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Abstract. This paper targets on learning-based novel view synthe-
sis from a single or limited 2D images without the pose supervision.
In the viewer-centered coordinates, we construct an end-to-end train-
able conditional variational framework to disentangle the unsupervisely
learned relative-pose/rotation and implicit global 3D representation
(shape, texture and the origin of viewer-centered coordinates, etc.). The
global appearance of the 3D object is given by several appearance-
describing images taken from any number of viewpoints. Our spa-
tial correlation module extracts a global 3D representation from the
appearance-describing images in a permutation invariant manner. Our
system can achieve implicitly 3D understanding without explicitly 3D
reconstruction. With an unsupervisely learned viewer-centered relative-
pose/rotation code, the decoder can hallucinate the novel view contin-
uously by sampling the relative-pose in a prior distribution. In various
applications, we demonstrate that our model can achieve comparable or
even better results than pose/3D model-supervised learning-based novel
view synthesis (NVS) methods with any number of input views.
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1 Introduction

Novel view synthesis (NVS) [79] aims at generating novel images with arbitrary
viewpoints given one or a few description images of an object. NVS has great
potential in computer vision, computer graphics and virtual reality.

Current NVS methods can be grouped into two categories, i.e., geometry-
and learning-based methods. The geometry-based methods [14,30] are usually
challenging to estimate the geometric structure in 3D space with single or very
limited 2D input [15,79], and need render for appearance mapping.

On the other hand, with the popularity of deep generative model [20],
learning-based solutions directly generate the image in target view, without the
explicitly 3D structure and the 2D rendering. As the 3D model estimation and
render module are not necessary, it is promising in a wide range of scenarios [79].

The generative adversarial network (GAN) [20] can be used for NVS by
discretizing the camera views and learn the view-to-view mapping functions
between any two pre-defined views [4,72,73]. Without 3D understanding, these
models cannot generalize unseen views effectively, e.g., trained with 10◦, 20◦ and
the model is asked to take a 15◦ input or generate the viewpoint of 25◦ [79].

To address this issue, [14,30] resort to the extra 3D information e.g., CAD
labels, which are usually expensive or inaccessible. [79] introduces the Cycle GAN
[86] to extract pose-invariant feature as implicitly 3D representation. However,
all of the aforementioned learning-based methods rely on human-labeled camera
pose/viewpoint in their training. Getting these viewpoint labels is costly because
the position of camera and object both need to be measured. Besides, the results
are usually noisy [53]. A more challenging issue of this approach is that it is
sometimes difficult to define the origin of pose for unseen, complex new objects.

Actually, previous NVS works adopt the object-centered coordinates [66],
where the shape of objects is represented with a canonical view. For example,
shown either a front view or side view of a car, these approaches set the pre-
defined frontal view as the origin and synthesize a view in this pose coordinates.
Defining canonical poses can simplify some specific scenarios (e.g., face [13]),
while it is problematic on many real-world tasks. It requires all the 3D objects
to be aligned to a canonical pose, which is hard for a novel object that has not
been encountered in the training set [53].

In contrast, viewer-centered coordinates [66,83] propose to represent the
shape in a coordinate system that aligns with the viewing perspective of input
image. We propose that the origin of NVS can be defined as the input view. In
this setting, novel objects and poses can be generalized since it is not required
to align canonical poses to 3D models. The manipulation code of relative-pose
would be the difference between appearance-describing input and target view,
rather than an absolute value in object-centered coordinates.

Besides, for complex objects, a single image is intrinsically ill-posed to
describe the entire appearance information of their objects. Recent learning-
based NVS works either hallucinate the blurry results [10] or use CAD model
in training [58]. A straightforward solution to improve NVS quality is to collect
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several images of the same object taken from different viewpoints. Most learning-
based works [59,73] directly average the representation of inputs with the help
of pose label. While the multiple inputs can be aligned without pose supervision
according to the texture in geometry-based methods.

Motivated by the aforementioned insights, we propose an unsupervised con-
ditional variational autoencoder framework to achieve NVS in learned viewer-
centered coordinates (abbreviated as AUTO3D). In this paper, we propose a
method to benefit from both learning- and geometry-based methods while ame-
liorating their drawback. Our method is essentially a learning-based strategy
without the need of the explicitly 3d reconstruction and render, and yet still
infers 3D knowledge implicitly. It can automatically disentangle the relative-
pose/rotation and a global 3D representation to summarize the other factors
(e.g., shape, texture, illumination and the origin of viewer-centered coordinates)
without any extra supervision of pose, 3D model or geometry priors of symmetry
[2,31], and synthesize images of continuous viewpoints.

