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Abstract. For relocalization in large-scale point clouds, we propose the
first approach that unifies global place recognition and local 6DoF pose
refinement. To this end, we design a Siamese network that jointly learns
3D local feature detection and description directly from raw 3D points. It
integrates FlexConv and Squeeze-and-Excitation (SE) to assure that the
learned local descriptor captures multi-level geometric information and
channel-wise relations. For detecting 3D keypoints we predict the dis-
criminativeness of the local descriptors in an unsupervised manner. We
generate the global descriptor by directly aggregating the learned local
descriptors with an effective attention mechanism. In this way, local and
global 3D descriptors are inferred in one single forward pass. Experiments
on various benchmarks demonstrate that our method achieves compet-
itive results for both global point cloud retrieval and local point cloud
registration in comparison to state-of-the-art approaches. To validate the
generalizability and robustness of our 3D keypoints, we demonstrate that
our method also performs favorably without fine-tuning on the registra-
tion of point clouds that were generated by a visual SLAM system. Code
and related materials are available at https://vision.in.tum.de/research/
vslam/dh3d.
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1 Introduction

Relocalization within an existing 3D map is a critical functionality for numerous
applications in robotics [3] and autonomous driving [35,53]. A common strategy
is to split the problem into two subtasks, namely global place recognition and
local 6DoF pose refinement. A lot of effort has been focused on tackling the
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Fig. 1. Left: We propose a hierarchical network for large-scale point cloud based relo-
calization. The network consumes raw 3D points and performs local feature detec-
tion, description and global descriptor extraction in one forward pass. The global
descriptor is used to retrieve similar scenes from the database. Accurate 6DoF pose is
then obtained by matching the local features. Right: Our local descriptors trained on
LiDAR points work favorably on the sparse point clouds generated by a visual SLAM
method without fine-tuning. The point clouds are generated from sequences with dif-
ferent weathers, lighting conditions and scene layouts, thus have significantly different
distributions.

problem using 2D images [6,44,46,51], where the 3D maps are usually defined
as image feature points reconstructed in 3D using Structure from Motion (SfM).
The coarse global place recognition is achieved by image retrieval, whereas accu-
rate local 6DoF pose refinement is addressed separately by feature matching and
PnP. With the progress of deep learning for image descriptor extraction [2,19]
and 2D keypoints detection/description [14,15,40,60], image based methods
have significantly gained in robustness to variations in viewpoint and illumi-
nation.

Alternatively one can tackle these variations by working on 3D point clouds
since these are inherently invariant to such issues. Moreover, there exist numer-
ous SLAM pipelines that generate accurate large-scale point clouds using sensory
input from LiDAR [13,63,64] or camera [17,55]. While there is great potential
to rely on such data, research on point cloud based relocalization is signifi-
cantly less matured compared to the image-based counterpart [15,40]. Espe-
cially, deep learning on 3D descriptors emerged only roughly 3 years ago. With
most of the early attempts focusing on small-scale tasks like object classifica-
tion, detection and segmentation [28,37,39,57,68], only a limited number of
networks have been proposed for large-scale localization [30,31,58]. Moreover,
among these few attempts, global place recognition [1,65] and local 6DoF pose
refinement [8,18,23] have been addressed isolatedly, despite the fact that both
tasks depend on the same low level geometric clues.

In this paper, we propose a hierarchical deep network for large-scale point
clouds based relocalization – see Fig. 1. The network directly consumes unordered
3D points and performs keypoint detection and description, as well as global
point cloud descriptor extraction in a unified manner. In contrast to the
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conventional detect-then-describe pipeline, our local features are learned with the
detect-and-describe concept. We estimate a confidence map of the discriminative-
ness of local features explicitly and learn to select keypoints that are well-suited
for matching in an unsupervised manner. The local features are aggregated into
a global descriptor for global retrieval, attaining a consistent workflow for large-
scale outdoor 6DoF relocalization. Our main contributions are summarized as
follows:

– We propose the first work that unifies point cloud based global place recogni-
tion and 6DoF pose refinement. Our method performs local feature detection
and description, as well as global descriptor extraction in one forward pass,
running significantly faster than previous methods.

– We propose to use FlexConv and SE block to integrate multi-level context
information and channel-wise relations into the local features, thus achieve
much stronger performance on feature matching and also boost the global
descriptor.

– We introduce a describe-and-detect approach to explicitly learn a 3D keypoint
detector in an unsupervised manner.

– Both our local and global descriptors achieve state-of-the-art performances
on point cloud registration and retrieval across multiple benchmarks.

– Furthermore, our local descriptors trained on LiDAR data show competitive
generalization capability when applied to the point clouds generated by a
visual SLAM method, even though LiDAR and visual SLAM point clouds
exhibit very different patterns and distributions.

