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Abstract. State-of-the-art face super-resolution methods employ deep
convolutional neural networks to learn a mapping between low- and
high-resolution facial patterns by exploring local appearance knowledge.
However, most of these methods do not well exploit facial structures
and identity information, and struggle to deal with facial images that
exhibit large pose variations. In this paper, we propose a novel face super-
resolution method that explicitly incorporates 3D facial priors which
grasp the sharp facial structures. Our work is the first to explore 3D
morphable knowledge based on the fusion of parametric descriptions of
face attributes (e.g., identity, facial expression, texture, illumination, and
face pose). Furthermore, the priors can easily be incorporated into any
network and are extremely efficient in improving the performance and
accelerating the convergence speed. Firstly, a 3D face rendering branch is
set up to obtain 3D priors of salient facial structures and identity knowl-
edge. Secondly, the Spatial Attention Module is used to better exploit
this hierarchical information (i.e., intensity similarity, 3D facial struc-
ture, and identity content) for the super-resolution problem. Extensive
experiments demonstrate that the proposed 3D priors achieve superior
face super-resolution results over the state-of-the-arts.
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1 Introduction

Face images provide crucial clues for human observation as well as computer
analysis [20,45]. However, the performance of most face image tasks, such as face
recognition and facial emotion detection [11,32], degrades dramatically when the
resolution of a facial image is relatively low. Consequently, face super-resolution,
also known as face hallucination, was coined to restore a high-resolution face
image from its low-resolution counterpart.

(a) LR (b) HR (c) SRCNN (d) SRCNN+3D (e) VDSR (f) VDSR+3D

PSNR/SSIM - 19.18/0.5553 21.10/0.6100 19.74/0.5772 22.44/0.6797

(g) RCAN (h) RDN (i) Wavelet (j) PSR-FAN (k) FSR-Net (l) Ours
19.68/0.6350 19.81/0.6470 19.28/0.6232 19.62/0.6123 22.17/0.6804 22.83/0.7172

Fig. 1. Visual comparison with state-of-the-art face hallucination methods (×8). (a)
16× 16 LR input. (b) 128× 128 HR ground-truth. (c) Super-Resolution Convolutional
Neural Network (SRCNN) [7]. (d) SRCNN incorporating our 3D facial priors. (e) Very
Deep Super-Resolution Network (VDSR) [17]. (f) VDSR incorporating our 3D facial
priors. (g) Very Deep Residual Channel Attention Network (RCAN) [42]. (h) Resid-
ual Dense Network (RDN) [43]. (i) Wavelet-based CNN for Multi-scale Face Super-
Resolution (Wavelet-SRNet) [14]. (j) Progressive Face Super-Resolution using the facial
landmark (PSR-FAN) [16]. (k) End-to-End Learning Face Super-Resolution with Facial
Priors (FSRNet) [4]. (l) Our proposed method by embedding the 3D facial priors into
the Spatial Attention Module (SAM3D).

Although a great influx of deep learning methods [3,5,9,24,36–39,44,46,47]
have been successfully applied in face Super-Resolution (SR) problems, super-
resolving arbitrary facial images, especially at high magnification factors, is still
an open and challenging problem due to the ill-posed nature of the SR problem
and the difficulty in learning and integrating strong priors into a face halluci-
nation model. Some researches [4,10,16,28,35,41] on exploiting the face priors
to assist neural networks in capturing more facial details have been proposed.
A face hallucination model incorporating identity priors was presented in [10].
However, the identity prior was extracted only from the multi-scale up-sampling
results in the training procedure and therefore cannot provide extra priors to
guide the network. Yu et al. [35] employed facial component heatmaps to encour-
age the upsampling stream to generate super-resolved faces with higher-quality
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details, especially for large pose variations. Kim et al. [16] proposed a face align-
ment network (FAN) for landmark heatmap extraction to boost the performance
of face SR. Chen et al. [4] utilized the heatmaps and parsing maps for face SR
problems. Although these 2D priors provide global component regions, these
methods cannot learn the 3D reconstruction of detailed edges, illumination, and
expression priors. In addition, all of these aforementioned face SR approaches
ignore facial structure and identity recovery.

In contrast to the aforementioned approaches, we propose a novel face super
resolution method by exploiting 3D facial priors to grasp sharp face structures
and identity knowledge. Firstly, a deep 3D face reconstruction branch is set up to
explicitly obtain 3D face render priors which facilitate the face super-resolution
branch. Specifically, the 3D facial priors contain rich hierarchical features, such as
low-level (e.g., sharp edge and illumination) and perception level (e.g., identity)
information. Then, a spatial attention module is employed to adaptively inte-
grate the 3D facial prior into the network, in which we employ a spatial feature
transform (SFT) [34] to generate affine transformation parameters for spatial
feature modulation. Afterwards, it encourages the network to learn the spatial
inter-dependencies of features between 3D facial priors and input images after
adding the attention module into the network. As shown in Fig. 1, by embedding
the 3D rendered face priors, our algorithm generates clearer and sharper facial
structures without any ghosting artifacts compared with other 2D prior-based
methods.

