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Abstract. We present a new loss function called Distribution-Balanced
Loss for the multi-label recognition problems that exhibit long-tailed
class distributions. Compared to conventional single-label classification
problem, multi-label recognition problems are often more challenging due
to two significant issues, namely the co-occurrence of labels and the dom-
inance of negative labels (when treated as multiple binary classification
problems). The Distribution-Balanced Loss tackles these issues through
two key modifications to the standard binary cross-entropy loss: 1) a
new way to re-balance the weights that takes into account the impact
caused by label co-occurrence, and 2) a negative tolerant regularization
to mitigate the over-suppression of negative labels. Experiments on both
Pascal VOC and COCO show that the models trained with this new
loss function achieve significant performance gains over existing meth-
ods. Code and models are available at: https://github.com/wutong16/
DistributionBalancedLoss.

Keywords: Multi-label classification · Long-tailed data ·
Distribution-balanced loss

1 Introduction

Along with the wide adoption of deep learning, recent years have seen great
progress in visual recognition, especially the remarkable breakthroughs in clas-
sification tasks. However, mainstream benchmarks are often constructed under
two common conditions: 1) all classes have comparable numbers of instances
and 2) each instance belongs to a unique class. While providing a clean setting
for various studies, this conventional setting conceals a number of complexities
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Fig. 1. Our Distribution-Balanced Loss performs re-balanced weighting along with re-
sampling that takes label co-ocurrence into consideration, and it leverages negative-
tolerant regularization to avoid over-suppression of the negative labels caused by the
dominance of negative classes in binary cross entropy (BCE)

that often arise in real-world applications [14,16,25,26]. In contrast, the distri-
bution of different object categories typically exhibit a long tail in practical con-
texts while individual images can generally be associated with multiple semantic
labels [15,23,24,35]. Previous works [1,12,17] have repeatedly shown that such
issues can cause substantial performance drop if not appropriately handled.

A widely adopted approach to multi-label problem is to use binary cross-
entropy [7] in the place of the softmax loss, and use class-specific re-weighting to
balance the contributions of different classes, e.g. setting the class weights to be
inversely proportional to the class sizes. Such simple methods often result in lim-
ited improvement, as they fail to take into account the impacts of two important
issues, namely label co-occurrence and the dominance of negative labels.

First, label co-occurrence is very common in natural images. For example, an
image that contains unusual concepts, e.g. “tigers” and “leopards”, is likely to be
also associated with more common labels, e.g. “trees” and “river”. Therefore, re-
sampling such images may not necessarily result in a more balanced distribution
of classes. Second, each image is usually associated with a very small fraction of
all the classes in the list. Consequently, given an image, most classes are nega-
tive. However, the binary cross entropy (BCE) loss is designed to be symmetric,
where positive and negative classes are treated uniformly. This symmetric for-
mulation in conjunction with the dominant portion of negative classes would
lead to over-suppression of the negative side, thus introducing significant bias
to the classification boundaries. In response to issues above, we propose a new
loss function, called Distribution-Balanced Loss. This loss function consists of
two key modifications to the standard BCE loss: 1) re-balanced weighting, which
adjust the weights in a way that closes the gap between expected sampling times
and actual sampling times, with label co-occurrence taken into account; and
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2) negative-tolerant regularization, which avoids over-suppression of the negative
labels by setting a margin and a re-scaling factor. Experiments on two multi-
label recognition benchmarks, i.e. Pascal VOC [8] and MS COCO [22], show
that the proposed loss achieves remarkable improvement over previous methods.

2 Related Work

Previous works on long-tailed recognition [18,26,33] mainly follow two directions:
re-sampling and cost-sensitive learning. And many efforts have been dedicated
to the multi-label classification task.

Re-sampling. To achieve a more balanced distribution, researchers have pro-
posed to either over-sample the minority classes [1,2,30], or under-sample the
majority classes [1,10,17]. The downside of the former is that it might lead
to over-fitting on minority classes with duplicated samples, while the latter
might weaken feature learning capacity due to omitting a number of valuable
instances. While previous works mainly focus on single label datasets, we extend
re-sampling to the multi-label scenario.