Our basic idea coincides with human’s way of novel view imagination that we
can perform virtual rotation of an implicitly 3D world understanding start from
the given view in our mentality [66]. We do not need to define frontal view, have
input pose label, and extract view-point independent representation as [73,79].

Besides, the disentanglement based on GANs can be unreliable for its unsta-
ble training dynamics what is known as mode collapse [6,18,51,54]. Unsupervised
conditional β-variational autoencoder (VAE) adopted here for viewer-centered
pose encoding offers a much easier and stable training than GANs [18]. Although
GAN loss can always be added to enrich the generation details [36]. With end-
to-end training, our model simultaneously learns to extract 3D information from
appearance-describing images, to disentangle latent pose code, and to synthe-
size target image with a relative-pose code sampled on a prior distribution (e.g.,
Gaussian). All of these are achieved in a pose-unsupervised manner.

Our spatial correlation module (SCM) can take multiple images in a permu-
tation invariant manner to generate a global 3D encoding. Based on the non-local
mechanism [75,84], we further explore the spatial clues with Gaussian similarity
metric and local diffusion-based complementary-aware formulation.

Since these images provide a complete description of the appearance of the
object, we name them as “appearance-describing” images. Our model extracts
the implicitly global 3D representation which provides a global overview of the
objects from these appearance describing images. The representation is com-
bined with the latent relative-pose code to synthesize the target image with the
viewpoint. In our model, no explicit notion of “canonical pose” is given by the
human labeler. Instead, it infers an implicit origin of viewer-centered coordinates
from the appearance describing images, which is usually the average pose of these
input images in our experiment observations. Besides, the input pose detection
in testing is not required When synthesizing the view with a user-defined degree
of rotation. Our contributions can be summarized as:
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• We propose a novel learning-based NVS system to synthesize new images in
arbitrary views without the supervision of pose. AUTO3D is the first attempt
at adapting unsupervisely learned viewer-centered coordinates for NVS.

• A unified conditional variational framework is designed to achieve unsuper-
visely learned viewer-centered relative-pose encoding and global 3D represen-
tation (shape, texture, illumination and the origin of viewer-centered coordi-
nates, etc.).

• Our model is general to take any number of images (from one to many) in a
permutation-invariant manner. The complementary information is organized
with a pose-unsupervised non-local mechanism beyond simply average.

We extensively evaluate our method on both objects and face NVS bench-
marks and obtained comparable or even better performance than the pose/3D
model-supervised methods. It can be applied to either a single or multiple inputs.

2 Related Work

Geometry-based NVS tries to explicitly model the 3D structure of objects and
project it to 2D space [14,16,30,62,67]. However, the estimated point clouds are
often not dense enough, especially when handling complicated texture [37,62].
[16,78] estimated the depth instead, but they are designed for binocular situ-
ations only. [32,64] proposed exemplar-based models that use large-scale col-
lections of 3D models, and the accuracy largely depends on the variation and
complexity of 3D models. [24] proposes to reconstruct the 3D model from a single
2D image without pose annotation, but its voxel setting does not consider the
appearance. In contrast, our proposed framework is essentially learning-based
without the need for explicit 3D reconstruction [28,69,77].

Learning-based NVS emerges with the development of convolutional neu-
ral networks (CNN) [21,42,43,46–48,52,55,80]. Early attempts directly map an
input image to a paired target image with an encoder-decoder structure [11]. [85]
predicts appearance flow instead of synthesizing pixels from scratch. But it is not
able to hallucinate the pixels not contained in the appearance-describing view.
[60] concatenates an additional image completion network, but its 3D annotation
for training is not necessary for our setting.

Recently, GAN [18,22,23,40] has been utilized to improve the realism of
synthesized images [49,50,81]. The generator learns to hallucinate the missing
pixels to make the output realistic. Most methods essentially learn an view-to-
view translator [29,38,86] between any two pre-defined discrete poses. Without
taking the 3D knowledge into account, these methods can only synthesize decent
results in several views presented in a training set with pose labels. In contrast,
our AUTO3D can synthesize novel viewpoints even if they never appear in the
training set and no pose label is given. [79] proposes to extract view-independent
features to implicitly infer the 3D structure with pose supervision in the Cycle-
GAN [86]. Indeed, all previous mentioned learning-based NVS require either 3D
model or pose label in their training [7,59,68,71,79,85]. Besides, some methods
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introduce explicit 3D induction bias, e.g., surfel representation [63] and rigid-
body transformation [57], but do not work on unseen objects in testing. However,
based on a unified conditional variational framework, our AUTO3D learns an
implicit global 3D representation on the unsupervisely learned viewer-centered
coordinates without any 3D shape and pose supervisions, performing well with
unseen objects and views.

