conv-stem models, we set the span m to the whole input from
the first block, where the feature map is 56× 56.

In our experiments, we also build a full axial-attention model, called Full
Axial-ResNet, which further applies axial-attention to the stem. Instead of
designing a special spatially-varying attention stem [65], we simply stack three
axial-attention bottleneck blocks. In addition, we adopt local constraints (i.e., a
local m×m square region as in [65]) in the first few blocks of Full Axial-ResNets,
in order to reduce computational cost.

Axial-DeepLab: To further convert Axial-ResNet to Axial-DeepLab for seg-
mentation tasks, we make several changes as discussed below.

Firstly, to extract dense feature maps, DeepLab [12] changes the stride and
atrous rates of the last one or two stages in ResNet [31]. Similarly, we remove the
stride of the last stage but we do not implement the ‘atrous’ attention module,
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since our axial-attention already captures global information for the whole input.
In this work, we extract feature maps with output stride (i.e., the ratio of input
resolution to the final backbone feature resolution) 16. We do not pursue output
stride 8, since it is computationally expensive.

Secondly, we do not adopt the atrous spatial pyramid pooling module (ASPP)
[13,14], since our axial-attention block could also efficiently encode the multi-
scale or global information. We show in the experiments that our Axial-DeepLab
without ASPP outperforms Panoptic-DeepLab [19] with and without ASPP.

Lastly, following Panoptic-DeepLab [19], we adopt exactly the same stem [78]
of three convolutions, dual decoders, and prediction heads. The heads produce
semantic segmentation and class-agnostic instance segmentation, and they are
merged by majority voting [89] to form the final panoptic segmentation.

In cases where the inputs are extremely large (e.g ., 2177×2177) and memory
is constrained, we resort to a large span m = 65 in all our axial-attention blocks.
Note that we do not consider the axial span as a hyper-parameter because it is
already sufficient to cover long range or even global context on several datasets,
and setting a smaller span does not significantly reduce M-Adds.

4 Experimental Results

We conduct experiments on four large-scale datasets. We first report results with
our Axial-ResNet on ImageNet [70]. We then convert the ImageNet pretrained
Axial-ResNet to Axial-DeepLab, and report results on COCO [56], Mapillary
Vistas [62], and Cityscapes [22] for panoptic segmentation, evaluated by panop-
tic quality (PQ) [45]. We also report average precision (AP) for instance seg-
mentation, and mean IoU for semantic segmentation on Mapillary Vistas and
Cityscapes. Our models are trained using TensorFlow [1] on 128 TPU cores for
ImageNet and 32 cores for panoptic segmentation.

Training Protocol: On ImageNet, we adopt the same training protocol as [65]
for a fair comparison, except that we use batch size 512 for Full Axial-ResNets
and 1024 for all other models, with learning rates scaled accordingly [29].

For panoptic segmentation, we strictly follow Panoptic-DeepLab [19], except
using a linear warm up Radam [58] Lookahead [92] optimizer (with the same
learning rate 0.001). All our results on panoptic segmentation use this setting.
We note this change does not improve the results, but smooths our training
curves. Panoptic-DeepLab yields similar result in this setting.

4.1 ImageNet

For ImageNet, we build Axial-ResNet-L from ResNet-50 [31]. In detail, we set
din = 128, dout = 2dq = 16 for the first stage after the ‘stem’. We double
them when spatial resolution is reduced by a factor of 2 [76]. Additionally, we
multiply all the channels [34,35,71] by 0.5, 0.75, and 2, resulting in Axial-
ResNet-{S, M, XL}, respectively. Finally, Stand-Alone Axial-ResNets are further
generated by replacing the ‘stem’ with three axial-attention blocks where the
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Table 1. ImageNet validation set results. BN: Use batch normalizations in atten-
tion layers. PS: Our position-sensitive self-attention. Full: Stand-alone self-attention
models without spatial convolutions