2 Related Work

Handcrafted Local Descriptors encode local structural information as his-
tograms over geometric properties e.g., surface normals and curvatures. Spin
image (SI) [24] projects 3D points within a cylinder onto a 2D spin image. Unique
Shape Context (USC) [52] deploys a unique local reference frame to improve the
accuracy of the well-know 3D shape context descriptor. Point Feature Histogram
(PFH) [43] and Fast PFH (FPFH) [42] describe the relationships between a point
and its neighbors by calculating the angular features and normals. While these
handcrafted methods have made great progress, they generalize poorly to large-
scale scenarios and struggle to handle noisy real-world data.

Learned Local Descriptors. To cope with the inherent irregularity of point
cloud data, researchers have suggested to convert 3D points to regular repre-
sentations such as voxels and multi-view 3D images [38,47,49,50,54]. As a pio-
neering work, PointNet [37] proposed to apply deep networks directly to raw
3D points. Since then, new models [28,39,66] and flexible operators on irreg-
ular data [21,56,59] have been emerging. Accompanied by these progresses,
learning-based 3D local descriptors such as 3DMatch [62], PPFNet [11] and
PPF-FoldNet [10,12] have been proposed for segment matching, yet they are
designed for RGB-D based indoor applications. Recently, Fully Convolutional



DH3D: Deep Hierarchical 3D Descriptors for 6DoF Relocalization 747

Geometric Features (FCGF) [8] was proposed to extract geometric features from
3D points. Yet, all these methods do not tackle feature detection and get their
features rather by sampling. Another class of methods utilizes deep learning to
reduce the dimensions of the handcrafted descriptors, such as Compact Geomet-
ric Features (CGF) [25] and LORAX [16]. In the realm of large-scale outdoor
relocalization, 3DFeatNet [23] and L3-Net [31] extract local feature embedding
using PointNet, whereas 3DSmoothNet [18] and DeepVCP [30] rely on 3D CNNs.
In contrary to registration based on feature matching, DeepVCP and Deep Clos-
est Point [58] learn to locate the correspondences in the target point clouds.

3D Keypoint Detectors. There are three representative hand-crafted 3D
detectors. Intrinsic Shape Signatures (ISS) [67] selects salient points with large
variations along the principal axes. SIFT-3D [29] constructs a scale-space of the
curvature with the DoG operator. Harris-3D [48] calculates the Harris response
of each 3D vertex based on first order derivatives along two orthogonal directions
on the 3D surface. Despite the increasing number of learning-based 3D descrip-
tors, only a few methods have been proposed to learn to detect 3D keypoints.
3DFeatNet [23] and DeepVCP [30] use an attention layer to learn to weigh the
local descriptors in their loss functions. Recently, USIP [27] has been proposed
to specifically detect keypoints with high repeatability and accurate localization.
It establishes the current state of the art for 3D keypoint detectors.

Handcrafted Global Descriptors. Most 3D global descriptors describe places
with handcrafted statistical information. Rohling et al. [41] propose to describe
places by histograms of points elevation. Cop et al. [9] leverage LiDAR intensities
and present DELIGHT. Cao et al. [5] transform a point cloud to a bearing-angle
image and extract ORB features for bag-of-words aggregation.

Learned Global Descriptors. Granström et al. [20] describe point clouds
with rotation invariant features and input them to a learning-based classifier for
matching. LocNet [61] inputs range histogram features to 2D CNNs to learn a
descriptor. In these methods, deep learning essentially plays the role of post-
processing the handcrafted descriptors. Kim et al. [26] transform point clouds
into scan context images and feed them into CNNs for place recognition. Point-
NetVLAD [1] first tackles place recognition in an end-to-end way. The global
descriptor is computed by a NetVLAD [2] layer on top of the feature map
extracted using PointNet [37]. Following this, PCAN [65] learns attentions for
points to produce more discriminative descriptors. These two methods extract
local features using PointNet, which projects each point independently into a
higher dimension and thus does not explicitly use contextual information.

3 Hierarchical 3D Descriptors Learning

For large-scale relocalization, an intuitive approach is to tackle the problem
hierarchically in a coarse-to-fine manner: local descriptors are extracted, aggre-
gated into global descriptors for coarse place recognition, and then re-used
for accurate 6DoF pose refinement. While being widely adopted in image the
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Fig. 2. Left: the flow of local feature descriptor and detector learning. Right: the
architecture of our Local Feature Encoder. In Conv(D, K × K) and FlexConv(D, k,
d), D: output dimension, K: filter size, k: neighborhood size, d: dilation rate.

domain [33,44,45], this idea has not been addressed by the deep learning com-
munity for 3D. As a result, seeking for 6DoF relocalization for point clouds, one
has to perform local feature detection, description, global descriptor extraction
separately, possibly running an independent network for each. To address this
problem, we design a hierarchical network operating directly on a point cloud,
delivering local descriptors, a keypoint score map and a global descriptor in
a single forward pass. Point cloud based relocalization thus can be performed
hierarchically: a coarse search using the global descriptor retrieves 3D submap
candidates, which are subsequently verified by local 3D feature matching to esti-
mate the 6DoF poses. An overview of our system is provided in Fig. 1.