Cost-Sensitive Learning. Assigning different costs to different training sam-
ples is proved to be an effective strategy dealing with imbalanced data. Typ-
ically, researchers apply class-level re-weighting by the proportional inverse of
class frequency [13,33], or the square root for smoothing. Recently, Cui et al [5]
proposed to re-weight by the inverse of effective number of samples, and Cao et
al [3] emphasized larger margin for rare classes. Further, various works adopted
sample-level control of cost based on individual properties, e.g. example dif-
ficulty [21], estimated Bayesian uncertainty [19], gradient direction [29]. Our
method applies re-weighting based on class frequency and individual ground
truth labels and modifies the loss gradient with a regularization as well for a
better optimization.

Multi-label Classification. Earlier solutions for multi-label recognition
include decomposing it into independent binary classification tasks [31], and
k-nearest neighbor named ML-kNN [36], etc. Recently, many approaches
attempted to take label relationships into consideration to better regularize the
embedding space. CNN-RNN [32] utilized the RNNs combined with CNN to
learn a joint image-label embedding, and Wang et al [34] took advantages of a
spatial transformer layer and long short-term memory (LSTM) units to capture
contextual dependencies. There’s also a popular trend to model label correlation
with graph structure [4,20]. Our method is based on the widely used binary
cross-entropy loss [7] and gains improvement by combining it with re-sampling
and re-weighting.

3 Distribution-Balanced Loss

The problem we want to exploit here is how to train a model effectively when
training samples follow a long-tailed distribution. Suppose the dataset we use is
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Class-aware re-sampling Statistics per epoch

Fig. 2. Visualization of the class-aware re-sampling procedure, and the sample num-
ber distribution before (left) and after (right) re-sampling. The distribution may not
necessarily be balanced due to label co-occurrence, and the unexpected sampling by
associated labels introduces inner-class imbalance

D = {(x1,y1), · · · , (xN ,yN )}, where N is the number of training samples and
(xk,yk), k ∈ {1, ..., N} is a sample-label pair. Let’s denote the number of classes
as C, then we have yk = [yk

1 , · · · , yk
C ] ∈ {0, 1}C . Let ni =

∑N
k=1 yk

i denote the
number of training examples that contain class i. Please note that N ≤ ∑C

i=0 ni

since a single example can be counted several times for each class it contains.
As we mentioned before, our distribution-balanced loss consists of two com-

ponents, namely re-balanced weighting and negative-tolerant regularization. In
Sect. 3.1, we would introduce the reason why we need a re-balanced weight in
long-tailed multi-label classification and the mathematical derivation of the opti-
mal value of this weight. In Sect. 3.2, we would demonstrate the over-suppression
for negative samples brought by sigmoid and how to overcome the problem with
our negative-tolerant regularization. Finally, these two components can be inte-
grated as a unified loss function, i.e. distribution-balanced loss, for end-to-end
training, which would be shown in Sect. 3.3.

3.1 Re-balanced Weighting After Re-sampling

The most common sampling rule is to select each example from training set with
equal probability, and the probability of a sampled example containing class i
would be pi = ni/N . To alleviate the discrepancy of imbalanced sampling prob-
ability among classes caused by data distribution, many re-sampling strategies
are proposed. One popular strategy is known as class-aware sampling [30]. It
first uniformly samples a class from the whole C classes, and then samples an
example from the selected class randomly. This process runs iteratively in each
training epoch. Let Ne denote the times for each class to be visited by the iter-
ator in one epoch, which is usually set as Ne = max(n1, · · · , nC). In cases of
extreme imbalance, Ne can be set smaller to control the data scale in one epoch.

However, in the multi-label scenario, an example usually contains several
ground-truth labels, making the selection for classes no longer independent. That
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is to say, re-sampling instances from one specific class will inevitably influence
the sample numbers of the other classes co-occurring. This leads to the following
problems. First, it induces inner-class imbalance because samples in a class are
no longer selected with equal probability. More importantly, the class imbalance
is not necessarily eliminated and may even be exaggerated, the reason for which
would be introduced below.