The main contributions of this paper are:

• A novel face SR model is proposed by explicitly exploiting facial structure
in the form of facial prior estimation. The estimated 3D facial prior provides
not only spatial information of facial components but also their 3D visibility
information, which is ignored by the pixel-level content and 2D priors (e.g.,
landmark heatmaps and parsing maps).

• To well adapt to the 3D reconstruction of low-resolution face images, we
present a new skin-aware loss function projecting the constructed 3D coeffi-
cients onto the rendered images. In addition, we use a feature fusion-based
network to better extract and integrate the face rendered priors by employing
a spatial attention module.

• Our proposed 3D facial prior has a high flexibility because its modular struc-
ture allows for easy plug-in of any SR methods (e.g., SRCNN and VDSR).
We qualitatively and quantitatively evaluate the proposed algorithm on multi-
scale face super-resolution, especially at very low input resolutions. The pro-
posed network achieves better SR criteria and superior visual quality com-
pared to state-of-the-art face SR methods.

2 Related Work

Face hallucination relates closely to the natural image super-resolution problem.
In this section, we discuss recent research on super-resolution and face halluci-
nation to illustrate the necessary context for our work.
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Super-Resolution Neural Networks. Recently, neural networks have
demonstrated a remarkable capability to improve SR results. Since the pioneer-
ing network [7] demonstrates the effectiveness of CNN to learn the mapping
between LR and HR pairs, a lot of CNN architectures have been proposed for
SR [8,12,18,19,30,31]. Most of the existing high-performance SR networks have
residual blocks [17] to go deeper in the network architecture, and achieve better
performance. EDSR [22] improved the performance by removing unnecessary
batch normalization layers in residual blocks. A residual dense network (RDN)
[43] was proposed to exploit the hierarchical features from all the convolutional
layers. Zhang et al. [42] proposed the very deep residual channel attention net-
works (RCAN) to discard abundant low-frequency information which hinders
the representational ability of CNNs. Wang et al.[34] used a spatial feature
transform layer to introduce the semantic prior as an additional input of the
SR network. Huang et al. [14] presented a wavelet-based CNN approach that
can ultra-resolve a very low-resolution face image in a unified framework. Lian
et al. [21] proposed a Feature-Guided Super-Resolution Generative Adversar-
ial Network (FG-SRGAN) for unpaired image super-resolution. However, these
networks require a lot of time to train the massive parameters to obtain good
results. In our work, we largely decrease the training parameters, but still achieve
superior performance in the SR criteria (SSIM and PSNR) and visible quality.

Facial Prior Knowledge. Exploiting facial priors in face hallucination, such
as spatial configuration of facial components [29], is the key factor that differ-
entiates it from generic super-resolution tasks. There are some face SR methods
that use facial prior knowledge to super-resolve LR faces. Wang and Tang [33]
learned subspaces from LR and HR face images, and then reconstructed an
HR output from the PCA coefficients of the LR input. Liu et al. [23] set up a
Markov Random Field (MRF) to reduce ghosting artifacts because of the mis-
alignments in LR images. However, these methods are prone to generating severe
artifacts, especially with large pose variations and misalignments in LR images.
Yu and Porikli [38] interweaved multiple spatial transformer networks [15] with
the deconvolutional layers to handle unaligned LR faces. Dahl et al. [5] leveraged
the framework of PixelCNN [26] to super-resolve very low-resolution faces. Zhu
et al. [47] presented a cascade bi-network, dubbed CBN, to localize LR facial
components first and then upsample the facial components; however, CBN may
produce ghosting faces when localization errors occur. Recently, Yu et al. [35]
used a multi-task convolutional neural network (CNN) to incorporate structural
information of faces. Grm et al. [10] built a face recognition model that acts as
identity priors for the super-resolution network during training. Yu et al. [4] con-
structed an end-to-end SR network to incorporate the facial landmark heatmaps
and parsing maps. Kim et al. [16] proposed a compressed version of the face
alignment network (FAN) to obtain landmark heatmaps for the SR network in a
progressive method. However, existing face SR algorithms only employ 2D priors
without considering high-dimensional information (3D). In this paper, we exploit
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the 3D face reconstruction branch to extract the 3D facial structure, detailed
edges, illumination, and identity priors to guide face image super-resolution.

3D Face Reconstruction. The 3D shapes of facial images can be restored
from unconstrained 2D images by the 3D face reconstruction. In this paper, we
employ the 3D Morphable Model (3DMM) [1,2,6] based on the fusion of para-
metric descriptions of face attributes (e.g., gender, identity, and distinctiveness)
to reconstruct the 3D facial priors. The 3D reconstructed face will inherit the
facial features and present the clear and sharp facial components.