Method BN PS Full Params M-Adds Top-1

Conv-Stem methods

ResNet-50 [31,65] 25.6M 4.1B 76.9

Conv-Stem + Attention [65] 18.0M 3.5B 77.4

Conv-Stem + Attention ✓ 18.0M 3.5B 77.7

Conv-Stem + PS-Attention ✓ ✓ 18.0M 3.7B 78.1

Conv-Stem + Axial-Attention ✓ ✓ 12.4M 2.8B 77.5

Fully self-attentional methods

LR-Net-50 [37] ✓ 23.3M 4.3B 77.3

Full Attention [65] ✓ 18.0M 3.6B 77.6

Full Axial-Attention ✓ ✓ ✓ 12.5M 3.3B 78.1

first block has stride 2. Due to the computational cost introduced by the early
layers, we set the axial span m = 15 in all blocks of Stand-Alone Axial-ResNets.
We always use N = 8 heads [65]. In order to avoid careful initialization of
WQ,WK ,WV , r

q, rk, rv, we use batch normalizations [40] in all attention layers.
Table 1 summarizes our ImageNet results. The baselines ResNet-50 [31] (done

by [65]) and Conv-Stem + Attention [65] are also listed. In the conv-stem setting,
adding BN to attention layers of [65] slightly improves the performance by 0.3%.
Our proposed position-sensitive self-attention (Conv-Stem + PS-Attention) fur-
ther improves the performance by 0.4% at the cost of extra marginal compu-
tation. Our Conv-Stem + Axial-Attention performs on par with Conv-Stem +
Attention [65] while being more parameter- and computation-efficient. When
comparing with other full self-attention models, our Full Axial-Attention out-
performs Full Attention [65] by 0.5%, while being 1.44× more parameter-efficient
and 1.09× more computation-efficient.

Following [65], we experiment with different network widths (i.e., Axial-
ResNets-{S,M,L,XL}), exploring the trade-off between accuracy, model parame-
ters, and computational cost (in terms of M-Adds). As shown in Fig. 3, our pro-
posed Conv-Stem + PS-Attention and Conv-Stem + Axial-Attention already
outperforms ResNet-50 [31,65] and attention models [65] (both Conv-Stem +
Attention, and Full Attention) at all settings. Our Full Axial-Attention further
attains the best accuracy-parameter and accuracy-complexity trade-offs.

4.2 COCO

The ImageNet pretrained Axial-ResNet model variants (with different channels)
are then converted to Axial-DeepLab model variant for panoptic segmentation
tasks. We first demonstrate the effectiveness of our Axial-DeepLab on the chal-
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Fig. 3. Comparing parameters and M-Adds against accuracy on ImageNet classifi-
cation. Our position-sensitive self-attention (Conv-Stem + PS-Attention) and axial-
attention (Conv-Stem + Axial-Attention) consistently outperform ResNet-50 [31,65]
and attention models [65] (both Conv-Stem + Attention, and Full Attention), across a
range of network widths (i.e., different channels). Our Full Axial-Attention works the
best in terms of both parameters and M-Adds

Table 2. COCO val set. MS: Multi-scale inputs

Method Backbone MS Params M-Adds PQ PQTh PQSt

DeeperLab [89] Xception-71 33.8 - -

SSAP [28] ResNet-101 ✓ 36.5 - -

Panoptic-DeepLab [19] Xception-71 46.7M 274.0B 39.7 43.9 33.2

Panoptic-DeepLab [19] Xception-71 ✓ 46.7M 3081.4B 41.2 44.9 35.7

Axial-DeepLab-S Axial-ResNet-S 12.1M 110.4B 41.8 46.1 35.2

Axial-DeepLab-M Axial-ResNet-M 25.9M 209.9B 42.9 47.6 35.8

Axial-DeepLab-L Axial-ResNet-L 44.9M 343.9B 43.4 48.5 35.6

Axial-DeepLab-L Axial-ResNet-L ✓ 44.9M 3867.7B 43.9 48.6 36.8

lenging COCO dataset [56], which contains objects with various scales (from less
than 32 × 32 to larger than 96 × 96).

Val Set: In Table 2, we report our validation set results and compare with other
bottom-up panoptic segmentation methods, since our method also belongs to
the bottom-up family. As shown in the table, our single-scale Axial-DeepLab-S
outperforms DeeperLab [89] by 8% PQ, multi-scale SSAP [28] by 5.3% PQ, and
single-scale Panoptic-DeepLab by 2.1% PQ. Interestingly, our single-scale Axial-
DeepLab-S also outperforms multi-scale Panoptic-DeepLab by 0.6% PQ while
being 3.8× parameter-efficient and 27× computation-efficient (in M-Adds).
Increasing the backbone capacity (via large channels) continuously improves the
performance. Specifically, our multi-scale Axial-DeepLab-L attains 43.9% PQ,
outperforming Panoptic-DeepLab [19] by 2.7% PQ.