Multiple-description NVS has also been investigated to provide more informa-
tion about the object. Most works [41,44,73] directly average the representation
of each appearance-describing input. [68] proposes a sophisticate 3D statistic
model to integrate different views. Our spatial-aware self-attention can be a
simple and efficient learning-based unified solution to tackle this problem.

Self-attention and Non-local Filtering. As attention models gain in popu-
larity, [74] develops a self-attention mechanism for machine translation. A similar
idea is inherited in the non-local algorithm [3], which is a classical image denois-
ing technique. The interaction networks are also developed for modeling pair-wise
interactions [45]. Moreover, [75] proposes to bridge self-attention to the more
general non-local filtering operations and use it for action recognition in videos.
[84] proposes to learn temporal dependencies between video frames at multiple
time scales. However, we argue that it is essentially tailored for unordered image
sets. We further incorporating spatial clues with Gaussian similarity matrix, and
local diffusion-based complementary-aware formulation.

Fig. 1. Illustration of our proposed AUTO3D framework. It is based on VAE-GAN and
consists with an unsupervised viewer-centered relative-pose encoding framework, and
a spatial-aware self attention module for global 3D encoding to summarize the other
factors. e.g., shape, texture, illumination and the origin of viewer-centered coordinates.

3 Methodology

Our goal is to generate a novel view image xg with the controllable viewer-
centered relative-pose code z given a global description of the object or scene.
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The global 3D representation is a vector representation computed from a sin-
gle or multiple appearance-describing images {x1, x2 · · · xN}, N = 1, 2 · · · which
provides a partial or complete view of the 3D object. Our implicit global 3D rep-
resentation does not pose-invariant as [79], since it is used to define the origin
of unsupervisely learned viewer-centered coordinates.

The overall framework of our AUTO3D is shown in Fig. 1, which is based
on the conditional β-variational autoencoder. Note that the GAN module is
only applied to enrich the details rather than disentanglement. The system is
composed of four modules for 1) global 3D feature encoding, 2) unsupervised
viewer-centered relative-pose encoding, 3) conditional decoding and 4) discrimi-
nating the reconstructed target image with the generated image with z sampling
respectively. The disentanglement of relative-viewpoints/rotation and 3D repre-
sentations can be achieved via the variational framework without the supervi-
sion of the 3D model or view-point label, and not relies on adversarial training.
Compared with the sophisticate triplet-based adversarial unsupervised disentan-
glement [56], our solution is simple but sufficient here.

3.1 Global 3D Encoding with Arbitrary Number of Appearance
Describing Images

Previous works usually focused on generating 3D model from only a single image
[79], but it is intrinsically hard to infer the hidden parts from one image for many
complex 3D objects. Rather than simply using the average operation to aggregate
multiple views [59,68,71,85] without alignment of different views, we propose to
use the global 3D encoder to collect the global information of the object.

The inputs to our global 3D encoder network can be arbitrary number (one
to many) of images of the same 3D object taken from different viewpoints, to
provide the global information of the 3D object, namely shape, color, texture
and the origin of viewer-centered coordinates, etc.

To organize multi-view inputs without the pose label, we first apply the fully
convolutional content encoder Encc : xi → R

H×W×D on each 2D appearance-
describing image xi to extract a compressed representation, where H, W and
D are the height, width and channel dimension of output feature respectively.
In general, the extracted feature is expected to maintain the spatial relationship
of each pixel in a 2D image. However, CNN is famous for its spatial invariant
property. Following the CoordConv operation [39], we concatenate the location
of the pixel as two additional channels to the feature map.