Fig. 2. The proposed face super-resolution architecture. Our model consists of two
branches: the top block is a ResNet-50 Network to extract the 3D facial coefficients
and restore a sharp face rendered structure. The bottom block is dedicated to face
super-resolution guided by the facial coefficients and rendered sharp face structures
which are concatenated by the Spatial Feature Transform (SFT) layer.

Closest to ours is the work of Ren et al. [28] which utilizes the 3D priors
in the task of face video deblurring. Our method differs in several important
ways. First, instead of simple priors concatenation, we employ the Spatial Fea-
ture Transform Block to incorporate the 3D priors in the intermediate layer by
adaptively adjusting the modulation parameter pair. Specifically, the outputs of
the SFT layer are adaptively controlled by the modulation parameter pair by
applying an affine transformation spatially to each intermediate feature map.
Second, the attention mechanism is embedded into the network as a guide to
bias the allocation of most informative components and the interdependency
between the 3D priors and input.

3 The Proposed Method

The proposed face super-resolution framework presented in Fig. 2 consists of two
branches: the 3D rendering network to extract the facial prior and the spatial
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attention module aiming to exploit the prior for the face super-resolution prob-
lem. Given a low-resolution face image, we first use the 3D rendering branch to
extract the 3D face coefficients. Then a high-resolution rendered image is gen-
erated using the 3D coefficients and regarded as the high-resolution facial prior
which facilitates the face super-resolving process in the spatial attention module.

3.1 Motivations and Advantages of 3D Facial Priors

Existing face SR algorithms only employ 2D priors without considering high
dimensional information (3D). The 3D morphable facial priors are the main
novelty of this work and are completely different from recently related 2D prior
works (e.g., the parsing maps and facial landmark heatmaps by FSRNet [4] and
the landmark heatmap extraction by FAN [16]). The 3D coefficients contain
abundant hierarchical knowledge, such as identity, facial expression, texture,
illumination, and face pose. Furthermore, in contrast with the 2D landmark-
based priors whose attentions only lie at the distinct points of facial landmarks
that may lead to the facial distortions and artifacts, our 3D priors are explicit and
visible, and can generate the realistic and robust HR results, greatly reducing
artifacts even for large pose variations and partial occlusions.

(a) LR inputs (b) Rendered priors (c) Ground truth (d) LR inputs (e) Rendered priors (f) Ground truth

Fig. 3. The rendered priors from our method. (a) and (d) low-resolution inputs. (b)
and (e) our rendered face structures. (c) and (f) ground-truths. As shown, the recon-
structed facial structures provide clear spatial locations and sharp visualization of facial
components even for large pose variations (e.g., left and right facial pose positions) and
partial occlusions.

Given low-resolution face images, the generated 3D rendered reconstructions
are shown in Fig. 3. The rendered face predictions contain the clear spatial knowl-
edge and sharp visual quality of facial components which are close to the ground-
truth, even in images containing large pose variations as shown in the second row
of Fig. 3. Therefore, we concatenate the reconstructed face image as an additional
feature in the super-resolution network. The face expression, identity, texture,
the element-concatenation of illumination, and face pose are transformed into
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four feature maps and fed into the spatial feature transform block of the super-
resolution network.

For real-world applications of the 3D face morphable model, there are typical
problems to overcome, including large pose variations and partial occlusions. As
shown in the supplementary material, the morphable model can generate realistic
reconstructions of large pose variations, which contain faithful visual quality of
facial components. The 3D model is also robust and accurately restores the
rendered faces partially occluded by glasses, hair, etc. In comparison with other
SR algorithms which are blind to unknown degradation types, our 3D model
can robustly generate the 3D morphable priors to guide the SR branch to grasp
the clear spatial knowledge and facial components, even for complicated real-
world applications. Furthermore, our 3D priors can be plugged into any network
and largely improve the performance of existing SR networks (e.g., SRCNN and
VDSR demonstrated in Sect. 5).

3.2 Formulation of 3D Facial Priors

It is still a challenge for state-of-the-art edge prediction methods to acquire very
sharp facial structures from low-resolution images. Therefore, a 3DMM-based
model is proposed to localize the precise facial structure by generating the 3D
facial images which are constructed by the 3D coefficient vector. In addition,
there exist large face pose variations, such as in-plane and out-of-plane rotations.
A large amount of data is needed to learn the representative features varying
with the facial poses. To address this problem, an inspiration came from the
idea that the 3DMM coefficients can analytically model the pose variations with
a simple mathematical derivation [2,6] and do not require a large training set.
As such, we utilize a face rendering network based on ResNet-50 to regress a
face coefficient vector. The output of the ResNet-50 is the representative feature
vector of x = (α,β, δ,γ,ρ) ∈ R

239, where α ∈ R
80,β ∈ R

64, δ ∈ R
80,γ ∈ R

9,
and ρ ∈ R

6 represent the identity, facial expression, texture, illumination, and
face pose [6], respectively.