3.1 3D Local Feature Encoder and Detector

3DFeatNet [23] is a seminal work that learns both 3D local feature detection
and description. Nevertheless, the following two points potentially limit its dis-
criminative power: (1) Its detector is an attention map learned directly from the
input points. During inference descriptors are only extracted for the keypoints
defined by the attention map. Such classical detect-then-describe approach, as
discussed in [15,40], typically focuses on low-level structures of the raw input
data, and cannot utilize the high level information encoded in the descriptors. (2)
Its feature description is PointNet-based, the symmetric function of which tends
to provide only limited structural information of local clusters. To resolve these
limitations, we propose to use Flex Convolution (FlexConv) [21] and Squeeze-
and-Excitation (SE) block [22] to respectively fuse multi-level spatial contextual
information and channel-wise feature correlations into the local descriptors. The
describe-and-detect pipeline [15,40] is adopted to postpone our detection stage
to employ higher-level information in the learned descriptors.

FlexConv Layer. Considering a 3D point pl with its k neighbors Nk(pl) =
{pl1 , · · · ,plk

} as a graph G = (V, E), where V = {0, .., k} are the vertices and
E ⊆ V×V the edges. A 3D operator on an edge of this graph can be formulated as
ellk = fΘ(pl,plk

), with Θ the set of learnable parameters. As pointed out by [59],
PointNet is a special case of fΘ(pl,plk

) = fΘ(pl), thus encodes only global shape
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information and ignores the local neighborhood structure. In contrary, FlexConv
can be abstracted as fΘ(pl,plk

) = fΘ(pl − plk
,plk

), therefore can effectively
encode local information, which we believe is crucial for learning discriminative
local descriptors. Formally, FlexConv is a generalization of the conventional grid-
based convolution and is defined as:

fFlexConv(pl) =
∑

pli
∈Nk(pl)

ω(pli ,pl) · h(pli), (1)

where h(pli) ∈ R
C is a point-wise encoding function projecting a point to the

high-dimensional feature space. It is convolved with a filter-kernel ω : R3×R
3 →

R
C that is computed by the standard scalar product in the Euclidean space, with

learnable parameters θ ∈ R
C×3, θb ∈ R

C : w(pl,pli | θ, θb) = 〈θ,pl −pli〉+ θb. It
can be considered as a linear approximation of the traditional filter-kernel which
uses the location information explicitly. In addition, ω is everywhere well-defined
and allows us to perform back-propagation easily.

Squeeze-and-Excitation (SE) Block. While FlexConv models spatial con-
nectivity patterns, SE blocks [22] are further used to explicitly model the
channel-wise inter-dependencies of the output features from the FlexConv lay-
ers. Let U = {u1, · · · , uC} ∈ R

N×C denote the input feature map to the SE
block, where uc ∈ R

N represents the c-th channel vector of the output from the
last FlexConv layer. The squeeze operation first “squeezes” U into a channel-
wise descriptor z ∈ R

C as fsq : R
N×C → R

C , z = fsq(U), where fsq is
implemented as a global average pooling to aggregate across spatial dimensions.
z ∈ R

C is an embedding containing global information which is then processed
by the excitation operation fex : R

C → R
C , s = fex(z), where s ∈ R

C is
implemented as two fully connected layers with ReLU to fully capture channel-
wise dependencies and to learn a nonlinear relationship between the channels.
In the end, the learned channel activations are used to recalibrate the input
across channels achieving the attention selection of different channel-wise fea-
tures ũc = fscale(uc, sc) = sc · uc, where Ũ = {ũ1, · · · , ũC} refers to the output
of the SE block.

Encoder Architecture. The architecture of the encoder module is illustrated
in Fig. 2. In comparison to 3DFeatNet [23] which relies on PointNet and only
operates on one level of spatial granularity, our encoder extracts structural infor-
mation from two spatial resolutions. At each resolution, the following operations
are conducted: one 1×1 convolution, two consecutive FlexConv layers and a SE
block. Taking a point cloud P = {p1, · · · ,pN} ∈ R

N×3 as input, the encoder
fuses multi-level contextual information by adding the outputs from the two res-
olutions and produces the feature map Ψ . It is then L2-normalized to give us the
final local descriptor map χ = {x1, · · · ,xN} ∈ R

