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Abstract. The task of retrieving video content relevant to natural lan-
guage queries plays a critical role in effectively handling internet-scale
datasets. Most of the existing methods for this caption-to-video retrieval
problem do not fully exploit cross-modal cues present in video. Further-
more, they aggregate per-frame visual features with limited or no tem-
poral information. In this paper, we present a multi-modal transformer
to jointly encode the different modalities in video, which allows each of
them to attend to the others. The transformer architecture is also lever-
aged to encode and model the temporal information. On the natural
language side, we investigate the best practices to jointly optimize the
language embedding together with the multi-modal transformer. This
novel framework allows us to establish state-of-the-art results for video
retrieval on three datasets. More details are available at http://thoth.
inrialpes.fr/research/MMT.

Keywords: Video · Language · Retrieval · Multi-modal ·
Cross-modal · Temporality · Transformer · Attention

1 Introduction

Video is one of the most popular forms of media due to its ability to capture
dynamic events and its natural appeal to our visual and auditory senses. Online
video platforms are playing a major role in promoting this form of media. How-
ever, the billions of hours of video available on such platforms are unusable if
we cannot access them effectively, for example, by retrieving relevant content
through queries.

In this paper, we tackle the tasks of caption-to-video and video-to-caption
retrieval. In the first task of caption-to-video retrieval, we are given a query in
the form of a caption (e.g., “How to build a house”) and the goal is to retrieve
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Fig. 1. When matching a text query with videos, the inherent cross-modal and tem-
poral information in videos needs to be leveraged effectively, for example, with a video
encoder that handles all the constituent modalities (appearance, audio, speech) jointly
across the entire duration of the video. In this example, a video encoder will be able
to distinguish between “someone walking to” and “someone walking away” only if it
exploits the temporal information of events occurring in the video (red arrows). Also,
in order to understand that a “motorbike failed to start”, it needs to use cross-modal
information (e.g., absence of noise after someone tried to start the engine, orange
arrow). (Color figure online)

the videos best described by it (i.e., videos explaining how to build a house).
In practice, given a test set of caption-video pairs, our aim is to provide, for
each caption query, a ranking of all the video candidates such that the video
associated with the caption query is ranked as high as possible. On the other
hand, the task of video-to-caption retrieval focuses on finding among a collection
of caption candidates the ones that best describe the query video.

A common approach for the retrieval problem is similarity learning [29],
where we learn a function of two elements (a query and a candidate) that best
describes their similarity. All the candidates can then be ranked according to
their similarity with the query. In order to perform this ranking, the captions
as well as the videos are represented in a common multi-dimensional embedding
space, wherein similarities can be computed as a dot product of their corre-
sponding representations. The critical question here is how to learn accurate
representations of both caption and video to base our similarity estimation on.

The problem of learning representation of text has been extensively studied,
leading to various methods [3,7,18,25,34], which can be used to encode captions.
In contrast to these advances, learning effective video representation continues
to be a challenge, and forms the focus of our work. This is in part due to the
multimodal and temporal nature of video. Video data not only varies in terms of
appearance, but also in possible motion, audio, overlaid text, speech, etc. Lever-
aging cross-modal relations thus forms a key to building effective video represen-
tations. As illustrated in Fig. 1, cues jointly extracted from all the constituent
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Fig. 2. Our cross-modal framework for similarity estimation. We use our Multi-modal
Transformer (MMT, right) to encode video, and BERT (left) for text.

modalities are more informative than handling each modality independently.
Hearing a motor sound right after seeing someone starting a bike tells us that
the running bike is the visible one and not a background one. Another example
is the case of a video of “a crowd listening to a talk”, neither of the modali-
ties “appearance” or “audio” can fully describe the scene, but when processed
together, higher level semantics can be obtained.

Recent work on video retrieval does not fully exploit such cross-modal high-
level semantics. They either ignore the multi-modal signal [15], treat modalities
separately [16], or only use a gating mechanism to modulate certain modality
dimensions [14]. Another challenge in representing video is its temporality. Due
to the difficulty in handling variable duration of videos, current approaches [14,
16] discard long-term temporal information by aggregating descriptors extracted
at different moments in the video. We argue that this temporal information
can be important to the task of video retrieval. As shown in Fig. 1, a video of
“someone walking to an object” and “someone walking away from an object” will
have the same representation once pooled temporally, however, the movement
of the person relative to the object is potentially important in the query.