In fact, the numbers of samples for different classes after re-sampling would
not follow a uniform distribution as expected. Here we estimate them using label
co-occurrence statistics of the original training set. Assuming p(i|j) to be the
conditional probability of an instance containing label i under the condition of
containing label j, so that p(i|j) = ni∩j/nj , where ni∩j denotes the number of
examples that contain both label i and label j. Therefore, when we randomly
choose a class and sample an instance from it, the probability that it contains
label i would be shown as Eq. 1.

p̂i =
1
C

C∑

j=0

p(i|j) =
1
C

C∑

j=0

ni∩j

nj
(1)

The class distribution after re-sampling is show in Fig. 2, and the theoreti-
cal estimation matches our statistics of data sampled in one epoch during real
training procedure. According to the distribution, we proposed a re-balanced
weighting strategy to overcome the extra imbalance caused by re-sampling. First,
without taking label co-occurrence into consideration, for each instance k and
class i with yk

i = 1, the expectation of class-level sampling frequency can be
calculated as PC

i (xk) in Eq. 2. Then given an instance xk and its corresponding
label yk, it is supposed to be repeatedly sampled by each positive class i it con-
tains, thus the expectation of instance-level sampling frequency can be estimated
as P I(xk) in Eq. 2. Correspondingly, we define a re-balancing weight, namely rk

i ,
to close the gap between expected sampling times and actual sampling times, as
shown in Eq. 3.

PC
i (xk) =

1
C

1
ni

, P I(xk) =
1
C

∑

yk
i =1

1
ni

(2)

rk
i =

PC
i (xk)

P I(xk)
(3)

r̂ = α +
1

1 + exp(−β × (r − μ))
(4)

However, the weight elements are sometimes towards zero and may increase
the difficulty of optimization. To make the optimization process stable, we fur-
ther designed a smoothing function to map r into a proper range of values, which
is demonstrated in Eq. 4. Here α is an overall lift in weight, while β and μ con-
trols the shape of the mapping function, which rapidly increases near 0 and goes
flat near 1.
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Fig. 3. Visualization of gradient to a negative logit. (a) The gradient for CE loss can be
relatively small with a high positive logit; (b) for BCE loss it’s only effected by the neg-
ative logit itself which results in continuous suppression; (c) NTR encourages a sharp
decrease when the logit is lower than a threshold and slowers down the optimization

Finally, the loss function, which we name as Re-balanced-BCE, becomes
Eq. 5, where zk denotes the output of the classifier.

LR−BCE(xk, yk) =
1
C

C∑

i=0

[
yk

i log(1 + e−zk
i ) + (1 − yk

i )log(1 + ezk
i )

]
× r̂k

i (5)

What’s worth noting is that r̂k
i is applicable to both positive and negative

labels although it was originally deduced from the sampling procedure regarding
only the positive ones, in order to keep a consistency at class-level.

3.2 Negative-Tolerant Regularization

As mentioned above, binary cross entropy (BCE) loss, which is widely used
for multi-label classification, sometimes suffers from over-suppression for nega-
tive labels because of the dominance of negative classes. To be more specific,
BCE considers the recognition task as a series of binary classification tasks, cal-
culating independent class-wise probability with sigmoid function. In contrast,
cross entropy (CE) loss, which is popular in single-label classification, utilizes
softmax to emphasize mutual exclusion. Unlike softmax where the optimization
step would be rather small once the logit for positive class is much higher than
those of negative classes, sigmoid treats them independently and encourages the
logits of both positive and negative classes to be away from zero in the same gra-
dient declining manner. The difference between them can be observed by their
gradients shown in Eq. 6 and visualized in Fig. 3(a)(b).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂LCE(zj , y)
∂(zj)

=
ezj

∑C
i=0 ezi

, yj = 0

∂LBCE(zj , y)
∂(zj)

=
1
C

ezj

1 + ezj
, yj = 0

(6)

A straightforward consequence is that the classifiers for the tail classes
would over-fit to a limited number of positive samples in the feature space, and
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meanwhile, they would push a huge number of negative samples away to produce
lower logits. It can be taken as a class-specific over-fitting for the tail categories,
which leads to a bad generalization of the classifiers. As shown in Fig. 1(c), the
output distribution becomes sharp and the predictions of the testing samples
are easy to be influenced by head classes.

To address the problem, we need a regularization to overcome the over-
suppression. Specifically, the loss by negative logits actually needs a sharp drop
once it’s optimized to be lower than a threshold so that they won’t be con-
tinuously suppressed due to a relatively small gradient. Based on the idea, we
propose a negative-tolerant regularization (NTR) by first using a non-zero bias
initializaiton to act as the thresholds, and then applying a linear scaling to the
negative logits before their calculation in the standard BCE, together with a reg-
ularization parameter to constrain the gradient between 0 and 1. The Negative-
Tolerant-BCE thus becomes Eq. 7.