According to the Morphable model [1], we transform the face coefficients to
a 3D shape S and texture T of the face image as

S = S(α,β) = S + Bidα + Bexpβ, (1)

and
T = T(δ) = T + Btδ, (2)

where S and T are the average values of face shape and texture, respectively.
Bt, Bid, and Bexp denote the base vectors of texture, identity, and expression
calculated by the PCA method. We set up the illumination model by assuming a
Lambertian surface for faces, and estimate the scene illumination with Spherical
Harmonics (SH) [27] to derive the illumination coefficient γ ∈ R

9. The 3D face
pose ρ ∈ R

6 is represented by rotation R ∈ SO(3) and translation t ∈ R
3.
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To stabilize the rendered faces, a modified L2 loss function for the 3D face
reconstruction is presented based on a paired training set

�r =
1
L

L∑

j=1

∑
i∈M Ai

∥∥Iij − Ri
j(B(x))

∥∥
2∑

i∈M Ai
, (3)

where j is the paired image index, L is the total number of training pairs, i
and M denote the pixel index and face region, respectively, I represents the
sharp image, and A is a skin color based attention mask obtained by training
a Bayes classifier with Gaussian Mixture Models [6]. In addition, x represents
the LR (input) images, B(x) denotes the regressed coefficients obtained by the
ResNet-50 with input x as input, and finally R denotes the image rendered with
the 3D coefficients B(x). Rendering is the process to project the constructed 3D
face onto the 2D image plane with the regressed pose and illumination. We use
a ResNet-50 network to regress these coefficients by modifying the last fully-
connected layer to 239 neurons (the same number of the coefficient parameters).

Fig. 4. The structure of the SFT layer. The rendered faces and feature vectors are
regarded as the guidance for face super-resolution.

Coefficient Feature Transformation. Our 3D face priors consist of two parts:
one directly from the rendered face region (i.e., the RGB input), and the other
from the feature transformation of the coefficient parameters. The coefficient
parameters α,β, δ,γ,ρ represent the identity, facial expression, texture, illumi-
nation, and face pose priors, respectively. The coefficient feature transformation
procedure is described as follows: firstly, the coefficients of identity, expression,
texture, and the element-concatenation of illumination and face pose (γ + ρ)
are reshaped to four matrices by setting extra elements to zeros. Afterwards,
these four matrices are expanded to the same size as the LR images (16 × 16
or 32 × 32) by zero-padding, and then scaled to the interval [0,1]. Finally, the
coefficient features are concatenated with the priors of the rendered face images.

3.3 Spatial Attention Module

To exploit the 3D face rendered priors, we propose a Spatial Attention Module
(SAM) to grasp the precise locations of face components and the facial identity.
The proposed SAM consists of three parts: a spatial feature transform block, a
residual channel attention block, and an upscale block.
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Spatial Feature Transform Block. The 3D face priors (rendered faces and
coefficient features) are imported into the spatial attention transform block [34]
after a convolutional layer. The structure of the spatial feature transform layer
is shown in Fig. 4. The SFT layer learns a mapping function Θ that provides a
modulation parameter pair (μ, ν) according to the priors ψ, such as segmentation
probability. Here, the 3D face priors are taken as the input. The outputs of
the SFT layer are adaptively controlled by the modulation parameter pair by
applying an affine transformation spatially to each intermediate feature map.
Specifically, the intermediate transformation parameters (μ, ν) are derived from
the priors ψ by the mapping function:

(μ, ν) = Θ(ψ), (4)

The intermediate feature maps are modified by scaling and shifting feature maps
according to the transformation parameters:

SFT (F |μ,ν) = μ ⊗ F + ν, (5)

where F denotes the feature maps, and ⊗ indicates element-wise multiplication.
At this step, the SFT layer implements the spatial-wise transformation.

Residual Channel Attention Block. An attention mechanism can be viewed
as a guide to bias the allocation of available processing resources towards the
most informative components of the input [13]. Consequently, the channel mech-
anism is presented to explore the most informative components and the inter-
dependency between the channels. Inspired by the residual channel network [42],
the attention mechanism is composed of a series of residual channel attention
blocks (RCAB) shown in Fig. 2. For the b-th block, the output Fb of RCAB is
obtained by:

Fb = Fb−1 + Cb(Xb) · Xb , (6)

where Cb denotes the channel attention function. Fb−1 is the block’s input,
and Xb is calculated by two stacked convolutional layers. The upscale block is
progressive deconvolutional layers (also known as transposed convolution).