Since Encc is view-agnostic, simply averaging Encc(xi) does not give a chance
for each input to be aware of the others, in order to build links and corre-
spondences between different images, etc. We propose to harvest the spatially-
aware inner-set correlations by exploiting the affinity of point-wise feature vec-
tors. We use i = 1, · · · ,H × W to index the position in HW plane and the
j is the index for all D-dimensional feature vectors other than the ith vector
(j = 1, · · · ,H × W × (N − 1)). Specifically, our non-local block can be formu-
lated as
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xl
n i = xl−1

n i +
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∀n j
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where Ωl ∈ R
1×1×D is the weight vector to be learned, L being the number of

stacked sub-self attention blocks and x0
n = xn. The pairwise affinity ω(·, ·) is

an scalar. The response is normalized by Cn i. The operation of ω in Eq. (1) is
not sensitive to many function choices [75,84]. We simply choose the embedded

Gaussian given by ω(xl−1
n i , xl−1

n j ) = eψ(xl−1
n i )

T
φ(xl−1

n j ), where ψ(xl−1
n i ) = Ψxl−1

n i and
φ(xl−1

n j ) = Φxl−1
n j are two embeddings, and Ψ , Φ are matrices to be learned.

To explore the spatial clues, we further propose to use Gaussian kernel as
a similarity measure Δi,j = exp(‖hwn i−hwn j‖2

2
σ ), where hwn i, hwn j ∈ R

2 rep-
resent the position of ith and jth vectors in the HW-plane of xn, respectively.
The residual term is the difference between the neighboring feature (i.e., xl−1

n j )
and the computed feature xl−1

n i . If xl−1
n j incorporates complementary information

and has better imaging/content quality compared to xl−1
n i , then RSA will erase

some information of the inferior xl−1
n i and replaces it by the more discriminative

feature representation xl−1
n j . Compared to the method of using only xl−1

n j [75], our
setting shares more common features with diffusion maps [70], graph Laplacian
[9] and non-local image processing [17]. All of them are non-local analogues [12]
of local diffusions, which are expected to be more stable than its original non-
local counterpart [75] due to the nature of its inherit Hilbert-Schmidt operator
[12].

3.2 Unsupervised Viewer-Centered Relative-Pose Encoding

In the viewer-centered coordinates, the “average” viewpoint of all the
appearance-describing images is defined as origin, while the relative-pose code z
indicates the “rotation” from the origin to the pose of to be synthesized image.

Instead of inferring the viewpoint code only from a target image xt, the
viewer-centered relative-pose encoder Encp takes both xt and [f(x)] as inputs.
[f(x)] is a slice of f(x). In testing, our latent code z controls how the generated
viewpoint is different from the origin w.r.t. a small set of input appearance-
describing images.

The Dec maps global 3d feature f(x) to image domain with a reversed
structure of Enc and conditional to the relative-pose code z. Instead of only
resize z to match f(x) with a multi-layer perceptron (MLP) and concatenate
them as the input of Dec, we also adopt the adaptive instance normalization
(AdaIN) [27] after each convolution layer as previous conditional generation
works [26,57,79,82]. Specifically, the mean (μ) and variance σ of AdaIN layers
are normalized to match the relative-pose code z instead of the feature map
itself. Here, it a injects stronger inductive bias of z to Dec.
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The optimization objective of β-VAE [25] is to maximize the regularized evi-
dence lower bound (ELBO) of p(xt|x1, · · · xN ). Specifically, logp(xt|x1, · · · xN ) ≥
E

q(z|xt,[f(x)])
logp(x̃t|z, f(x)) − βDKL(q(z|xt, [f(x)])||p(z)), where q(z|xt, f(x))

and p(x̃t|z, f(x)) are the parameterized Enc and Dec respectively, p(z) is a prior
distribution (e.g., Gaussian), DKL is the Kullback-Leibler (KL) divergence. The
regularization coefficient β ≥ 1 constraints the capacity of the latent informa-
tion bottleneck z [1,65]. Therefore, the higher β can put a stronger information
bottleneck pressure on the latent posterior q(z|xt, [f(x)]). In this way, z is forced
to contain as little information of xt as possible, thus it drops all the appear-
ance information and carries only the relative-pose information. Both latent z
and f(x) are the inputs to the Dec. With the information bottleneck on z, the
decoder is encouraged to get all its appearance information from f(x), thus the
relative-pose and appearance information are automatically disentangled, with-
out any pose supervision or adversarial training.