LNT−BCE(xk, yk) =
1
C

C∑

i=0

yk
i log(1 + ezk

i −νi) +
1
λ

(1 − yk
i )log(1 + e−λ(zk

i −νi))

(7)
λ is the scale factor that effects the loss gradient as shown in Fig. 3(c), con-

trolling how “tolerant” we are to zi, and ν is a class-specific bias. The design
for ν is supposed to take intrinsic model bias into consideration. Concretely, a
network trained with imbalanced data is likely to give passive predictions on
those tail classes on average, the thresholds for them should correspondingly be
lower, assuring that they won’t be too easily achieved. It shares a similar idea
with [3] that a larger margin is needed for rare classes. Assuming that we use a
fully-connect layer as the classifier, the intrinsic bias of the model can be esti-
mated by minimizing the loss function at the very beginning of training, where
the classifiers are randomly initialized, and the dot-product distance between
classifier vectors and instance features are at an average of zero. For a regular
BCE loss, considering the bias bi as the only variable, and assuming the class
prior to be pi = ni/N0, we can deduce an approximation of averaged loss by
class i:

Li = pi log(1 + e−bi) + (1 − pi) log(1 + ebi) (8)

b̂i = − log(
1
pi

− 1), νi = −κ b̂i (9)

We minimize Eq. 8 at b̂i, and use κ as a scale factor to get νi, which is further
applied to Eq. 7.

3.3 Distribution-Balanced Loss

So far, R-BCE performs a re-balanced weighting strategy and the weight vector is
fixed given an instance, while NT-BCE conducts regularization to the classifier
outputs and affects the training by modifying the loss gradient. They can be
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Fig. 4. Pipeline of the training procedure. Given a mini-batch of instances out of
class-aware sampling, the calculation of re-balanced weight is shown in the upper
stream, while NTR is shown in the lower. The two techniques are combined to our
final distribution-balanced loss

naturally integrated as a unified loss function for end-to-end training, as shown
in Fig. 4, and we finally get our distribution-balanced loss as Eq. 10.

LDB(xk, yk) =
1
C

C∑

i=0

r̂k
i

[

yk
i log(1 + ezk

i −νi) +
1
λ

(1 − yk
i )log(1 + e−λ(zk

i −νi))
]

(10)
DB loss helps to smooth the distribution of the classifier outputs especially

for those tail classes. It achieves superior performance in multi-label datasets
with a long-tailed distribution, as will be validated in Sect. 4.

4 Experiments

4.1 Datasets

The proposed Distribution Balanced Loss is analyzed on artificially created long-
tailed versions of two multi-label image recognition benchmarks, named VOC-
MLT and COCO-MLT, respectively. They’re subsets sampled from the original
datasets by pareto distribution pdf(x) = α

xα
min

xα+1 following [26]. α controls how
fast data scale decays. Regarding the interaction of sampling among classes, we
construct the datasets in a head-to-tail manner so that we can strictly constrain
the scale of tail classes: we first rank all the classes by p̂i calculated with original
data, and for each class i from head to tail, we add or eliminate instances that
contain class i from the subset by referring to the expected distribution. Details
on the construction of VOC-MLT and COCO-MLT can be found in the appendix.

VOC-MLT. We construct the long-tailed version of VOC [8] from its 2012
train-val set, with the power parameter α = 6. It contains 1,142 images from 20



170 T. Wu et al.

classes, with a maximum of 775 images per class and a minimum of 4 images
per class. We evaluate the performance on VOC2007 test set with 4952 images.

COCO-MLT. The long-tailed version of MS COCO-2017 [22] is created with
the same α, containing 1,909 images from 80 classes. The maximum of train-
ing numbers per class is 1,128 and the minimum is 6. We use the test set of
COCO2017 with 5,000 for evaluation. What’s worth noting is that the test set
of COCO and VOC are not perfectly balanced, they share a similar distribution
with the original train set. But the ranking of sample scale per-class of both the
original train and test set is roughly consistent with the long-tailed version.

4.2 Experimental Settings

Evaluation Metrics. Following [26], we split the classes into three groups by
the number of their training examples: head classes each contains over 100 sam-
ples, medium classes each has between 20 and 100 samples, and tail classes with
under 20 samples each. We evaluate mean average precision(mAP) for all the
classes, and we also report mAP for each subset to observe how the techniques
effect on them.