Test-dev Set: As shown in Table 3, our Axial-DeepLab variants show con-
sistent improvements with larger backbones. Our multi-scale Axial-DeepLab-L
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Table 3. COCO test-dev set. MS: Multi-scale inputs

Method Backbone MS PQ PQTh PQSt

Top-down panoptic segmentation methods

TASCNet [49] ResNet-50 40.7 47.0 31.0

Panoptic-FPN [44] ResNet-101 40.9 48.3 29.7

AdaptIS [77] ResNeXt-101 ✓ 42.8 53.2 36.7

AUNet [52] ResNeXt-152 46.5 55.8 32.5

UPSNet [87] DCN-101 [23] ✓ 46.6 53.2 36.7

Li et al . [50] DCN-101 [23] 47.2 53.5 37.7

SpatialFlow [16] DCN-101 [23] ✓ 47.3 53.5 37.9

SOGNet [90] DCN-101 [23] ✓ 47.8 - -

Bottom-up panoptic segmentation methods

DeeperLab [89] Xception-71 34.3 37.5 29.6

SSAP [28] ResNet-101 ✓ 36.9 40.1 32.0

Panoptic-DeepLab [19] Xception-71 ✓ 41.4 45.1 35.9

Axial-DeepLab-S Axial-ResNet-S 42.2 46.5 35.7

Axial-DeepLab-M Axial-ResNet-M 43.2 48.1 35.9

Axial-DeepLab-L Axial-ResNet-L 43.6 48.9 35.6

Axial-DeepLab-L Axial-ResNet-L ✓ 44.2 49.2 36.8

Fig. 4. Scale stress test on COCO val set. Axial-DeepLab gains the most when tested on
extreme resolutions. On the x-axis, ratio 4.0 means inference with resolution 4097×4097

attains the performance of 44.2% PQ, outperforming DeeperLab [89] by 9.9%
PQ, SSAP [28] by 7.3% PQ, and Panoptic-DeepLab [19] by 2.8% PQ, setting
a new state-of-the-art among bottom-up approaches. We also list several top-
performing methods adopting the top-down approaches in the table for reference.

Scale Stress Test: In order to verify that our model learns long range interac-
tions, we perform a scale stress test besides standard testing. In the stress test,
we train Panoptic-DeepLab (X-71) and our Axial-DeepLab-L with the standard
setting, but test them on out-of-distribution resolutions (i.e., resize the input
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Table 4. Mapillary Vistas validation set. MS: Multi-scale inputs

Method MS Params M-Adds PQ PQTh PQSt AP mIoU

Top-down panoptic segmentation methods

TASCNet [49] 32.6 31.1 34.4 18.5 -

TASCNet [49] ✓ 34.3 34.8 33.6 20.4 -

AdaptIS [77] 35.9 31.5 41.9 - -

Seamless [68] 37.7 33.8 42.9 16.4 50.4

Bottom-up panoptic segmentation methods

DeeperLab [89] 32.0 - - - 55.3

Panoptic-DeepLab

(Xception-71 [20,69]) [19]

46.7M 1.24T 37.7 30.4 47.4 14.9 55.4

Panoptic-DeepLab

(Xception-71 [20,69]) [19]

✓ 46.7M 31.35T 40.3 33.5 49.3 17.2 56.8

Panoptic-DeepLab

(HRNet-W48 [83]) [19]

✓ 71.7M 58.47T 39.3 - - 17.2 55.4

Panoptic-DeepLab

(Auto-XL++ [57]) [19]

✓ 72.2M 60.55T 40.3 - - 16.9 57.6

Axial-DeepLab-L 44.9M 1.55T 40.1 32.7 49.8 16.7 57.6

Axial-DeepLab-L ✓ 44.9M 39.35T 41.1 33.4 51.3 17.2 58.4

to different resolutions). Figure 4 summarizes our relative improvements over
Panoptic-DeepLab on PQ, PQ (thing) and PQ (stuff). When tested on huge
images, Axial-DeepLab shows large gain (30%), demonstrating that it encodes
long range relations better than convolutions. Besides, Axial-DeepLab improves
40% on small images, showing that axial-attention is more robust to scale vari-
ations.