We address the temporal and multi-modal challenges posed in video data
by introducing our multi-modal transformer. It performs the task of processing
features extracted from different modalities at different moments in video and
aggregates them in a compact representation. Building on the transformer archi-
tecture [25], our multi-modal transformer exploits the self-attention mechanism
to gather valuable cross-modal and temporal cues about events occurring in a
video. We integrate our multi-modal transformer in a cross-modal framework,
as illustrated in Fig. 2, which leverages both captions and videos, and estimates
their similarity.
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Contributions. In this work, we make the following three contributions: (i) First,
we introduce a novel video encoder architecture for retrieval: Our multi-modal
transformer processes effectively multiple modality features extracted at different
times. (ii) We thoroughly investigate different architectures for language embed-
ding, and show the superiority of the BERT model for the task of video retrieval.
(iii) By leveraging our novel cross-modal framework we outperform prior state
of the art for the task of video retrieval on MSRVTT [30], ActivityNet [12] and
LSMDC [21] datasets. It is also the winning solution in the CVPR 2020 Video
Pentathlon Challenge [4].

2 Related Work

We present previous work on language and video representation learning, as well
as on visual-language retrieval.

Language Representations. Earlier work on language representations include
bag of words [34] and Word2Vec [18]. A limitation of these representations is
capturing the sequential properties in a sentence. LSTM [7] was one of the
first successful deep learning models to handle this. More recently, the trans-
former [25] architecture has shown impressive results for text representation by
implementing a self-attention mechanism where each word (or wordpiece [27])
of the sentence can attend to all the others. The transformer architecture, con-
sisting of self-attention layers alternatively stacked with fully-connected layers,
forms the base of the popular language modeling network BERT [3]. Burns
et al. [1] perform an analysis of the different word embeddings and language
models (Word2Vec [18], LSTM [7], BERT [3], etc.) used in vision-language tasks.
They show that the pretrained and frozen BERT model [3] performs relatively
poorly compared to a LSTM or even a simpler average embedding model. In this
work, we show that for video retrieval, a pretrained BERT outperforms other
language models, but it needs to be finetuned.

Video Representations. With a two-stream network, Simonyan et al. [22]
have used complementary information from still frames and motion between
frames to perform action recognition in videos. Carreira et al. [2] incorporated
3D convolutions in a two-stream network to better attend the temporal structure
of the signal. S3D [28] is an alternative approach, which replaced the expensive
3D spatio-temporal convolutions by separable 2D and 1D convolutions. More
recently, transformer-based methods, which leverage BERT pretraining [3], have
been applied to S3D features in VideoBERT [24] and CBT [23]. While these
works focus on visual signals, they have not studied how to encode the other
multi-modal semantics, such as audio signals.

Visual-Language Retrieval. Harwath et al. [5] perform image and audio-
caption retrieval by embedding audio segments and image regions in the same
space and requiring high similarity between each audio segment and its corre-
sponding image region. The method presented in [13] takes a similar approach
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for image-text retrieval by embedding images regions and words in a joint space.
A high similarity is obtained for images that have matching words and image
regions.

For videos, JSFusion [31] estimates video-caption similarity through dense
pairwise comparisons between each word of the caption and each frame of the
video. In this work, we instead estimate both a video embedding and a caption
embedding and then compute the similarity between them. Zhang et al. [33]
perform paragraph-to-video retrieval by assuming a hierarchical decomposition
of the video and paragraph. Our method do not assume that the video can
be decomposed into clips that align with sentences of the caption. A recent
alternative is creating separate embedding spaces for different parts of speech
(e.g., noun or verb) [26]. In contrast to this method, we do not pre-process the
sentences but encode them directly through BERT.