N×D. Benefited from the better
policies for integrating contextual information, when compared to 3DFeatNet,
our local features are much more robust to points densities and distributions,
thus generalize significantly better to point clouds generated by different sensors
(more details in Sect. 4.4).
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Description Loss. In feature space, descriptors of positive pairs are expected
to be close and those of negative pairs should keep enough separability. Instead
of using the simple Triplet Loss as in 3DFeatNet, we adopt the N-tuple loss [11]
to learn to differentiate as many patches as possible. Formally, given two point
clouds P , P ′, the two following matrices can be computed: a feature space
distance matrix D ∈ R

N×N with D(i, j) = ‖xi −xj‖, a correspondence matrix
M ∈ R

N×N with M i,j ∈ {0, 1} indicating whether two point patches pi ∈ P
and pj ∈ P ′ form a positive pair, i.e., if their distance is within a pre-defined
threshold. The N-tuple loss is formulated as:

Ldesc =
∑∗

(
M ◦ D

‖M‖2F
+ η

max(μ − (1 − M) ◦ D, 0)
N2 − ‖M‖2F

)
, (2)

where
∑∗(·) is element-wise sum, ◦ element-wise multiplication, ‖·‖F the Frobe-

nius norm, η a hyper-parameter balancing matching and non-matching pairs.
The loss is divided by the number of true/false matches to remove the bias
introduced by the larger number of negatives.

3D Local Feature Detection. Contrary to the classical detect-then-describe
approaches, we postpone the detection to a later stage. To this end, we produce
a keypoint saliency map S ∈ R

N×1 from the extracted point-wise descriptors
instead of from the raw input points. Our saliency map is thus estimated based on
the learned local structure encoding and thus is less fragile to low level artifacts
in the raw data, and provides significantly better generalization. Another benefit
of the describe-and-detect pipeline is that feature description and detection can
be performed in one forward pass, unlike the detect-then-describe approaches
that usually need two stages. Our detector consumes the local feature map Ψ
by a series of four 1×1 convolution layers, terminated by the sigmoid activation
function (more details in the supplementary document).

As there is no standard definition of a keypoint’s discriminativeness for out-
door point clouds, keypoint detection cannot be addressed by supervised learn-
ing. In our case, since the learned descriptors are to be used for point cloud reg-
istration, we propose to optimize keypoint confidences by leveraging the quality
of descriptor matching. Local descriptor matching essentially boils down to near-
est neighbor search in the feature space. Assuming the descriptor is informative
enough and the existence of correspondence is guaranteed, a reliable keypoint,
i.e., a keypoint with a high score s, is expected to find the correct match with
high probability. We therefore can measure the quality of the learned detector
using ηi = (1−si) · (1−M i,j)+si ·M i,j , where si ∈ [0, 1] is an element of S and
j refers to the nearest neighbor in Ψ ′. A simple loss function can be formulated
as Ldet = 1

N

∑N
i=1 1 − ηi. However, we find that only using the nearest neighbor

to define η is too strict on the learned feature quality and the training can be
unstable. We thus propose a new metric called average successful rate (AR):
given a point pi ∈ P and its feature ψi ∈ Ψ , we find the k nearest neighbors in
Ψ ′. The AR of pi is computed as: ARi = 1

k

∑k
j=1 cij , where cij = 1 if at least

one correct correspondence can be found in the first j candidates, otherwise is
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Fig. 3. The architecture of the global descriptor assembler.

0.1 Now we can measure η with AR which is a real number in the range [0, 1]
instead of a binary number and the loss above can be rewritten as:

Ldet =
1
N

N∑

i=1

1 − [κ(1 − si) + si · ARi], (3)

where κ ∈ [0, 1] is a hyperparameter indicating the minimum expected AR per
keypoint. To minimize the new loss, the network should predict si to be close to
0 if ARi < κ and to be near 1 conversely.

3.2 Global Descriptor Learning

As a key concept of this work, we propose to re-use the local descriptors for global
retrieval. This early sharing of the computation is natural as both local and
global descriptors are based on the same low-level geometric clues. The upcom-
ing question is, how can the local descriptors be aggregated to a global one?
While there exist many ways to do so, e.g., pooling, PointNet++ [39], FlexConv,
PointCNN [28], Dynamic Graph CNN [59], we claim that the PCAN [65] (Point-
NetVLAD extended by adding attention) gives the best performance among the
many and provide an ablation study in the supplementary material.

Our global aggregation network is depicted in Fig. 3. Before the NetVLAD
module, two FlexConv layers are added to project the local features to a higher
dimension for a more retrieval relevant encoding. The attention predictor takes
these features and outputs a per-point attention map, which is followed by a
NetVLAD layer to generate a compact global representation. As the output
of a NetVLAD layer usually has very high dimension which indicates expensive
nearest neighbor search, a FC layer is used to compress it into a lower dimension.
The global descriptor assembler is trained using the same lazy quadruplet loss
as used in [1,65], to better verify our idea of using the learned local descriptor
for global descriptor aggregation.