Comparing Methods. We compare our methods with several state-of-the-art
techniques dealing with multi-label classification or long-tailed recognition. We
also report the results of their effective combinations for fair comparison. The
standard binary cross entropy loss with sigmoid function is used or modified
by all the methods. The compared methods include: (1) Empirical risk mini-
mization: The plain model with all the examples having the same weight and
sampling probability. (2) Re-weighting (RW): we perform a smooth version of
re-weighting to be inversely proportional to the square root of class frequency,
and we normalize the weights to be between 0 and 1 in a mini-batch. (2) Re-
sampling (RS) [30]: we use class-aware re-sampling without extra tricks as a
baseline, and we also evaluate the combination of RS and other techniques in
comparison. (3) ML-GCN [4]: a recently proposed method by for multi-label
classification with graph convolutional network (GCN). (4) Focal loss [21]: we
use γ = 2 with a balance parameter of 2 for focal loss. (5) Class-balanced loss
(CB) [5]: a class-wise re-weighting guided by the effective number of each class
En = (1 − βn)/(1 − β). (6) Label-distribution-aware margin loss (LDAM) [3]:
a recently proposed margin-loss which is proved to be effective for softmax
classifier.

Implementation Details. We adopt Resnet50 [11] pretrianed on ImageNet [6]
as backbone feature extractor, followed by global average pooling and a 2048 ×
256 fully connection(FC) layer to obtain image-level features. The final classifier
is a 256 × C FC layer which outputs the logits. The input images are organized
with a batch size of 32, randomly cropped and resized to 224×224 together with
standard data augmentation. We use SGD with momentum of 0.9 and weight
decay of 1 × 10−4 as our optimizer, and we also use linear warm-up learning
rate schedule [9] for the first 500 iterations with a ratio of 1

3 . Training not
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Table 1. Experimental results of mAP by our methods and other comparing
approaches on VOC-MLT and COCO-MLT. We evaluate the results on the whole
class set and the three subsets, respectively

Datasets VOC-MLT COCO-MLT

Methods Total Head Medium Tail Total Head Medium Tail

ERM 70.86 68.91 80.20 65.31 41.27 48.48 49.06 24.25

RW 74.70 67.58 82.81 73.96 42.27 48.62 45.80 32.02

Focal Loss [21] 73.88 69.41 81.43 71.56 49.46 49.80 54.77 42.14

RS [30] 75.38 70.95 82.94 73.05 46.97 47.58 50.55 41.7

RS-Focal 76.45 72.05 83.42 74.52 51.14 48.90 54.79 48.30

ML-GCN [4] 68.92 70.14 76.41 62.39 44.24 44.04 48.36 38.96

LDAM [3] 70.73 68.73 80.38 69.09 40.53 48.77 48.38 22.92

CB-Focal [5] 75.24 70.30 83.53 72.74 49.06 47.91 53.01 44.85

R-BCE 76.34 71.40 82.76 75.22 49.43 48.77 53.00 45.33

R-BCE-Focal 77.39 72.44 83.16 76.77 52.75 50.20 56.52 50.02

DB 78.65 73.16 84.11 78.66 52.53 50.25 56.33 49.54

DB-Focal 78.94 73.22 84.18 79.30 53.55 51.13 57.05 51.06

combined with re-sampling is trained for 80 epochs with an initial learning rate
of 0.02, which decays by a factor of 10 after 55 and 70 epochs, respectively. Re-
sampling enhanced methods are trained for 8 epochs with the same learning rate
initialization decaying step, and it decays after 5 and 7 epochs, respectively. We
use the class-aware re-sampling [30] and the times that the iterator visits each
class in one epoch is set as Nmax

4 where Nmax denotes the maximum number
of training samples per class. Once Ne < Nmax, it actually controls how we
over-sample the tail classes and under-sample the head classes with no tail ones
co-occurring. The experiments are implemented in PyTorch.