Another work [17] leverages the large number of instructional videos in the
HowTo100M dataset, but does not fully exploit the temporal relations. Our work
instead relies on longer segments extracted from HowTo100M videos in order to
learn temporal dependencies and address the problem of misalignment between
speech and visual features. Mithun et al. [19,20] use three experts (Object, Activ-
ity and Place) to compute three corresponding text-video similarities. These
experts however do not collaborate together as their respective similarities are
simply summed together. A related approach [16] uses precomputed features
from experts for text to video retrieval, where the overall similarity is obtained
as a weighted sum of each expert’s similarity. A recent extension [14] to this
mixture of experts model uses a collaborative gating mechanism for modulating
each expert feature according to the other experts. However, this collaborative
gating mechanism only strengthens (or weakens) some dimensions of the input
signal in a single step, and is therefore not able to capture high level inter-
modality information. Our multi-modal transformer overcomes this limitation
by attending to all available modalities over multiple self-attention layers.

3 Methodology

Our overall method relies on learning a function s to compute the similarity
between two elements: text and video, as shown in Fig. 2. We then rank all
the videos (or captions) in the dataset, according to their similarity with the
query caption (or video) in the case of text-to-video (or video-to-text) retrieval.
In other words, given a dataset of n video-caption pairs {(v1, c1), ..., (vn, cn)},
the goal of the learnt similarity function s(vi, cj), between video vi and caption
cj , is to provide a high value if i = j, and a low one if i �= j. Estimating this
similarity (described in Sect. 3.3) requires accurate representations for the video
as well as the caption. Figure 2 shows the two parts focused on producing these
representations (presented in Sects. 3.1 and 3.2 respectively) in our cross-modal
framework.
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Fig. 3. Inputs to our multi-modal transformer. We combine feature semantics F , expert
information E, and temporal cues T to form our video embeddings Ω(v), which are
input to MMT.

3.1 Video Representation

The video-level representation is computed by our proposed multi-modal trans-
former (MMT). MMT follows the architecture of the transformer encoder pre-
sented in [25]. It consists of stacked self-attention layers and fully collected layers.
MMT’s input Ω(v) is a set of embeddings, all of the same dimension dmodel. Each
of them embeds the semantics of a feature, its modality, and the time in the video
when the feature was extracted. This input is given by:

Ω(v) = F (v) + E(v) + T (v), (1)

In the following, we describe those three components.

Features F . In order to learn an effective representation from different modal-
ities inherent in video data, we begin with video feature extractors called
“experts” [14,16,19,31]. In contrast to previous methods, we learn a joint rep-
resentation leveraging both cross-modal and long-term temporal relationships
among the experts. We use N pretrained experts {Fn}Nn=1. Each expert is a
model trained for a particular task that is then used to extract features from
video. For a video v, each expert extracts a sequence Fn(v) = [Fn

1 , ..., Fn
K ] of K

features.
The features extracted by our experts encode the semantics of the video.

Each expert Fn outputs features in R
dn . In order to project the different expert

features into a common dimension dmodel, we learn N linear layers (one per
expert) to project all the features into R

dmodel .
A transformer encoder produces an embedding for each of its feature inputs,

resulting in several embeddings for an expert. In order to obtain a unique embed-
ding for each expert, we define an aggregated embedding Fn

agg that will col-
lect and contextualize the expert’s information. We initialize this embedding
with a max pooling aggregation of all the corresponding expert’s features as
Fn
agg = maxpool({Fn

k }Kk=1). The sequence of input features to our video encoder
then takes the form:

F (v) = [F 1
agg, F

1
1 , ..., F 1

K , ..., FN
agg, F

N
1 , ..., FN

K ]. (2)

Expert Embeddings E. In order to process cross-modality information, our
MMT needs to identify which expert it is attending to. We learn N embeddings



220 V. Gabeur et al.

{E1, ..., EN} of dimension dmodel to distinguish between embeddings of different
experts. Thus, the sequence of expert embeddings to our video encoder takes
the form:

E(v) = [E1, E1, ..., E1, ..., EN , EN , ..., EN ]. (3)

Temporal Embeddings T . They provide temporal information about the time
in the video where each feature was extracted to our multi-modal transformer.
Considering videos of a maximum duration of tmax seconds, we learn D = |tmax|
embeddings {T1, ..., TD} of dimension dmodel. Each expert feature that has been
extracted in the time range [t, t + 1) will be temporally embedded with Tt+1.
For example, a feature extracted at 7.4s in the video will be temporally encoded
with temporal embedding T8. We learn two additional temporal embeddings Tagg

and Tunk, which encode aggregated features and unknown temporal information
features (for experts whose temporal information is unknown), respectively. The
sequence of temporal embeddings of our video encoder then takes the form:

T (v) = [Tagg, T1, ..., TD, ..., Tagg, T1, ..., TD]. (4)

Multi-modal Transformer. The video embeddings Ω(v) defined as the sum
of features, expert and temporal embeddings in (1), as shown in Fig. 3, are
input to the transformer. They are given by: Ω(v) = F (v) + E(v) + T (v) =
[ω1

agg, ω
1
1 , ..., ω

1
K , ..., ωN

agg, ω
N
1 , ..., ωN

K ]. MMT contextualises its input Ω(v) and
produces the video representation Ψagg(v). As illustrated in Fig. 2, we only keep
the aggregated embedding per expert. Thus, our video representation Ψagg(v)
consists of the output embeddings corresponding to the aggregated features, i.e.,

Ψagg(v) = MMT (Ω(v)) = [ψ1
agg, ..., ψ

N
agg]. (5)

The advantage of our MMT over the state-of-the-art collaborative gating
mechanism [14] is two-fold: First, the input embeddings are not simply mod-
ulated in a single step but iteratively refined through several layers featuring
multiple attention heads. Second, we do not limit our video encoder with a
temporally aggregated feature for each expert, but provide all the extracted fea-
tures instead, along with a temporal encoding describing at what moment of the
video they were extracted from. Thanks to its self-attention modules, each layer
of our multi-modal transformer is able to attend to all its input embeddings, thus
extracting semantics of events occurring in the video over several modalities.

3.2 Caption Representation

We compute our caption representation Φ(c) in two stages: first, we obtain an
embedding h(c) of the caption, and then project it with a function g into N
different spaces as Φ = g ◦ h. For the embedding function h, we use a pre-
trained BERT model [3]. Specifically, we extract our single caption embedding
h(c) from the [CLS] output of BERT. In order to match the size of this caption
representation with that of video, we learn for function g as many gated embed-
ding modules [16] as there are video experts. Our caption representation then
consists of N embeddings, represented by Φ(c) = {φi}Ni=1.
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3.3 Similarity Estimation

We compute our final video-caption similarity s, as a weighted sum of each
expert i’s video-caption similarity 〈φi, ψi

agg〉. It is given by:

s(v, c) =
N∑

i=1

wi(c)〈φi, ψi
agg〉, (6)

where wi(c) represents the weight for the ith expert. To obtain these mixture
weights, we follow [16] and process our caption representation h(c) through a
linear layer and then perform a softmax operation, i.e.,

wi(c) =
eh(c)

�ai

∑N
j=1 eh(c)

�aj

, (7)

where (a1, ..., aN ) are the weights of the linear layer. The intuition behind using
a weighted sum is that a caption may not describe all the inherent modalities
in video uniformly. For example, in the case of a video with a person in a red
dress singing opera, the caption “a person in a red dress” provides no information
relevant for audio. On the contrary, the caption “someone is singing” should focus
on the audio modality for computing similarity. Note that wi(c), φi and ψi

agg can
all be precomputed offline for each caption and for each video, and therefore the
retrieval operation only involves dot product operations.

3.4 Training

We train our model with the bi-directional max-margin ranking loss [10]:

L =
1
B

B∑

i=1

∑

j �=i

[
max(0, sij − sii + m) + max(0, sji − sii + m)

]
, (8)

where B is the batch size, sij = s(vi, cj), the similarity score between video vi
and caption cj , and m is the margin. This loss enforces the similarity for true
video-caption pairs sii to be higher than the similarity of negative samples sij
or sji, for all i �= j, by at least m.