4 Experimental Results

To evaluate the performances of the proposed face super-resolution network,
we qualitatively and quantitatively compare our algorithm against nine start-
of-the-art super-resolution and face hallucination methods including: the Very
Deep Super Resolution Network (VDSR) [17], the Very Deep Residual Chan-
nel Attention Network (RCAN) [42], the Residual Dense Network (RDN) [43],
the Super-Resolution Convolutional Neural Network (SRCNN) [7], the Trans-
formative Discriminative Autoencoder (TDAE) [38], the Wavelet-based CNN
for Multi-scale Face Super Resolution (Wavelet-SRNet) [14], the deep end-to-
end trainable face SR network (FSRNet) [4], face SR generative adversarial
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network (FSRGAN) [4] incorporating the 2D facial landmark heatmaps and
parsing maps, and the progressive face Super Resolution network via face align-
ment network (PSR-FAN) [16] using 2D landmark heatmap priors. We use the
open-source implementations from the authors and train all the networks on
the same dataset for a fair comparison. For simplicity, we refer to the proposed
network as Spatial Attention Module guided by 3D priors, or SAM3D. In addi-
tion, to demonstrate the plug-in characteristic of the proposed 3D facial priors,
we propose two models of SRCNN+3D and VDSR+3D by embedding the 3D
facial prior as an extra input channel to the basic backbone of SRCNN [7] and
VDSR [17]. The implementation code will be made available to the public. More
analyses and results can be found in the supplementary material.

4.1 Datasets and Implementation Details

CelebA [25] and Menpo [40] datasets are used to verify the performance of the
algorithm. The training phase uses 162,080 images from the CelebA dataset. In
the testing phase, 40,519 images from the CelebA test set are used along with the
large-pose-variation test set from the Menpo dataset. The every facial pose test
set of Menpo (left, right and semi-frontal) contains 1000 images, respectively. We
follow the protocols of existing face SR methods (e.g., [4,16,35,36]) to generate
the LR input by the bicubic downsampling method. The HR ground-truth images
are obtained by center-cropping the facial images and then resizing them to
the 128 × 128 pixels. The LR face images are generated by downsampling HR
ground-truths to 32× 32 pixels (×4 scale) and 16 × 16 pixels (×8 scale). In our
network, the ADAM optimizer is used with a batch size of 64 for training, and
input images are center-cropped as RGB channels. The initial learning rate is
0.0002 and is divided by 2 every 50 epochs. The whole training process takes 2
days with an NVIDIA Titan X GPU.

4.2 Quantitative Results

Quantitative evaluation of the network using PSNR and the structural similarity
(SSIM) scores for the CelebA test set is listed in Table 1. Furthermore, to analyze
the performance and stability of the proposed method with respect to large face
pose variations, three cases corresponding to different face poses (left, right, and
semifrontal) of the Menpo test data are listed in Table 2.

CelebA Test: As shown in Table 1, VDSR+3D (the basic VDSR model [17]
guided by the proposed 3D facial priors) achieves significantly better results
(1 dB higher than the remaining best method and 2 dB higher than the basic
VDSR method in ×8 SR) even for the large-scale parameter methods, such as
RDN and RCAN. It is worth noting that VDSR+3D still performs slightly worse
than the proposed algorithm of SAM3D. These results demonstrate that the pro-
posed 3D priors make a significant contribution to the performance improvement
(average 1.6 dB improvement) of face super-resolution. In comparison with 2D
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Bicubic VDSR RCAN RDN Wavelet Ground truthSRCNNVDSR+3D Ours

Fig. 5. Comparison of state-of-the-art methods: magnification factors ×4 and the input
resolution 32× 32. Our algorithm is able to exploit the regularity present in face regions
rather than other methods. Best viewed by zooming in on the screen.

Bicubic VDSR

RCAN

RDN TDAE

Wavelet Ours Ground truth

SRCNNVDSR+3D

Bicubic

Ours Ground truth

VDSR+3D SRCNNRDN

RCAN

VDSR TDAE

Wavelet

SRCNN+3D

PSR-FAN FSR-GAN FSR-Net

SRCNN+3D

PSR-FAN FSR-GAN FSR-Net

Fig. 6. Comparison with state-of-the-art methods: magnification factors ×8 and the
input resolution 16× 16. Best viewed by zooming in on the screen.
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Table 1. Quantitative results on the CelebA test dataset. The best results are high-
lighted in bold.

– CelebA

Scale ×4 ×8

PSNR SSIM PSNR SSIM

Bicubic 27.16 0.8197 21.90 0.6213

VDSR [17] 28.13 0.8554 22.76 0.6618

RCAN [42] 29.04 0.8643 23.26 0.7362

RDN [43] 29.06 0.8650 23.69 0.7484

SRCNN [7] 27.57 0.8452 22.51 0.6659

TDAE [38] – – 20.10 0.5802

Wavelet-SRNet [14] 28.42 0.8698 23.08 0.7147

FSRGAN [4] – – 22.27 0.6010

FSRNet [4] – – 22.62 0.6410

PSR-FAN [16] – – 22.66 0.6850

VDSR+3D 29.29 0.8727 24.66 0.7127

Ours 29.69 0.8817 25.39 0.7551

Table 2. Quantitative results of different large facial pose variations (e.g., left, right,
and semifrontal) on the Menpo test dataset. The best results are highlighted in bold.