Attention Map Prediction. As it has been observed for image retrieval, visual
cues relevant to place recognition are generally not uniformly distributed across
an image. Therefore focusing on important regions is the key to improve the
performance [7,34]. However, such attention mechanism has only been explored

1 E.g., if the first correct correspondence appears as the 3rd nearest neighbor, then
AR in the case of k = 5 is (0 + 0 + 1 + 1 + 1)/5 = 0.6.
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recently for point cloud retrieval. Inspired by PCAN [65], we integrate an atten-
tion module that weighs each local descriptor before aggregation. As a key dif-
ference to PCAN, the input to our attention predictor is the learned descriptors
which already encapsulate fairly good contextual information. Thus our predictor
is not in charge of aggregating neighborhood information and needs a dedicated
design to reflect such benefit. We thus construct our attention predictor by only
chaining up three 1×1 Conv layers followed by softmax to ensure the sum of the
attention weights is 1. We will show that, although our attention predictor has
a much simpler structure than PCAN, yet it is effective. When combined with
our descriptor, it still offers better global retrieval performance. More details on
the network structure are provided in the supplementary document.

4 Experiments

The LiDAR point clouds from the Oxford RobotCar dataset [32] are used to
train our network. Additionally, the ETH dataset [36] and the point clouds
generated by Stereo DSO [55], a direct visual SLAM method are used to test the
generalization ability of the evaluated methods. The margin used in Ldesc is set
to μ = 0.5, the minimum expected AR in Eq. 3 κ = 0.6 with k = 5, N in Eq. 2
is set to 512. We use a weighted sum of Ldesc and Ldet as the loss function to
train our network L = Ldesc + λLdet.

To train the local part of our network, we use Oxford RobotCar and follow the
data processing procedures in [23]. We use 35 traversals and for each create 3D
submaps using the provided GPS/INS poses with a 20 m trajectory and a 10 m
interval. The resulting submaps are downsampled using a voxel grid with grid size
of 0.2 m. In total 20,731 point clouds are collected for training. As the provided
ground truth poses are not accurate enough to obtain cross-sequence point-to-
point correspondences, we generate training samples with synthetic transforma-
tions: for a given point cloud we create another one by applying an arbitrary
rotation around the upright axis and then adding Gaussian noise N (0, σnoise)
with σnoise = 0.02m. Note that as a point cloud is centered wrt. its centroid
before entering the network, no translation is added to the synthetic transfor-
mations. For the global part, we use the dataset proposed in PointNetVLAD [1].
Specifically, for each of the 23 full traversals out of the 44 selected sequences
from Oxford RobotCar, a testing reference map is generated consisting of the
submaps extracted in the testing part of the trajectory at 20 m intervals. More
details on preparing the training data are left to the supplementary document.

Runtime. For a point cloud with 8192 points, our local (including feature
description and keypoint detection) and global descriptors can be extracted
in one forward pass in 80 ms. As comparison, 3DFeatNet takes 400 ms (detec-
tion) + 510 ms (NMS) + 18 ms (512 local descriptors); 3DSmoothNet needs
270 ms (preprocessing) + 144 ms (512 local descriptors).
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Fig. 4. Relative repeatability when dif-
ferent number of keypoints are detected.

Fig. 5. Qualitative point cloud registra-
tion on Oxford RobotCar. Green lines
show the inliers of RANSAC. (Color
figure online)

Table 1. Point cloud registration performance on Oxford RobotCar. Each row in the
table corresponds to a keypoint detector and each column refers to a local 3D descriptor.
In each cell, we show Relative Translational Error (RTE), Relative Rotation Error
(RRE), the registration success rate and the average number of RANSAC iterations.
The methods are evaluated on the testing set provided by [23]. The top three results
of each metric are highlighted in best/2nd best/3rd best.

RTE (m) / RRE(◦) / Succ. (%) / Iter.

FPFH 3DSmoothNet 3DFeatNet FCGF DH3D

Random 0.44/1.84/89.8/7135 0.34/1.39/96.2/7274 0.43/1.62/90.5/9898 0.61/ 2.01/39.87/7737 0.33/1.31/92.1/6873
ISS 0.39/1.60/92.3/7171 0.32/1.21/96.8/6301 0.31/1.08/97.7/7127 0.56/1.89/43.99/7799 0.30/1.04/97.9/4986
Harris-3D 0.54/2.31/47.5/9997 0.31/1.19/97.4/5236 0.35/1.33/95.0/9214 0.57/1.99/46.82/7636 0.34/1.20/96.4/5985
3DFeatNet 0.43/2.01/73.7/9603 0.34/1.34/95.1/7280 0.30/1.07/98.1/2940 0.55/1.89/43.35/5958 0.32/1.24/95.4/2489
USIP 0.36/1.55/84.3/5663 0.28/0.93/98.0/584 0.28/0.81/99.1/523 0.41/1.73/53.42/3678 0.30/1.21/96.5/1537