4 Experiments

4.1 Datasets and Metrics

HowTo100M [17]. It is composed of more than 1 million YouTube instructional
videos, along with automatically-extracted speech transcriptions, which form the
captions. These captions are naturally noisy, and often do not describe the visual
content accurately or are temporally misaligned with it. We use this dataset only
for pre-training.
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MSRVTT [30]. This dataset is composed of 10K YouTube videos, collected
using 257 queries from a commercial video search engine. Each video is 10 to
30s long, and is paired with 20 natural sentences describing it, obtained from
Amazon Mechanical Turk workers. We use this dataset for training from scratch
and also for fine-tuning. We report results on the train/test splits introduced
in [31] that uses 9000 videos for training and 1000 for test. We refer to this split
as “1k-A”. We also report results on the train/test split in [16] that we refer to
as “1k-B”. Unless otherwise specified, our MSRVTT results are with “1k-A”.

ActivityNet Captions [12]. It consists of 20K YouTube videos temporally
annotated with sentence descriptions. We follow the approach of [33], where all
the descriptions of a video are concatenated to form a paragraph. The training
set has 10009 videos. We evaluate our video-paragraph retrieval on the “val1”
split (4917 videos). We use ActivityNet for training from scratch and fine-tuning.

LSMDC [21]. It contains 118,081 short video clips (∼4–5 s) extracted from 202
movies. Each clip is annotated with a caption, extracted from either the movie
script or the audio description. The test set is composed of 1000 videos, from
movies not present in the training set. We use LSMDC for training from scratch
and also fine-tuning.

Metrics. We evaluate the performance of our model with standard retrieval
metrics: recall at rank N (R@N , higher is better), median rank (MdR, lower
is better) and mean rank (MnR, lower is better). For each metric, we report
the mean and the standard deviation over experiments with 3 random seeds. In
the main paper, we only report recall@5, median and mean ranks, and refer the
reader to the supplementary material for additional metrics.

4.2 Implementation Details

Pre-trained Experts. Recall that our video encoder uses pre-trained experts
models for extracting features from each video modality. We use the follow-
ing seven experts. Motion features are extracted from S3D [28] trained on the
Kinetics action recognition dataset. Audio features are extracted using VGGish
model [6] trained on YT8M. Scene embeddings are extracted from DenseNet-
161 [9] trained for image classification on the Places365 dataset [35]. OCR
features are obtained in three stages. Overlaid text is first detected using the
pixel link text detection model. The detected boxes are then passed through a
text recognition model trained on the Synth90K dataset. Finally, each character
sequence is encoded with word2vec [18] embeddings. Face features are extracted
in two stages. An SSD face detector is used to extract bounding boxes, which are
then passed through a ResNet50 trained for face classification on the VGGFace2
dataset. Speech transcripts are extracted using the Google Cloud Speech to
Text API, with the language set to English. The detected words are then encoded
with word2vec. Appearance features are extracted from the final global aver-
age pooling layer of SENet-154 [8] trained for classification on ImageNet. For
scene, OCR, face, speech and appearance, we use the features publicly released
by [14], and compute the other features ourselves.
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Training. For each dataset, we run a grid search on the corresponding validation
set to estimate the hyperparameters. We use the Adam optimizer for all our
experiments, and set the margin of the bidirectional max-margin ranking loss to
0.05. We also freeze our pre-trained expert models.

When pre-training on HowTo100M, we use a batch size of 64 video-caption
pairs, an initial learning rate of 5e–5, which we decay by a multiplicative factor
0.98 every 10K optimisation steps, and train for 2 million steps. Given the long
duration of most of the HowTo100M videos, we randomly sample 100 consecutive
words in the caption, and keep 100 consecutive seconds of video data, closest in
time to the selected words.

When training from scratch or finetuning on MSRVTT or LSMDC, we use
a batch size of 32 video-caption pairs, an initial learning rate of 5e-5, which we
decay by a multiplicative factor 0.95 every 1K optimisation steps. We train for
50K steps. We use the same settings when training from scratch or finetuning
on ActivityNet, except for 0.90 as the multiplicative factor.

To compute our caption representation h(c), we use the “BERT-base-cased”
checkpoint of the BERT model and finetune it with a dropout probability of
10%. To compute our video representation Ψagg(v), we use MMT with 4 layers
and 4 attention heads, a dropout probability of 10%, a hidden size dmodel of 512,
and an intermediate size of 3072.