We follow the original VAEs [19] that the inference model has two output
variables, i.e., μ and σ. Then utilize the reparametric trick z = μ + σ � ε,
where ε ∈ N(0, I). The posterior distribution is q(z|xt, [f(x)]) ∼ N(z;μ, σ2). In
practice, the KL-divergence can be computed as

LKL(z;μ, σ) =
1
2

Mz∑

j=1

(1 + log(σ2
j ) − μ2

j − σ2
j ) (2)

where Mz the dimension of the latent code z. For the reconstruction error, we
simply adopt the pixel-wise mean square error (MSE), i.e., L2 loss. Let x̃t be
the reconstructed xt, their L2 loss can be formulated as

LREC(xt, x̃t) =
1
2

Mrz∑

j=1

||xt,j − x̃t,j ||2F (3)

where Mrz indicates the channel dimension of xt or x̃t.

3.3 Overall Framework and Optimization Objective

A limitation of VAEs is that the generated samples tend to be blurry. This is
often result of the limited expressiveness of the inference models, the injected
noise and imperfect element-wise criteria such as the squared error [36]. Although
recent studies [34] have greatly improved the predicted log-likelihood, the VAE
image generation quality still lags behind GAN.

In order to improve generation quality, we adopt the following adversarial
training procedure. Similar to VAE-GAN [36], we train AUTO3D to discriminate
real samples from both the reconstructions and the generated examples with
sampling z. As shown in Fig. 1, these two types of samples are the reconstruction
samples xr and the new samples x̃t. The adversarial game of GAN can be

LAdv = log(Dis(xr)) + log(1 − Dis(Dec(xg))) + log(1 − Dis(Dec(x̃t))) (4)
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where xr ∈ {x1, x2 · · · xN , xt} is the real image from either appereance describing
set or target pose image. Actually, given a real xr, the reconstructed sample
Dec(x̃t) can always be more realistic than the sampling image xg. We usually
use similar number of reconstructed and sampled image in training [36].

When the KL-divergence object of VAEs is adequately optimized, the pos-
terior q(z|xt, f(x)) matches the prior p(z) = N(z; 0, I) approximately and the
samples are similar to each other. The combined use of samples from p(z) and
q(z|xt, [f(x)]) is also expected to mitigate the observation gap of z in train-
ing and testing stage, and empirically synthesize more realistic samples in the
testing. The to be minimized objective of each module are respectively defined
as

LEncp = (LRec + LKL + LAdv); LDec = (LRec + LAdv)
LEncc/SCM = (LRec + LAdv); LDis = −LAdv

(5)

After the aforementioned modules are trained, we use Encc, spatial-aware self
attention module (SCM) and Dec for the testing. Give a set of appearance-
describing image, we can sampling on a prior p(z) to control the projection
view with user defined rotation. Note that the network mapping of z and the
relative-pose difference is deterministic after the training.

Fig. 2. Comparison of “chair, bench” category on ShapeNet with a single 2D input.
From left to right: 2D-input, ground-of-truth, MV3D [71], AF [85], pose-supervised
VIGAN [79], Our unsupervised AUTO3D. AUTO3D is comparable to the pose-
supervised VIGAN and significantly better than MV3D/AF.

4 Experiments

We conduct a series of experiments on both large scale objects (ShapeNet [5])
and face (300W-LP) [87] datasets to evaluate the qualitative and quantitative
performance of AUTO3D, along with the detailed ablation study. Note that the
compared methods use the absolute pose value while our z defines the relative-
pose/rotation. For the fair comparison, we calculate the difference of input and
target pose label in the testing as our relative-pose. Note that AUTO3D can
generate any pose continuously without the pose label in both training and
NVS implementation.
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For fair comparisons in the objects and continuous face rotation tasks, we
choose the same Encc, Dec, Dis, MLP backbones and AdaIN setting as VI-GAN
[79]. We set |z|=128 for all datasets except for Cars, where we use |z|=200.
We train AUTO3D from scratch with Adam [33] solver and implemented on
Pytorch [61]. Let Cs,k,c denote a convolutional layer with a stride s, kernel size k,
and an output channel c. Then, the discriminator architecture can be expressed
as C2,4,32 → C2,4,64 → C2,4,128 → C2,4,256 → C1,1,3. Note that we use a local
discriminator similar to that of [29]. We use a Leaky ReLU activation function
with slope of 0.2 on every layer, except for the last layer. Normalization layer is
not applied. This architecture is shared across all experiments.

We implemented our model on Pytorch [61]. Our model is trained end-to-
end using using ADAM [33] optimization with hyper-parameters β1=0.9 and
β2=0.999. We used a batch size of 8 for ShapeNet objects. The encoder network
is trained using a learning rate of 5 × 10−5 and the generator is trained using a
learning rate 10−4.