– Menpo

Scale ×4 ×8

Pose Left Right Semi-frontal Left Right Semi-frontal

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 26.36 0.7923 26.19 0.7791 24.92 0.7608 22.09 0.6423 21.99 0.6251 20.68 0.5770

VDSR [17] 26.99 0.8024 26.85 0.7908 25.63 0.7794 22.28 0.6315 22.20 0.6163 20.98 0.5752

RCAN

[42]

27.47 0.8259 27.27 0.8145 26.11 0.8080 21.94 0.6543 21.87 0.6381 20.60 0.5938

RDN [43] 27.39 0.8263 27.21 0.8150 26.06 0.8088 22.30 0.6706 22.24 0.6552 21.02 0.6160

SRCNN

[7]

26.92 0.8038 26.74 0.7913 25.50 0.7782 22.38 0.6408 22.32 0.6272 21.08 0.5857

TDAE [38] – – – – – – 21.22 0.5678 20.22 0.5620 19.88 0.5521

Wavelet-

SRNet

[14]

26.97 0.8122 26.81 0.8001 25.72 0.7945 21.86 0.6360 21.72 0.6166 20.57 0.5779

FSRGAN

[4]

– – – – – – 23.00 0.6326 22.84 0.6173 22.00 0.5938

FSRNet

[4]

– – – – – – 23.56 0.6896 23.43 0.6712 22.03 0.6382

PSR-FAN

[16]

– – – – – – 22.04 0.6239 21.89 0.6114 20.88 0.5711

VDSR+3D 28.62 0.8439 28.89 0.8326 26.99 0.8236 23.45 0.6845 23.25 0.6653 21.83 0.6239

Ours 28.98 0.8510 29.29 0.8408 27.29 0.8332 23.80 0.7071 23.57 0.6881 22.15 0.6501
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Bicubic VDSR VDSR+3D RDN SRCNN SRCNN+3D TDAE
PSNR/SSIM: 17.02/0.4059 19.08/0.4860 16.72/0.4405 17.02/0.4158 18.69/0.4457 11.62/0.1666

Wavelet RCAN PSR-FAN FSR-GAN FSR-Net Ours Ground truth
16.06/0.3732 16.17/0.4004 16.96/0.3923 18.39/0.4515 19.26/0.5043 19.47/0.5381 -

Fig. 7. Visual comparison with state-of-the-art methods (×8). The results by the pro-
posed method have fewer artifacts on face components (e.g., eyes, mouth, and nose).

(a) Input
PSNR/SSIM

 (b) w/o rend
30.26/0.643

(c) w/o SAM        
31.31/0.728

(d) Ours
32.14/0.787

(f) w/o rend
30.76/0.706

(g) w/o SAM
31.47/0.750

(h) Ours
31.91/0.772

(e) Input
PSNR/SSIM

Fig. 8. Ablation study results: Comparisons between our proposed model with different
configurations, with PSNR and SSIM relative to the ground truth. (a) and (e) are the
inputs. (b) and (f) are the SR results without using the rendered priors. (c) and (g) are
the SR results without the Spatial Attention Module. (d) and (h) are our SR results.

priors based methods (e.g., FSRNet and PSR-FAN), our algorithm performs
much better (2.73 dB higher than PSR-FAN and 2.78 dB higher than FSRNet).

Menpo Test: To verify the effectiveness and stability of the proposed network
towards face pose variations, the quantitative results on the dataset with large
pose variations are reported in Table 2. While ours (SAM3D) is the best method
superior than the others, VDSR+3D also achieves 1.8 dB improvement compared
with the basic VDSR method in the ×4 magnification factor. Our 3D facial priors
based method is still the most effective approach to boost the SR performance
compared with 2D heatmaps and parsing maps priors.

4.3 Qualitative Evaluation

The qualitative results of our methods at different magnifications (×4 and ×8)
are shown respectively in Figs. 5 and 6. It can be observed that our proposed
method recovers clearer faces with finer component details (e.g., noses, eyes,
and mouths). The outputs of most methods (e.g., PSR-FAN, RCAN, RDN, and
Wavelet-SRNet) contain some artifacts around facial components such as eyes
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SRCNN VDSR VDSR+3D Ours (SAM3D)LR input SRCNN+3D

Fig. 9. Qualitative evaluation with different ablation configurations: SRCNN+3D and
VDSR+3D denote the basic method (SRCNN and VDSR) incorporating the 3D facial
priors; Ours (SAM3D) means the Spatial Attention Module incorporating the 3D facial
priors. Our 3D priors enable the basic methods to avoid some artifacts around the key
facial components and to generate sharper edges.

and nose, as shown in Figs. 1 and 7, especially when facial images are partially
occluded. After adding the rendered face priors, our results show clearer and
sharper facial structures without any ghosting artifacts, which illustrates that
the proposed 3D priors help the network understand the spatial location and the
entire face structure and largely avoid the artifacts and significant distortions
in facial attributes which are common in facial landmark priors, because the
attention is applied merely to the distinct points of facial landmarks.