For datasets with short videos (MSRVTT and LSMDC), we use all the 7
experts and limit video input to 30 features per expert, and BERT input to
the first 30 wordpieces. For datasets containing longer videos (HowTo100M and
ActivityNet), we only use motion and audio experts, and limit our video input to
100 features per expert and our BERT input to the first 100 wordpieces. In cases
where an expert is unavailable for a given video, e.g., no speech was detected,
we set the aggregated feature Fn

agg to a zero vector. We refer the reader to the
supplementary material for a study of the model complexity.

4.3 Ablation Studies and Comparisons

We will first show the advantage of pretraining our model on a large-scale, uncu-
rated dataset. We will then perform ablations on the architecture used for our
language and video encoders. Finally, we will present the relative importance of
the pretrained experts used in this work, and compare with related methods.

Pretraining. Table 1 shows the advantage of pretraining on HowTo100M, before
finetuning on the target dataset (MSRVTT in this case). We also evaluated the
impact of pretraining on ActivityNet and LSMDC; see Table 5 and Table 6.

Language Encoder. We evaluated several architectures for caption represen-
tation, as shown in Table 2. Similar to the observation made in [1], we obtain
poor results from a frozen, pretrained BERT. Using the [CLS] output from a
pretrained and frozen BERT model is in fact the worst result. We suppose this
is because the output was not trained for caption representation, but for a very
different task: next sentence prediction. Finetuning BERT greatly improves per-
formance; it is the best result. We also compare with GrOVLE [1] embeddings,
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Table 1. Advantage of pretraining on HowTo100M then finetuning on MSRVTT.
Impact of removing the stop words. Performance reported on MSRVTT.

Method Caption Text −→ Video

R@5↑ MdR↓ MnR↓
Pretraining without finetuning
(zero-shot setting)

All words 6.9 160.0 240.2

w/o stop words 14.4 66.0 148.1

Training from scratch on
MSRVTT

All words 54.0±0.2 4.0±0.0 26.7±0.9

w/o stop words 50.0±0.6 5.3±0.5 28.5±0.9

Pretraining then finetuning on
MSRVTT

All words 57.1±1.0 4.0±0.0 24.0±0.8

w/o stop words 55.0±0.7 4.3±0.5 24.3±0.3

Table 2. Comparison of different architectures for caption embedding when training
from scratch on MSRVTT.

Word embeddings Aggregation Text −→ Video

R@5↑ MdR↓ MnR↓
GrOVLE frozen maxpool 31.8±0.4 14.7±0.5 63.1±1.3

LSTM 36.4±0.8 10.3±0.9 44.2±0.1

finetuned maxpool 34.6±0.1 12.0±0.0 52.3±0.8

LSTM 40.3±0.5 8.7±0.5 38.1±0.7

BERT frozen maxpool 39.4±0.8 9.7±0.5 46.5±0.2

LSTM 36.4±1.8 10.7±0.5 42.2±0.6

finetuned maxpool 44.2±1.2 7.3±0.5 35.6±0.4

LSTM 40.1±1.0 8.7±0.5 37.4±0.5

Frozen BERT-frozen 17.1±0.2 34.7±1.2 98.8±0.8

Finetuned BERT-finetuned 54.0±0.2 4.0±0.0 26.7±0.9

frozen or finetuned, aggregated with a max-pooling operation or a 1-layer LSTM
and a fully-connected layer. We show that pretrained BERT embeddings aggre-
gated by a max-pooling operation perform better than GrOVLE embeddings
processed by a LSTM (best results from [1] for the text-to-clip task).

We also analysed the impact of removing stop words from the captions
in Table 1. In a zero-shot setting, i.e., trained on HowTo100M, evaluated on
MSRVTT without finetuning, removing the stop words helps generalize, by
bridging the domain gap—HowTo100M speech is very different from MSRVTT
captions. This approach was adopted in [15]. However, we observe that when
finetuning, it is better to keep all the words as they contribute to the semantics
of the caption.

Video Encoder. We evaluated the influence of different architectures for com-
puting video embeddings on the MSRVTT 1k-A test split.
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Table 3. Ablation studies on the video encoder of our framework with MSRVTT. (a)
Influence of the architecture and input. With max-pooled features as input, we
compare our transformer architecture (MMT) with the variant not using an encoder
(NONE) and the one with Collaborative Gating [14] (COLL). We also show that
MMT can attend to all extracted features, as detailed in the text. (b) Importance
of initializing Fn

agg features. We compare zero-vector initialisation, mean pooling
and max pooling of the expert features. (c) Influence of the size of the multi-
modal transformer. We compare different values for number-of-layers × number-of-
attention-heads.