4.1 Datasets

ShapeNet [5] is a large collection of textured 3D CAD models of a variety of
object categories. There are both single input setting and multiple inputs setting.
For single image only, we use the image rendered by [8] following [79]. The chair,
bench, and sofa are selected, and 80% models are used for training while 20%
for testing [79]. Noticing the testing models are not seen by the network in
the training stage. For the multiple viewpoint inputs, we follow the standard
training and test data splits [59,60,68,71,85], and train a separate network for
each object category (also standard), using 1 to 4 input images to synthesize the
target view. The network architecture and training methods were fixed across
categories.

300W-LP [87] is a synthesized large-pose face images from 300W. It generates
61,225 samples across large poses with the 3D Image meshing and rotation of in-
the-wild face images, which is further expanded to 122,450 samples with flipping.
Following [79], we use 80% identities for training and 20% for testing.

4.2 Qualitative Results

Object rotation targets on synthesizing novel views of certain categories for
unseen objects. It is challenging, since different objects may have diverse struc-
ture and appearance. To demonstrate the capacity of our model, we evaluate
our model on the ShapeNet [5] dataset using samples from “chair”, “bench” and
“sofa” categories. The results are given in Fig. 2.

MV3D [71] and Appearance-Flow (AF) [85] are two popular methods that
perform well on this task, while VI-GAN [79] is the recent pose-supervised state-
of-the-art. MV3D and AF deal with continuous camera pose by taking the dif-
ference between the 3×4 transformation matrices of the input and target views
as the pose vector. We compare AUTO3D with them both qualitatively and
quantitatively. As shown in Fig. 2, MV3D [71] and AF [85] usually miss small
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parts, while our results are closer to the ground truth and recent pose-supervised
NVS method.

Table 1. Using a single input, the mean pixel-wise L1 error (lower is better) and SSIM
(higher is better) between ground truth and predictions generated by previous pose-
supervised methods and different AUTO3D settings. When computing the L1 error,
pixel values are in range of [0, 255]. The best are bolded, while the second best are
underlined.

Method Chair Bench Sofa

L1 ↓ SSIM↑ L1 ↓ SSIM↑ L1 ↓ SSIM↑
MV3D [71] [need pose label] 24.25 0.76 20.24 0.75 17.52 0.73

AF [85] [need pose label] 18.44 0.82 14.42 0.85 13.26 0.77

VIGAN [79] [need pose label] 12.56 0.87 11.52 0.88 10.13 0.83

AUTO3D w/o AdaIN 12.65 0.83 11.88 0.85 10.39 0.79

AUTO3D w/o GAN 12.64 0.83 11.86 0.85 10.40 0.78

AUTO3D w/o TS 12.65 0.85 11.83 0.86 10.35 0.80

AUTO3D w/o SCM 12.62 0.86 11.80 0.87 10.31 0.82

AUTO3D 12.62 0.87 11.80 0.87 10.30 0.82

In the face rotation task, PRNet [13] uses the UV position map in 3DMM to
record 3D coordinates and trains CNN to regress them from single views. Figure 3
qualitatively compares our method with PRNet [13] and pose-supervised VI-
GAN [79]. Following [13,79], we choose the standard training protocol of 300W-
LP, but not use the pose label. As shown in Fig. 3, PRNet [13] may introduce
artifacts when information of certain regions is missing. This issue is severe
when turning a profile into a frontal face. In contrast, our model produces more
realistic images than PRNet [13] and comparable to pose-supervised VI-GAN
[79].

Fig. 3. Comparison with VIGAN [79], PRNet [13] on 300W-LP face dataset.

4.3 Quantitative Results

For quantitative evaluation, the mean pixel-wise L1 error and the structural sim-
ilarity index measure (SSIM) [76,78] between synthesized results and the ground
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truth are calculated following previous methods. We measure the capability of
our approach to synthesize new views of objects under large transformations
following the standard evaluation protocol. Table 1 shows that our model has
on-par performance with pose-supervised VI-GAN in single-input setting fol-
lowing their experiment setting. AUTO3D achieves much lower L1 error and
higher SSIM than MV3D [71] and AF [85].

Table 2. The mean pixel-wise L1 error (lower is better) and SSIM (higher is better) of
AUTO3D and pose-supervised methods with 1 to 4 views, on Chair and Car categories
of ShapeNet. Noticing that the setting is different from Table 1 as detailed in Sec 4.2.