4.3 Mapillary Vistas

We evaluate our Axial-DeepLab on the large-scale Mapillary Vistas dataset [62].
We only report validation set results, since the test server is not available.

Val Set: As shown in Table 4, our Axial-DeepLab-L outperforms all the state-
of-the-art methods in both single-scale and multi-scale cases. Our single-scale
Axial-DeepLab-L performs 2.4% PQ better than the previous best single-scale
Panoptic-DeepLab (X-71) [19]. In multi-scale setting, our lightweight Axial-
DeepLab-L performs better than Panoptic-DeepLab (Auto-DeepLab-XL++),
not only on panoptic segmentation (0.8% PQ) and instance segmentation (0.3%
AP), but also on semantic segmentation (0.8% mIoU), the task that Auto-
DeepLab [57] was searched for. Additionally, to the best of our knowledge, our
Axial-DeepLab-L attains the best single-model semantic segmentation result.

4.4 Cityscapes

Val Set: In Table 5(a), we report our Cityscapes validation set results. With-
out using extra data (i.e., only Cityscapes fine annotation), our Axial-DeepLab
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Table 5. Cityscapes val set and test set. MS: Multi-scale inputs. C: Cityscapes coarse
annotation. V: Cityscapes video. MV: Mapillary Vistas

(a) Cityscapes validation set

Method Extra

Data

MS PQ AP mIoU

AdaptIS [77] ✓ 62.0 36.3 79.2

SSAP [28] ✓ 61.1 37.3 -

Panoptic-

DeepLab [19]

63.0 35.3 80.5

Panoptic-

DeepLab [19]

✓ 64.1 38.5 81.5

Axial-DeepLab-L 63.9 35.8 81.0

Axial-DeepLab-L ✓ 64.7 37.9 81.5

Axial-DeepLab-XL 64.4 36.7 80.6

Axial-DeepLab-XL ✓ 65.1 39.0 81.1

SpatialFlow [16] COCO ✓ 62.5 - -

Seamless [68] MV 65.0 - 80.7

Panoptic-

DeepLab [19]

MV 65.3 38.8 82.5

Panoptic-

DeepLab [19]

MV ✓ 67.0 42.5 83.1

Axial-DeepLab-L MV 66.5 40.2 83.2

Axial-DeepLab-L MV ✓ 67.7 42.9 83.8

Axial-DeepLab-XL MV 67.8 41.9 84.2

Axial-DeepLab-XL MV ✓ 68.5 44.2 84.6

(b) Cityscapes test set

Method Extra

Data

PQ AP mIoU

GFF-Net [51] - - 82.3

Zhu et al. [97] C, V, MV - - 83.5

AdaptIS [77] - 32.5 -

UPSNet [87] COCO - 33.0 -

PANet [59] COCO - 36.4 -

PolyTransform [54] COCO - 40.1

SSAP [28] 58.9 32.7 -

Li et al. [50] 61.0 - -

Panoptic-

DeepLab [19]

62.3 34.6 79.4

TASCNet [49] COCO 60.7 - -

Seamless [68] MV 62.6 - -

Li et al. [50] COCO 63.3 - -

Panoptic-

DeepLab [19]

MV 65.5 39.0 84.2

Axial-DeepLab-L 62.7 33.3 79.5

Axial-DeepLab-XL 62.8 34.0 79.9

Axial-DeepLab-L MV 65.6 38.1 83.1

Axial-DeepLab-XL MV 66.6 39.6 84.1

achieves 65.1% PQ, which is 1% better than the current best bottom-up
Panoptic-DeepLab [19] and 3.1% better than proposal-based AdaptIS [77]. When
using extra data (e.g ., Mapillary Vistas [62]), our multi-scale Axial-DeepLab-XL
attains 68.5% PQ, 1.5% better than Panoptic-DeepLab [19] and 3.5% better than
Seamless [68]. Our instance segmentation and semantic segmentation results are
respectively 1.7% and 1.5% better than Panoptic-DeepLab [19].

Test Set: Table 5(b) shows our test set results. Without extra data, Axial-
DeepLab-XL attains 62.8% PQ, setting a new state-of-the-art result. Our model
further achieves 66.6% PQ, 39.6% AP, and 84.1% mIoU with Mapillary Vistas
pretraining. Note that Panoptic-DeepLab [19] adopts the trick of output stride 8
during inference on test set, making their M-Adds comparable to our XL models.