(a) Encoder architecture and input

Text −→ Video
Encoder Input R@5↑ MdR↓ MnR↓
NONE max pool 50.9±1.5 5.3±0.5 28.6±0.5
COLL max pool 51.3±0.8 5.0±0.0 29.5±1.8
MMT max pool 52.5±0.7 5.0±0.0 27.2±0.7
MMT shuffled feats 53.3±0.2 5.0±0.0 27.4±0.7
MMT ordered feats 54.0±0.2 4.0±0.0 26.7±0.9

(b) Fn
agg initialisation

Text −→ Video
Fn
agg init R@5↑ MdR↓ MnR↓

zero 50.2±0.9 5.7±0.5 28.5±1.3
mean pool 54.2±0.3 5.0±0.0 27.1±0.9
max pool 54.0±0.2 4.0±0.0 26.7±0.9

(c) Model size

Text −→ Video
Layers Heads R@5↑ MdR↓ MnR↓
2 2 53.2±0.4 5.0±0.0 26.7±0.4
4 4 54.0±0.2 4.0±0.0 26.7±0.9
8 8 53.9±0.3 4.7±0.5 26.7±0.7

In Table 3a, we evaluate variants of our encoder architecture and its input.
Similar to [16], we experiment with directly computing the caption-video simi-
larities on each max-pooled expert features, i.e., no video encoder (NONE in the
table). We compare this with the collaborative gating architecture (COLL) [14]
and our MMT variant using only the aggregated features as input. For the first
two variants without MMT, we adopt the approach of [16] to deal with missing
modalities by re-weighting wi(c). We also show the superior performance of our
multi-modal transformer in contextualising the different modality embeddings
compared to the collaborative gating approach. We argue that our MMT is
able to extract cross-modal information in a multi-stage architecture compared
to collaborative gating, which is limited to modulating the input embeddings.
Table 3a also highlights the advantage of providing MMT with all the extracted
features, instead of only aggregated ones. Temporally aggregating each expert’s
features ignores information about multiple events occurring in a same video
(see the last three rows). As shown by the influence of ordered and randomly
shuffled features on the performance, MMT has the capacity to make sense of
the relative ordering of events in a video.
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Fig. 4. MSRVTT performance (mean rank; lower is better) after training from scratch,
when using only one expert (left), when using all experts but one (middle), when
gradually adding experts by greedy search (right).

Table 3b shows the importance of initialising the expert aggregation fea-
ture Fn

agg. Since the output of our video encoder is extracted from the “agg”
columns, it is important to initialise them with an appropriate representation
of the experts’ features. The transformer being a residual network architecture,
initializing Fn

agg input embeddings with a zero vector leads to a low performance.
Initializing with max pooling aggregation of each expert performs better than
mean pooling. Finally, we analyze the impact of the size of our multi-modal
transformer model in Table 3c. A model with 4 layers and 4 attention heads
outperforms both a smaller model (2 layers and 2 attention heads) and a larger
model (8 layers and 8 attention heads).

Comparison of the Different Experts. In Fig. 4, we show an ablation study
when training our model on MSRVTT using only one expert (left), using all
experts but one (middle), or gradually adding experts by greedy search (right).
In the case of using only one expert, we note that the motion expert provides
the best results. We attribute the poor performance of OCR, speech and face to
the fact that they are absent from many videos, thus resulting in a zero vector
input to our video encoder. While the scene expert shows a decent performance,
if used alone, it does not contribute when used along other experts, perhaps
due to the semantics it encodes being captured already by other experts like
appearance or motion. On the contrary, the audio expert alone does not provide
a good performance, but it contributes the most when used in conjunction with
the others, most likely due to the complementary cues it provides, compared to
the other experts.