Views Method Chair Car Views Method Chair Car

L1 ↓ SSIM↑ L1 ↓ SSIM↑ L1 ↓ SSIM↑ L1 ↓ SSIM↑
1 MV3D [71] [pose] 0.223 0.882 0.139 0.875 3 MV3D [71] [pose] 0.197 0.898 0.116 0.887

AF [85] [pose] 0.229 0.871 0.148 0.877 AF [85] [pose] 0.188 0.887 0.089 0.915

MNV [68] [pose] 0.181 0.895 0.098 0.923 MNV [68] [pose] 0.122 0.919 0.068 0.941

TBN [59] [pose] 0.046 0.895 0.025 0.927 TBN [59] [pose] 0.023 0.936 0.017 0.943

AUTO3D w/o SCM 0.052 0.893 0.031 0.916 AUTO3D w/o SCM 0.029 0.930 0.024 0.935

AUTO3D [SCM-SG] 0.053 0.892 0.031 0.916 AUTO3D [SCM-SG] 0.026 0.932 0.020 0.939

AUTO3D [SCM-LDC] 0.052 0.893 0.031 0.917 AUTO3D [SCM-LDC] 0.027 0.934 0.019 0.939

AUTO3D 0.053 0.893 0.030 0.916 AUTO3D 0.025 0.936 0.017 0.942

2 MV3D [71] [pose] 0.209 0.890 0.124 0.883 4 MV3D [71] [pose] 0.192 0.900 0.112 0.890

AF [85] [pose] 0.207 0.881 0.107 0.901 AF [85] [pose] 0.165 0.891 0.081 0.924

MNV [68] [pose] 0.141 0.911 0.078 0.935 MNV [68] [pose] 0.111 0.925 0.062 0.946

TBN [59] [pose] 0.027 0.928 0.019 0.939 TBN [59] [pose] 0.022 0.939 0.015 0.946

AUTO3D w/o SCM 0.036 0.918 0.028 0.929 AUTO3D w/o SCM 0.030 0.929 0.022 0.938

AUTO3D [SCM-SG] 0.034 0.921 0.025 0.933 AUTO3D [SCM-SG] 0.024 0.935 0.019 0.942

AUTO3D [SCM-LDC] 0.033 0.922 0.023 0.934 AUTO3D [SCM-LDC] 0.022 0.936 0.018 0.944

AUTO3D 0.031 0.924 0.020 0.937 AUTO3D 0.020 0.938 0.016 0.946

Table 3. Turning into frontal face task on 300W-LP dataset.

Pre-training encoder PRNet [ECCV2018] [13] VIGAN [ICCV2019] [79] Our AUTO3D (unsupervised)

L1 ↓ 22.65 15.32 16.25± 0.005

SSIM↑ 0.65 0.73 0.71± 0.003

Then, we demonstrate AUTO3D can infer high-quality views flexibly using
limited (1–4) input views at testing. We following the experimental protocol
of [59,68] to use up to 4 input images to infer a target image, which is usu-
ally challenging for geometry-based NVS. We report the quantitative results
on Table 2, and compare our AUTO3D with other works that can take multiple
inputs [59,68,71,85], as well as those only accepting single inputs [60]. AUTO3D
is comparable or even better than previous pose-supervised methods, especially
when more views available. Besides, the gap between AUTO3D and its SCM-free
version is usually larger when views increase.

We also give a quantitative evaluation scheme when turning into frontal faces
following [79]. Given a synthesized frontal image, it is aligned to its ground truth
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followed by cropping into the facial area. Its ground truth is also cropped with
the same operation. L1 error and SSIM are calculated between two facial areas
and reported in Table 3. AUTO3D yields higher precision than PRNet [13] and
is comparable to pose-supervised VIGAN [79] on the 300W-LP dataset.

4.4 Ablation Study of Each Module

Based on conditional β-VAE, our AdaIN, tensor slides (TS), spatial correlation
module (SCM) and adversarial loss (GAN) also contribute to the final results.

From Table 1, 2, we can see that the SCM does not affect the performance
of AUTO3D when only a single input is available. While it is critical to achieve
better performance in multiple inputs cases as shown in Table 2. Adding SCM
can consistently improve the appearance reconstruction. Besides, SCM without
spatial-aware Gaussian (SCM-SG) or local diffusion-based complementary-aware
formulation (SCM-LDC) is consistently inferior to the normal SCM, indicating
the effectiveness of our modification on vanilla non-local.

The adversarial loss is utilized to enrich the details and sharpen the appear-
ance. We do not manage to use it for disentanglement as previous unsupervised
adversarial training works [56].