DH3D 0.75/1.85/55.6/8697 0.32/1.22/96.0/3904 0.28/1.04/98.2/2908 0.38/1.48/49.47/4069 0.23/0.95/98.5/1972

4.1 3D Keypoint Repeatability

We use relative repeatability to quantify the performance of our keypoint detec-
tor. Given two point clouds {P ,P ′} related by a transformation T, a keypoint
detector detects keypoints K = [K1,K2, · · · ,Km] and K ′ = [K ′

1,K
′
2, · · · ,K ′

m]
from them. Ki ∈ K is repeatable if the distance between T(Ki) and its nearest
neighbor K ′

j ∈ K ′ is less than 0.5 m. Relative repeatability is then defined as
|Krep|/|K| with Krep the repeatable keypoints. We use the Oxford RobotCar
testing set provided by 3DFeatNet [23], which contains 3426 point cloud pairs
constructed from 794 point clouds. We compare to three handcrafted 3D detec-
tors, ISS [67], SIFT-3D [29] and Harris-3D [48] and two learned ones 3DFeat-
Net [23] and USIP [27]. The results are presented in Fig. 4. As the most recently
proposed learning based 3D detector that is dedicatedly designed for feature
repeatability, USIP apparently dominates this benchmark. It is worth noting
that the keypoints detected by USIP are highly clustered, which is partially
in favor of achieving a high repeatability. Moreover, USIP is a pure detector,
while 3DFeatNet and ours learn detection and description at the same time. Our
detector outperforms all the other competitors by a large margin when detecting
more than 64 keypoints. In the case of 256 keypoints, our repeatability is roughly
1.75x than the best follower 3DFeatNet. This clearly demonstrates that, when
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Table 2. Point cloud registration performance on ETH. The top three results of each
metric are highlighted in best/2nd best/3rd best. Note that RANSAC does not
converge within the max. iterations (10000) with FCGF.

RTE (m) / RRE(◦) / Succ. (%) / Iter.

SI 3DSmoothNet 3DFeatNet FCGF DH3D

Random 0.36/4.36/95.2/7535 0.18/2.73/100/986 0.30/4.06/95.2/6898 0.69/52.87/17.46/10000 0.25/3.47/100/5685
ISS 0.37/5.07/93.7/7706 0.15/2.40/100/986 0.31/3.86/90.5/6518 0.65/24.78/6.35/10000 0.19/2.80/93.8/3635
Harris-3D 0.35/4.83/90.5/8122 0.15/2.41/100/788 0.27/3.96/88.9/6472 0.43/55.70/6.35/10000 0.22/3.47/93.4/4524
3DFeatNet 0.35/5.77/87.3/7424 0.17/2.73/100/1795 0.33/4.50/95.2/6058 0.52/47.02/3.17/10000 0.27/3.58/93.7/6462
USIP 0.32/4.06/92.1/6900/ 0.18/2.61/100/1604 0.31/3.49/82.5/7060 0.54/27.62/15.87/10000 0.29/3.29/95.2/4312

DH3D 0.42/4.65/81.3/7922 0.38/3.49/100/5108 0.36/2.38/95.5/3421 0.56/48.01/15.87/10000 0.3/2.02/95.7/3107

learning detector and descriptors together, describe-and-detect is superior than
detect-then-describe. It is yet interesting to see how the key ideas of USIP [27]
can be merged into this concept.

4.2 Point Cloud Registration

Geometric registration is used to evaluate 3D feature matching. A SE3 transfor-
mation is estimated based on the matched keypoints using RANSAC. We com-
pute Relative Translational Error (RTE) and Relative Rotation Error (RRE)
and consider a registration is successful when RTE and RRE are below 2 m and
5◦, respectively. We compare to two handcrafted (ISS [67] and Harris-3D [48])
and two learned (3DFeatNet [23] and USIP [27]) detectors, and three hand-
crafted (SI [24], USC [52] and FPFH [42]) and three learned (3DSmoothNet [18],
3DFeatNet [23] and FCGF [8]) descriptors. The average RTE, RRE, the success
rate and the average number of RANSAC iterations on Oxford RobotCar of
each detector-descriptor combination are shown in Table 1. Note that due to
space limitation, only the best performing handcrafted descriptor is shown (the
same applies to Table 2 and 4). Although USIP shows significantly better per-
formance on repeatability, our method now delivers competitive or even better
results when applied for registration, where both keypoint detector and local
feature encoder are needed. This on one hand demonstrates the strong discrim-
inative power of our local descriptors, on the other hand also supports our idea
of learning detector and descriptors in the describe-and-detect manner. Another
thing to point out is that FCGF was trained on KITTI, which might explain its
relatively bad results in this evaluation. Some qualitative results can be found
in Fig. 5.