5 Analyses and Discussions

Ablation Study: In this section, we conduct an ablation study to demon-
strate the effectiveness of each module. We compare the proposed network with
and without using the rendered 3D face priors and the Spatial Attention Mod-
ule (SAM) in terms of PSNR and SSIM on the ×8 scale test data. As shown in
Fig. 8(b) and (f), the baseline method without using the rendered faces and SAM
tends to generate blurry faces that cannot capture sharp structures. Figure 8(c)
and (g) show clearer and sharper facial structures after adding the 3D ren-
dered priors. By using both SAM and 3D priors, the visual quality is further
improved in Fig. 8(d) and (h). The quantitative comparisons between (VDSR,
our VDSR+3D, and our SAM3D) in Tables 1 and 2 also illustrate the effective-
ness of the proposed rendered priors and the spatial attention module.
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To verify the advantage of 3D facial structure priors in terms of the conver-
gence and accuracy, three different configurations are designed: basic methods
(i.e., SRCNN [7] and VDSR [17]); basic methods incorporating 3D facial pri-
ors (i.e., SRCNN+3D and VDSR+3D); the proposed method using the Spatial
Attention Module and 3D priors (SAM3D). The validation accuracy curve of
each configuration along the epochs is plotted to show the effectiveness of each
block. The priors are easy to insert into any network. They only marginally
increase the number of parameters, but significantly improve the accuracy and
convergence of the algorithms as shown in Supplementary Fig. 3. The basic meth-
ods of SRCNN and VDSR incorporating the facial rendered priors tend to avoid
some artifacts around key facial components and generate sharper edges com-
pared to the baseline methods without the facial priors. By adding the Spa-
tial Attention Module, it helps the network better exploit the priors and easily
enables to generate sharper facial structures as shown in Fig. 9.

Results on Real-World Images: For real-world LR images, we provide the
quantitative and qualitative analysis on 500 LR faces from the WiderFace (x4)
dataset in Supplementary Table 1 and Fig. 1.

Model Size and Running Time: We evaluate the proposed method and
STOA SR methods on the same server with an Intel Xeon W-2123 CPU and an
NVIDIA TITAN X GPU. Our proposed SAM3D, embedded with 3D priors, are
more lightweight and less time-consuming, shown in Supplementary Fig. 2.

6 Conclusions

In this paper, we proposed a face super-resolution network that incorporates
the novel 3D facial priors of rendered faces and multi-dimensional knowledge.
In the 3D rendered branch, we presented a face rendering loss to encourage a
high-quality guided image providing clear spatial locations of facial components
and other hierarchical information (i.e., expression, illumination, and face pose).
Compared with the existing 2D facial priors whose attentions are focused on the
distinct points of landmarks which may result in face distortions, our 3D priors
are explicit, visible and highly realistic, and can largely decrease the occurrence
of face artifacts. To well exploit 3D priors and consider the channel correlation
between priors and inputs, we employed the Spatial Feature Transform and
Attention Block. The comprehensive experimental results have demonstrated
that the proposed method achieves superior performance and largely decreases
artifacts in contrast with the SOTA methods.
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10. Grm, K., Scheirer, W., Štruc, V.: Face hallucination using cascaded super-
resolution and identity priors. TIP 29, 2150–2165 (2019)

11. Han, C., Shan, S., Kan, M., Wu, S., Chen, X.: Face recognition with contrastive
convolution. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018. LNCS, vol. 11213, pp. 120–135. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01240-3 8

12. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back projection networks for super-
resolution. In: CVPR (2018)

13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)
14. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-SRNet: a wavelet-based CNN for

multi-scale face super resolution. In: ICCV (2017)
15. Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In:

NIPS (2015)
16. Kim, D., Kim, M., Kwon, G., Kim, D.: Progressive face super-resolution via atten-

tion to facial landmark. In: BMVC (2019)
17. Kim, J., Lee, J., Lee, K.: Accurate image super-resolution using very deep convo-

lutional networks. In: CVPR (2016)
18. Kim, J., Lee, J., Lee, K.: Deeply recursive convolutional network for image super-

resolution. In: CVPR (2016)
19. Lai, W., Huang, J., Ahuja, N., Yang, M.: Deep Laplacian pyramid networks for

fast and accurate super-resolution. In: CVPR (2017)
20. Li, Z., Tang, J., Zhang, L., Yang, J.: Weakly-supervised semantic guided hashing for

social image retrieval. Int. J. Comput. Vision 128(8), 2265–2278 (2020). https://
doi.org/10.1007/s11263-020-01331-0

21. Lian, S., Zhou, H., Sun, Y.: A feature-guided super-resolution generative adversar-
ial network for unpaired image super-resolution. In: NIPS (2019)

22. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.: Enhanced deep residual networks for
single image super-resolution. In: CVPRW, pp. 1646–1654 (2017)

https://doi.org/10.1007/978-3-319-46475-6_25
https://doi.org/10.1007/978-3-319-46475-6_25
https://doi.org/10.1007/978-3-030-01240-3_8
https://doi.org/10.1007/978-3-030-01240-3_8
https://doi.org/10.1007/s11263-020-01331-0
https://doi.org/10.1007/s11263-020-01331-0


Face Super-Resolution Guided by 3D Facial Priors 779

23. Liu, C., Shum, H., Freeman, W.: Face hallucination: theory and practice.
Int. J. Comput. Vision 75(1), 115–134 (2007). https://doi.org/10.1007/s11263-
006-0029-5

24. Liu, W., Lin, D., Tang, X.: Hallucinating faces: TensorPatch super-resolution and
coupled residue compensation. In: CVPR (2005)

25. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
ICCV (2015)

26. Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In:
ICML (2016)

27. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance envi-
ronment maps. In: SIGGRAPH Annual Conference on Computer Graphics and
Interactive Techniques, pp. 497–500 (2001)

28. Ren, W., Yang, J., Deng, S., Wipf, D., Cao, X., Tong, X.: Face video deblurring
via 3D facial priors. In: ICCV (2019)

29. Shen, Z., Lai, W., Xu, T., Kautz, J., Yang, M.: Deep semantic face deblurring. In:
CVPR (2018)

30. Shi, W., et al.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: CVPR (2016)

31. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual net-
work. In: CVPR (2017)

32. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face:
real-time face capture and reenactment of RGB videos. In: CVPR (2016)

33. Wang, X., Tang, X.: Hallucinating face by eigen transformation. Trans. Syst. Man
Cybern. C 35(3), 425–434 (2005)

34. Wang, X., Yu, K., Dong, C., Loy, C.: Recovering realistic texture in image super-
resolution by deep spatial feature transform. In: CVPR (2018)

35. Yu, X., Fernando, B., Ghanem, B., Porikli, F., Hartley, R.: Face super-resolution
guided by facial component heatmaps. In: Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 219–235. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01240-3 14

36. Yu, X., Fernando, B., Hartley, R., Porikli, F.: Super-resolving very low-resolution
face images with supplementary attributes. In: CVPR (2018)

37. Yu, X., Porikli, F.: Ultra-resolving face images by discriminative generative net-
works. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9909, pp. 318–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46454-1 20

38. Yu, X., Porikli, F.: Hallucinating very low-resolution unaligned and noisy face
images by transformative discriminative autoencoders. In: CVPR (2017)

39. Yu, X., Porikli, F.: Imagining the unimaginable faces by deconvolutional networks.
TIP 27(6), 2747–2761 (2018)

40. Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J., Shen, J.: The menpo facial
landmark localisation challenge: a step towards the solution. In: CVPRW (2017)

41. Zhang, K., et al.: Super-identity convolutional neural network for face hallucina-
tion. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11215, pp. 196–211. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01252-6 12

42. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution
using very deep residual channel attention networks. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2 18

https://doi.org/10.1007/s11263-006-0029-5
https://doi.org/10.1007/s11263-006-0029-5
https://doi.org/10.1007/978-3-030-01240-3_14
https://doi.org/10.1007/978-3-319-46454-1_20
https://doi.org/10.1007/978-3-319-46454-1_20
https://doi.org/10.1007/978-3-030-01252-6_12
https://doi.org/10.1007/978-3-030-01252-6_12
https://doi.org/10.1007/978-3-030-01234-2_18


780 X. Hu et al.

43. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image
super-resolution. In: CVPR (2018)

44. Zhao, J., Xiong, L., Li, J., Xing, J., Yan, S., Feng, J.: 3D-aided dual-agent GANs
for unconstrained face recognition. TPAMI 41, 2380–2394 (2019)

45. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature
survey. ACM Comput. Surv. (CSUR) 35(4), 399–458 (2003)

46. Zhou, E., Fan, H.: Learning face hallucination in the wild. In: AAAI (2015)
47. Zhu, S., Liu, S., Loy, C.C., Tang, X.: Deep cascaded bi-network for face halluci-

nation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9909, pp. 614–630. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46454-1 37

https://doi.org/10.1007/978-3-319-46454-1_37
https://doi.org/10.1007/978-3-319-46454-1_37

	Face Super-Resolution Guided by 3D Facial Priors
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Motivations and Advantages of 3D Facial Priors
	3.2 Formulation of 3D Facial Priors
	3.3 Spatial Attention Module

	4 Experimental Results
	4.1 Datasets and Implementation Details
	4.2 Quantitative Results
	4.3 Qualitative Evaluation

	5 Analyses and Discussions
	6 Conclusions
	References