AdaIN also contributes to disentanglement, and improve the generation qual-
ity w.r.t. appearance. Noticing that the NVS is usually not sensitive to the tensor
slides, while can speed up the training speed by 1.5 times.
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Fig. 4. Sensibility analysis of [Top left] different β (single view bench on ShapeNet),
[Top right] the number of SCM blocks (3-view inputs of chair on ShapeNet) and [Bot-
tom] rotation values (single view 300W-LP).

4.5 Sensitive Analysis

The value of β is critical to the performance. We use automatic selection with
the disentanglement metric following [25], and fine-tune it according to visual
quality. The sensitive analysis is shown in top left of Fig. 4.
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The number of layers in our spatial correlation module (SCM) is also critical
to the synthesis quality in multiple inputs cases. Here, we give a sensibility
analysis in the top right of Fig. 4 (b). We can see that the performance is stable
within the range of [4,7]. For simple operation, we choose 4-layer for all of our
experiments with multiple inputs.

We also analyse the interaction between the conditional viewer-centered pose
code z and generation quality. The bottom of Fig. 4 shows the comparisons of
L1 error as a function of view rotation on the face dataset. Noticing that z
indicates the difference of appearance-describing and target view, and 0◦ means
no viewpoint change. This illustrates that our AUTO3D can well tackle the
extreme pose rotations even without the 3D model or pose label in the training.

4.6 Investigating the Global 3D Feature

We expect that the implicitly 3D structure information of objects can be cap-
tured. To evidence this, we implement the experiment of using the latent global
3D representation encoding for learning of 3D tasks.

Following [79], we adopt the 3D face landmark estimation task. The network
has two parts where the encoder is the same as the encoder in AUTO3D and
Multilayer Perceptron (MLP) is with 2-layers for estimating the coordinate of
landmarks based on features extracted by the encoder. Noticing that the back-
bone of AUTO3D is identical to VIGAN [79]. We also choose 300W-LP [87] for
training, in which 3D landmarks are obtained by using their 3DMM parameters.

We configure three training settings to extract the feature for 3D face land-
mark estimation. The first is to train the overall network from scratch to
learn 3D features directly. The second is pre-train the encoder using the view-
independent constraint of VI-GAN, then the 3D supervised data is then used to
train the overall network. The third setting is to pre-train the Encc with our
AUTO3D.

Following [79], testing involves 2,000 images from AFLW2000-3D [35] with 68
landmarks. Besides, the mean Normalized Mean Error (NME) [87] is employed
for evaluation. We report the results of three settings in Table. 4, until the train-
ing loss of both settings no longer changes. The pose-supervised implicitly 3D
feature extraction method [79] and our unsupervised AUTO3D get the mean
NMEs of 6.8% and 6.9% respectively, which is significantly lower than the train-
ing from scratch. This demonstrates that the feature learned by the encoder of
AUTO3D is 3D-related. It gives a good initialization for 3D tasks.

Table 4. The NME for 3D face landmark estimation.

Pre-train Encc Scratch VIGAN [ICCV2019] [79] Our AUTO3D (unsupervised)

Mean NMEs↓ 12.7% 6.8% 6.9%±0.12%
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4.7 The Effect of Source Image Ordering

The sum operation used in AUTO3D is essentially permutation invariant. We
conduct a simple experiment where we test the model on all possible order.
We randomly sampled 1000 tuple of source (image, camera pose) pairs from
ShapeNet cars and chairs, and evaluated on all 24 ordering. We have found that
feeding the different order does not affect the performance of proposed AUTO3D.
Our model shows robustness to ordering.

5 Conclusions

This paper presents a novel learning-based framework (AUTO3D) to achieve
NVS without the supervision of pose labels and 3D models. It is essentially based
on a conditional β-VAE which can be easily and stably trained to disentangle the
relative viewpoint information from the other factors in global 3D representation
(shape, appearance, lighting and the origin of viewer-centered coordinates, etc.).
Instead of the conventional object-centered coordinates, we define the relative-
pose/rotation in viewer-centered coordinates, for the first time, on NVS task.
Therefore, we do not need to align both training exemplars and unseen objects
in testing to a pre-defined canonical pose. Both single or multiple inputs can
be naturally integrated with a spatial-aware self-attention (SCM) module. Our
results evidenced that AUTO3D is a powerful and versatile unsupervised method
for NVS. In the future, we plan to explore more 3D tasks with AUTO3D.
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