Unlike Oxford RobotCar, the ETH dataset [36] contains largely unstructured
vegetations and much denser points, therefore is used to test the generalizability.
The same detectors and descriptors as above are tested and the results are shown
in Table 2. We notice that 3DSmoothNet shows the best performances on ETH.
One important reason is that 3DSmoothNet adopts a voxel grid of size 0.02 m
to downsample the point clouds, while our DH3D and other methods use size
0.1 m. Thus 3DSmoothNet has finer resolution and is more likely to produce
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smaller errors. Apart from that, our detector performs fairly well (last row) and
when combine with our descriptor, it achieves the smallest rotation error. With
all the detectors, FCGF descriptors cannot make RANSAC converge within the
maximum number of iterations. The bad performance of FCGF is also noticed
by the authors of [4] and was discussed on their GitHub page2.

4.3 Point Cloud Retrieval

Table 3. Average recall (%) at top 1%
and top 1 for Oxford RobotCar.

Method @1% @1

PN MAX 73.44 58.46

PN VLAD 81.01 62.18

PCAN 83.81 69.76

Ours-4096 84.26 73.28

Ours-8192 85.30 74.16

Fig. 6. Average recall of the top 25
retrievals on Oxford RobotCar.

We compare our method against the two state-of-the-art approaches, PCAN [65]
and PointNetVLAD (PN VLAD) [1]. We also report the results of PN MAX
presented in PN VLAD, which consists of the original PointNet architecture with
the maxpool layer and a fully connected layer to produce a global descriptor.
Note that both PN VLAD and PCAN take submaps of size 4096, whereas ours
takes 8192 to favor local feature extraction. We thus add a downsampling layer
before the final NetVLAD layer to make sure the same size of 4096 points enter
the final aggregation procedure. For demonstration, we also report the results
of using the default setting. We first evaluate the average recall at top 1% and
top1 and show the results in Table 3. Our method with both settings outperforms
all the other methods. We further show the recall curves of the top25 retrieval
matches in Fig. 6, where both of our networks consistently outperform the other
two state-of-the-art approaches. The evaluation results prove that our network
can effectively take advantage of the informative local features and produce more
discriminative global descriptors. Also note that even with the number of points
halved before entering the NetVLAD layer, the performance drop of our method
is very small, which shows that our local features integrate sufficient contextual
information for global retrieval. Some qualitative retrieval results are provided
in the supplementary document.

2 https://github.com/XuyangBai/D3Feat/issues/1.

https://github.com/XuyangBai/D3Feat/issues/1
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4.4 Application to Visual SLAM

Table 4. Generalization of point cloud registration for visual SLAM. In this experi-
ment, point clouds are generated by running Stereo DSO [55] on Oxford. For learning
based methods, models trained on LiDAR points are used without fine-tuning. The top
three results of each metric are highlighted in best/2nd best/3rd best.

RTE (m) / RRE(◦) / Succ. (%) / Iter.

FPFH 3DSmoothNet 3DFeatNet FCGF DH3D

Random 0.56/2.82/53.13/9030 0.70/2.19/73.1/6109 0.72/2.37/69.0/9661 0.51/2.65/74.93/5613 0.70/2.23/71.9/7565
ISS 0.56/3.03/43.58/9210 0.67/2.15/79.1/6446 0.58/2.41/71.9/9776 0.51/2.57/71.94/6015 0.48/1.72/90.2/6312
Harris-3D 0.49/2.67/45.67/9130 0.48/2.07/74.9/6251 0.66/2.26/64.5/9528 0.48/2.63/74.03/5482 0.39/2.27/68.1/7860
3DFeatNet 0.62/3.05/35.52/7704 0.38/2.22/66.6/5235 0.92/1.97/84.1/8071 0.54/2.64/60.90/4409 0.74/2.38/80.9/7124
USIP 0.54/2.98/48.96/7248 0.39/2.27/77.3/5593 0.85/2.24/69.9/8389 0.51/2.65/67.46/3846 0.65/2.45/68.1/6824

DH3D 0.60/2.92/48.96/8914 0.35/2.01/77.9/5764 0.41/1.84/89.3/7818 0.48/2.43/69.55/5002 0.36/1.58/90.6/7071

Fig. 7. Registration on point clouds generated by Stereo DSO [55]. The first two
columns display frames from the reference and the query sequences. The last two
columns show the matches found by RANSAC and the point clouds after alignment.