4.5 Ablation Studies

We perform ablation studies on Cityscapes validation set.

Importance of Position-Sensitivity and Axial-Attention: In Table 1, we
experiment with attention models on ImageNet. In this ablation study, we trans-
fer them to Cityscapes segmentation tasks. As shown in Table 6, all variants out-
perform ResNet-50 [31]. Position-sensitive attention performs better than previ-
ous self-attention [65], which aligns with ImageNet results in Table 1. However,
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Table 6. Ablating self-attention variants on Cityscapes val set. ASPP: Atrous spatial
pyramid pooling. PS: Our position-sensitive self-attention

Backbone ASPP PS Params M-Adds PQ AP mIoU

ResNet-50 [31] (our impl.) 24.8M 374.8B 58.1 30.0 73.3

ResNet-50 [31] (our impl.) ✓ 30.0M 390.0B 59.8 32.6 77.8

Attention [65] (our impl.) 17.3M 317.7B 58.7 31.9 75.8

Attention [65] (our impl.) ✓ 22.5M 332.9B 60.9 30.0 78.2

PS-Attention ✓ 17.3M 326.7B 59.9 32.2 76.3

PS-Attention ✓ ✓ 22.5M 341.9B 61.5 33.1 79.1

Axial-DeepLab-S ✓ 12.1M 220.8B 62.6 34.9 80.5

Axial-DeepLab-M ✓ 25.9M 419.6B 63.1 35.6 80.3

Axial-DeepLab-L ✓ 44.9M 687.4B 63.9 35.8 81.0

Axial-DeepLab-XL ✓ 173.0M 2446.8B 64.4 36.7 80.6

Table 7. Varying axial-attention span on Cityscapes val set

Backbone Span Params M-Adds PQ AP mIoU

ResNet-101 - 43.8M 530.0B 59.9 31.9 74.6

Axial-ResNet-L 5 × 5 44.9M 617.4B 59.1 31.3 74.5

Axial-ResNet-L 9 × 9 44.9M 622.1B 61.2 31.1 77.6

Axial-ResNet-L 17 × 17 44.9M 631.5B 62.8 34.0 79.5

Axial-ResNet-L 33 × 33 44.9M 650.2B 63.8 35.9 80.2

Axial-ResNet-L 65 × 65 44.9M 687.4B 64.2 36.3 80.6

employing axial-attention, which is on-par with position-sensitive attention on
ImageNet, gives more than 1% boosts on all three segmentation tasks (in PQ,
AP, and mIoU), without ASPP, and with fewer parameters and M-Adds, suggest-
ing that the ability to encode long range context of axial-attention significantly
improves the performance on segmentation tasks with large input images.

Importance of Axial-Attention Span: In Table 7, we vary the span m (i.e.,
spatial extent of local regions in an axial block), without ASPP. We observe that
a larger span consistently improves the performance at marginal costs.

5 Conclusion and Discussion

In this work, we have shown the effectiveness of proposed position-sensitive axial-
attention on image classification and segmentation tasks. On ImageNet, our
Axial-ResNet, formed by stacking axial-attention blocks, achieves state-of-the-
art results among stand-alone self-attention models. We further convert Axial-
ResNet to Axial-DeepLab for bottom-up segmentation tasks, and also show
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state-of-the-art performance on several benchmarks, including COCO, Mapil-
lary Vistas, and Cityscapes. We hope our promising results could establish that
axial-attention is an effective building block for modern computer vision models.

Our method bears a similarity to decoupled convolution [41], which factorizes
a depthwise convolution [20,35,75] to a column convolution and a row convolu-
tion. This operation could also theoretically achieve a large receptive field, but its
convolutional template matching nature limits the capacity of modeling multi-
scale interactions. Another related method is deformable convolution [23,27,96],
where each point attends to a few points dynamically on an image. However,
deformable convolution does not make use of key-dependent positional bias
or content-based relation. In addition, axial-attention propagates information
densely, and more efficiently along the height- and width-axis sequentially.

Although our axial-attention model saves M-Adds, it runs slower than con-
volutional counterparts, as also observed by [65]. This is due to the lack of
specialized kernels on various accelerators for the time being. This might well be
improved if the community considers axial-attention as a plausible direction.
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