4.3 Benchmarking Results

VOC-MLT. VOC-MLT contains 6, 6, and 8 classes for the head, medium, and
tail classes, respectively. We adjusted the hyper-parameters in other methods so
that they currently work best in our dataset. For our method, we choose α = 0.1,
β = 10, and μ = 0.3 for the smoothing function during re-balanced weighting.
And we set λ = 5, κ = 0.05 for NTR. The experimental results compared with
other traditional and state-of-the-art approaches can be seen in Table 1. What’s
worth noting is that unlike COCO-MLT whose tail classes always co-occur with
head classes, the tail classes for VOC usually appear as single-label, which lower
the complexity and difficulty for the classification task on them, bringing higher
performance for the tail that even outperforms the head. This character also
alleviate the defect of inner-class imbalance cause by head-tail connection and
notice that after regular re-sampling, all subsets including the head have an
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Fig. 5. In the matrix heatmap, the element in the ith column, jth row represents the
conditional probability of class existence, p(i|j), which is usually higher for head and
medium classes. The histograms below show the data distribution after re-sampling,
confirming that the imbalance is not eliminated by re-sampling. The sampling frequency
for each instance is different, and the line chart shows the variance within each class.
The high variance at the head indicates inner-class imbalance

improvement, especially the tail classes. Comparing with the best baseline, re-
sampling trained with focal loss (RS-Focal), our re-balanced weighting strategy
gains further improvement by about 1.0% in total mAP, with 0.4% and 2.2%
for head and tail classes and drop 0.3% for medium classes. Our final DB-Loss
further achieves remarkable improvements by 1.5% compared with R-BCE, and
by 0.8%, 1.0% and 2.6% for the three subsets, respectively. It can be seen that
NTR is especially beneficial for the tail classes.

COCO-MLT. The whole 80 classes of COCO-MLT are split into 22, 33, and 25
classes for the head, medium, and tail classes, respectively. We choose α = 0.1,
β = 10, and μ = 0.2 for the smoothing function during re-balanced weighting.
And we set λ = 2, κ = 0.05 for NTR. The experimental results compared with
other traditional and state-of-the-art approaches can be seen in Table 1. COCO-
MLT has a heavy head-tail connection, i.e. some tail classes has a 100% proba-
bility of oc-curring with certain head classes, as shown in Fig. 5. A direct result
of class-aware re-sampling is a sharp rise of mAP to the tail classes, while the
performance for head classes drops by about 0.9%. With re-balanced weighting,
the negative effect on the head classes is fixed and mAP for head, medium, and
tail classes all have an improvement, by 2.3%, 1.1% and 2.1%, respectively. With
focal loss combined with either BCE trained re-sampling or R-BCE trained re-
sampling, we see an extra improvement. Replacing R-BCE with DB-Loss would
further bring an average improvement of about 0.8%, and brings up mAP for
tail classes by about 1.1%.
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Fig. 6. Corresponding to the four training strategies i.e. ERM, regular class-aware re-
sampling, re-sampling with R-BCE and the final DB-Loss, we show the per-class mAP
increments between each two steps to evaluate our pipeline piecemeal, presented from
left to right. Result on COCO-MLT is in the left and VOC-MLT is in the right

4.4 Ablation Study

Visualization of the Imbalance Caused by Re-sampling. We visualize
the conditional probability matrix that reveals label co-occurrence relationship
in Fig. 5. As can be seen that the most frequently appearing classes usually have
the highest co-existing probability on the condition on of other classes. This
makes them repeatedly sampled, and the imbalance is not eliminated after re-
sampling. We also roughly estimate the inner-class imbalance by the variance of
normalized sampling times: for each class and each of the instances containing it,
we calculate its expected sampling times. We normalize them within a class to a
mean value of 1, and the variance of the normalized sampling times is calculated,
as shown in Fig. 5. Variance can roughly represent the extent of imbalance in
sampling. Classes with high variance gain little or negative increment in mAP
despite heavy sampling on them. A more precise and complicated cooperation
of sampling variance and data scale is out of the scope of this paper, which can
be reserved as future work.

Step-Wise Evaluation of Our Framework. We perform a step-wise eval-
uation on the test set by showing mAP increment per-class to have a better
understanding of how re-balanced weighting and negative-tolerant regulariza-
tion work on different parts of the dataset distribution. As shown in Fig. 6
and mentioned above, regular re-sampling is not friendly to head and medium
classes, with little or negative increment. While using re-balanced weighting has a
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Table 2. Experimental results on re-sampling combined with several re-weighting tech-
niques. CB loss with focal is reported by [5] to perform better, so all the other techniques
are enhanced with focal loss for fair comparison