Comparison to Prior State of the Art. We compare our method on three
datasets: MSRVTT (Table 4), ActivityNet (Table 5) and LSMDC (Table 6).
While MSRVTT and LSMDC contain short video-caption pairs (average video
duration of 13s for MSRVTT, one-sentence captions), ActivityNet contains much
longer videos (several minutes) and each video is captioned with multiple sen-
tences. We consider the concatenation of all these sentences as the caption. We
show that our method obtains state-of-the-art results on all the three datasets.
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Table 4. Retrieval performance on the MSRVTT dataset. 1k-A and 1k-B denote test
sets of 1000 randomly sampled caption-video pairs used in [31] and [16] resp.

Text−→Video Video−→Text

Method SplitSplit R@5↑ MdR↓ MnR↓ R@5↑ MdR↓ MnR↓
Random baseline 1k-A 0.5 500.0 500.0 0.5 500.0 500.0

JSFusion [31] 1k-A 31.2 13 – – – –

HT [17] 1k-A 35.0 12 – – – –

CE [14] 1k-A 48.8±0.6 6.0±0.0 28.2±0.8 50.3±0.5 5.3±0.6 25.1±0.8

Ours 1k-A 54.0±0.2 4.0±0.0 26.7±0.9 56.0±0.9 4.0±0.0 23.6±1.0

HT-pretrained [17] 1k-A 40.2 9 – – – –

Ours-pretrained 1k-A 57.1±1.0 4.0±0.0 24.0±0.8 57.5±0.6 3.7±0.5 21.3±0.6

Random baseline 1k-B 0.5 500.0 500.0 0.5 500.0 500.0

MEE [16] 1k-B 37.9 10.0 – – – –

JPose [26] 1k-B 38.1 9 – 41.3 8.7 –

MEE-COCO [16] 1k-B 39.2 9.0 – – – –

CE [14] 1k-B 46.0±0.4 7.0±0.0 35.3±1.1 46.0±0.5 6.5±0.5 30.6±1.2

Ours 1k-B 49.1±0.4 6.0±0.0 29.5±1.6 49.4±0.4 6.0±0.0 24.5±1.8

Table 5. Retrieval performance on the ActivityNet dataset.

Text−→Video Video−→Text

Method R@5↑ MdR↓ MnR↓ R@5↑ MdR↓ MnR↓
Random baseline 0.1 2458.5 2458.5 0.1 2458.5 2458.5

FSE [33] 44.8±0.4 7 – 43.1±1.1 7 –

CE [14] 47.7±0.6 6.0±0.0 23.1±0.5 46.6±0.7 6.0±0.0 24.4±0.5

HSE [33] 49.3 – – 48.1 – –

Ours 54.2±1.0 5.0±0.0 20.8±0.4 54.8±0.4 4.3±0.5 21.2±0.5

Ours-pretrained 61.4±0.2 3.3±0.5 16.0±0.4 61.1±0.2 4.0±0.0 17.1±0.5

Table 6. Retrieval performance on the LSMDC dataset.

Text−→Video Video−→Text

Method R@5↑ MdR↓ MnR↓ R@5↑ MdR↓ MnR↓
Random baseline 0.5 500.0 500.0 0.5 500.0 500.0

CT-SAN [32] 16.3 46 – – – –

JSFusion [31] 21.2 36 – – – –

CCA [11] (rep. by [16]) 21.7 33 – – – –

MEE [16] 25.1 27 – – – –

MEE-COCO [16] 25.6 27 – – – –

CE [14] 26.9±1.1 25.3±3.1 – – – –

Ours 29.2±0.8 21.0±1.4 76.3±1.9 29.3±1.1 22.5±0.4 77.1±2.6

Ours-pretrained 29.9±0.7 19.3±0.2 75.0±1.2 28.6±0.3 20.0±0.0 76.0±0.8

The gains obtained through MMT’s long term temporal encoding are particu-
larly noticeable on the long videos of ActivityNet.
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5 Summary

We introduced multi-modal transformer, a transformer-based architecture capa-
ble of attending multiple features extracted at different moments, and from dif-
ferent modalities in video. This leverages both temporal and cross-modal cues,
which are crucial for accurate video representation. We incorporate this video
encoder along with a caption encoder in a cross-modal framework to perform
caption-video matching and obtain state-of-the-art results for video retrieval. As
future work, we would like to improve temporal encoding for video and text.
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This work was supported in part by the ANR project AVENUE.
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