In this section, we demonstrate the generalization capability of our method to
a different sensor modality by evaluating its performance on the point clouds
generated by Stereo DSO [55]. As a direct method, Stereo DSO has the advan-
tage of delivering relatively dense 3D reconstructions, which can provide stable
geometric structures that are less affected by image appearance changes. We
therefore believe that it is worth exploring extracting 3D descriptors from such
reconstructions which can be helpful for loop-closure and relocalization for visual
SLAM. To justify this idea, Stereo DSO is used to generate point clouds of eight
traversals from Oxford RobotCar, which covers a wide range of day-time and
weather conditions. This gives us 318 point cloud pairs with manually annotated
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relative poses. Each point cloud is cropped with a radius of 30 m and randomly
rotated around the vertical axis. We use the same parameters as in Sect. 4.2 with-
out fine-tuning our network and evaluate the geometric registration performance
against other methods in Table 4. As shown in the table, our approach achieves
the best rotation error (1.58◦) and success rate (90.6%) and second best trans-
lation error (0.36 m) among all the evaluated methods. It can also be noticed
that most evaluated methods show significant inferior performances compared
to the results in Table 1, e.g., the successful rates of 3DFeatNet+3DFeatNet,
USIP+3DSmoothNet and USIP+3DFeatNet drop from 98.1%, 98.0% and 99.1%
to 84.1%, 77.3% and 69.9%, respectively. This is largely because the point clouds
extracted from LiDAR scannings have quite different distributions as those from
Stereo DSO. Our model is still able to achieve a successful rate of 90.6%, showing
the least degree of degeneracy. This further demonstrates the good generalization
ability of the proposed method. Some qualitative results are shown in Fig. 7.

4.5 Ablation Study

Effectiveness of Different Components. We carry out three experiments to
explore the contributions of different components of our method: (1) We remove
the detector module and only Ldesc is used to train the local feature encoder; (2)
The weak supervision at the submap level proposed by 3DFeatNet [23] is used
(details in the supplementary material); (3) We remove the SE blocks. As shown
in Table 5, the largest performance decrease comes with (2), which verifies our
idea of generating a supervision signal by synthesizing transformations. Results
of (1) indicate that learning an effective confidence map S can improve the
quality of the learned local descriptors for matching. The results of (3) show
that SE blocks contribute to learning more informative local descriptors and
therefore are helpful to 3D feature matching.

Robustness Test. We assess the robustness of our model for both point cloud
retrieval and registration against three factors, i.e., noise, rotation and down-
sampling: We add Gaussian noise N (0, σnoise) to the point clouds; The range of
the rotation test is set between 0 and 90◦; Point clouds are downsampled using a
set of factors α. For the local part, as shown in Fig. 8, our descriptors has shown
excellent rotation invariance. When noise is added, our method can still achieves
>90% success rate for σnoise < 0.15 m. The performance significantly drops for
σnoise > 0.2 m, possibly due to the fact that training samples are filtered by a
voxel grid with size 0.2 m, thus strong noise tends to heavily change the underly-
ing point distribution. A similar explanation applies to the case of downsampling
for a factor α > 2. Nevertheless, our model can still guarantee 90% success rate
for α � 1.5. We conduct the same robustness tests for our global descriptors.
Figure 9(a) demonstrates that our global descriptors possess good robustness to
noise. Contrary to the local descriptors, the global descriptor seems to be less
robust against rotations, which needs further investigation. Similar to the local
descriptor, the quality of global feature is not affected too much for α � 1.5.
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Table 5. Effects of different components for
point cloud registration on Oxford RobotCar.

Method RTE (m) RRE (◦) Succ. Iter.

w/o Ldet 0.43 1.52 93.72 3713

Weak Sup. 0.48 1.78 90.82 3922

w/o SE 0.39 1.24 95.18 3628

Default 0.23 0.95 98.49 1972

Fig. 8. Local detector and descrip-
tor robustness test evaluated by
the success rate of point cloud
registration.

Fig. 9. Global descriptor robustness against random noise, rotation and downsampling.
The x axes show the number of top retrieved matches.

5 Conclusion

We introduced a hierarchical network for the task of large-scale point cloud
based relocalization. Rather than pursuing the traditional strategy of detect-
then-describe or separately computing local and global descriptors, our network
performs local feature detection, local feature description and global descriptor
extraction in a single forward pass. Experimental results demonstrate the state-
of-the-art performance of both our local and global descriptors across multiple
benchmarks. Our model trained on LiDAR points also shows favorable general-
ization ability when applied to point clouds generated by visual SLAM methods.
Future work is focused on further exploring the robustness of the learned descrip-
tors to various perturbations.

References

1. Angelina Uy, M., Hee Lee, G.: PointNetVLAD: deep point cloud based retrieval for
large-scale place recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4470–4479 (2018)

2. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN archi-
tecture for weakly supervised place recognition. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)
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