Datasets VOC-MLT COCO-MLT

Methods Total Head Medium Tail Total Head Medium Tail

RS [30] 75.38 70.95 82.94 73.05 47.7 46.44 51.93 43.23

RS-Focal [21] 76.45 72.05 83.42 74.52 51.14 48.9 54.79 48.30

RS+RW-Focal [27,28] 71.96 63.14 81.09 71.73 49.07 47.80 52.09 46.20

RS+CB-Focal [5] 75.24 70.30 83.53 72.74 50.07 48.45 54.03 48.28

R-BCE-Focal 77.39 72.44 83.16 76.77 52.75 50.2 56.52 50.02

general improvement among classes and amend performance drop by regular re-
sampling. Negative-tolerant regularization also benefits a large range of classes,
and it leads to a remarkable improvement for tail classes as we expected, indicat-
ing an improved generalization ability after the suppression of negative samples
is relaxed.

The Combination of Re-sampling and Various Re-weighting Methods.
Re-sampling and traditional re-weighting methods based on the original distri-
bution share a similar thought of drawing more importance to the rare classes,
and they’re usually performed at instance level. As a result, the combinations
of them are at risk of redundancy: the head classes are over-ignored and the
tail classes are over-emphasized. Our re-balanced weight is also calculated from
the training distribution and it’s designed to fine-tune and enhance re-sampling
rather than doing repetitive jobs. So we combine the traditional re-weighting
methods with re-sampling for comparison as performed in Table 2. Our superior
performance shows the benefit of applying R-BCE to re-sampling.

4.5 Further Analysis

The Effect of Hyper-Parameters of Smoothing Function. The smoothing
function Eq. 4 has three hyper-parameters, α applies an overall lift in weight, β
and μ control the shape of the mapping function. We report the results of β with
μ = 0.2 fixed as shown in Fig. 4.

The Effect of λ in Negative-tolerant Regularization. To understand how
λ and ν of Eq. 7 affect the results independently, we first fix ν = 0 the same as
in the main experiments and change λ in a large range, and then fix λ = 2, 5
for COCO-MLT and VOC-MLT, respectively, and change ν. The effect of ν is
relatively small, and we would report the results in the supplementary material.
Here in Fig. 7b, we observe that it performs the best at λ = 5−10 for VOC, with
an improvement of about 2.5% for the tail classes, and 1% for head and medium
classes. In COCO, head and medium classes are slightly affected when λ < 3
and tail classes have an improvement of about 1% at around 2 < λ < 3. What’s



Distribution-Balanced Loss 175

Fig. 7. (a). We show how mAP is effected by β independently. The total mAP has a
peak at around 5 < β < 10 for both datasets. And we observe an inverse tendency
of results for different subsets when β > 5. (b). We show how mAP is effected by λ
independently. We can observe a peak for both datasets away from λ = 1. COCO is
more sensitive towards it and we finalize at choosing λ = 2 in the main experiment

worth noting is that, by adding the same form of regularization to positive logits,
the results slightly drop as expected.

Group-Wise Analysis. Medium classes always have a better mAP on average
than both the head and tail classes. The reason for this may be that, medium
classes neither suffer from the over-fitting problem as tail classes do due to
insufficient training samples, nor do they get hurt from the imbalance induced by
re-sampling. Another explanation for this is that the average number of classes
an instance has is gradually reduced from the head classes to the tail. This
indicates a lower complexity and difficulty for the recognition task. For instance,
quite a number of the training samples for the tail classes of VOC-MLT have only
one ground-truth label. Phenomena led by this is that the defect of re-sampling
is relieved and the mAP performance of the tail classes surprisingly outperforms
head classes by a margin.

5 Conclusion

In this work, we propose a simple yet powerful loss function, Distribution-
Balanced Loss, to tackle the multi-label long-tailed recognition problem. Multi-
label long-tailed recognition problem has two intrinsic challenges, namely the
co-occurrence of labels and the dominance of negative labels (when treated
as multiple binary classification problems). To tackle these two obstacles, the
Distribution-Balanced Loss consists of two key ingredients: 1) a new way to
rebalance the weights that takes into account the impact caused by label co-
occurrence, and 2) a negative tolerant regularization to mitigate the over-
suppression of negative labels. Extensive experiments on both Pascal VOC and
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COCO validate the effectiveness of the Distribution-Balanced Loss to tackle
multi-label long-tailed visual data. The models trained with our new loss function
achieve significant performance gains over existing methods, which we believe
will serve as a strong baseline for future research.
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